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Abstract. We find the numerically exact partition potential for 1-D systems of interacting electrons
designed to model diatomic molecules. At integer fragment occupations, the kinetic contribution to the
partition potential develops sharp features in the internuclear region that nearly cancel corresponding fea-
tures of exchange-correlation. They occur at locations that coincide with those of well-known features
of the underlying molecular Kohn–Sham potential. For non-integer fragment occupations, we demon-
strate that the fragment energy gaps determine the kinetic part of the partition potential. Our results
highlight the importance of non-additive noninteracting kinetic and exchange-correlation energy approxi-
mations in density-embedding methods at large internuclear separations and the importance of non-additive
noninteracting kinetic energy approximations at all separations.

1 Introduction

The modern approach to the theory of chemical change
is deeply rooted in the formalism of density functional
theory (DFT). The foundation was built by Parr, Yang,
Ayers, Geerlings and others [1–4]. It is based on the
analysis of the change to the ground state properties
of isolated molecular fragments induced by other frag-
ments approaching from infinity [5]. This approach made
it possible to identify some of the most common pre-
DFT reactivity indices with functional derivatives of the
ground state molecular quantities. Nevertheless, the the-
ory lacks the finite-distance interactions that play an
essential role in the fragment chemical behavior. Notice-
ably, the formulation of Parr’s reactivity indices within the
non-integer DFT formalism (PPLB formalism) [6] leads to
conceptually inconsistent results [5].

The partition theory (PT) of reference [5] aims at
solving these inconsistencies. PT imagines a fictitious sys-
tem of noninteracting fragments embedded in a global
potential (i.e. same for all fragments). The fragments
are constrained to have densities that sum to the total
molecular density while minimizing the sum of fragment
energies (more on this quantity later). The uniqueness of
the fragment densities is ensured by the global embedding
potential, according to the theorem of reference [7].

To formally introduce the PT, we partition the external
potential v(r) into fragments labeled by the index α:
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v(r) =
∑
α

vα(r). (1)

PT is based on the following decomposition of the molec-
ular ground state (GS) energy:

Ev[nGS] = min
nN→N

[
min

{nα}→nN
[Ef [{nα}]] + Ep[nN ]

]
, (2)

where Ef [{nα}] is the sum of fragment energies and
Ep[nN ] is the partition energy. In equation (2), the outer
minimization is over all densities that integrate to N elec-
trons. Each of the fragment contributions to Ef is defined
to have the PPLB functional form:

Ef [{nα}] =
∑
α

{(1− ωα)Evα [npα ] + ωαEvα [npα+1]},

(3)

where pα and ωα are the integer and fractional parts of
Nα (number of electrons in fragment α). The inner min-
imization in (2) is over all pα, ωα, npα(r), and npα+1(r)
that produce the density nf(r) = nN (r) according to:

nf(r) =
∑
α

{(1− ωα)npα(r) + ωαnpα+1(r)}. (4)

To avoid finite-difference derivatives, it is common to fix
the integer part of the occupation numbers and use {nα}
to denote the set of all ωα’s, npα(r)’s, and npα+1(r)’s. We
also follow this convention in this text. Therefore, all our
derivatives with respect to ωα, npα(r), or npα+1(r) are not
the “formal” derivatives but rather constrained derivatives
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that keep the integer part of the corresponding fragment
α constant.

The inner minimization in equation (2) is done by the
method of Lagrange multipliers. The equivalent uncon-
strained extremization is done for the following functional:

G[{nα}, vp(r)] = Ef [{nα}] +

∫
drvp(r)[nf(r)−nGS], (5)

where the partition potential, vp(r), has been introduced
as the Lagrange multiplier that forces condition (4) to be
satisfied at each point in space. Equation (5) also brings
out the physical meaning of the fragment densities

nα(r) = (1− ωα)npα(r) + ωαnpα+1(r). (6)

They are the ensemble ground state densities of Nα elec-
trons in the potential (vα(r) + vp(r)). The partition
potential vp(r) is the above-mentioned global embed-
ding potential that guarantees the uniqueness of the nα’s
[7]. Note that Evα [npα ] in equation (3) is not the cor-
rect ground state energy corresponding to npα(r), but
Evα+vp [npα ] is.

Stationarity of G[{nα}, vp(r)] with respect to ωα
implies: [7]

µPT
α = µPT

β , (7)

for any two fragments α and β, where the α-chemical
potential of PT is defined as

µPT
α = (Evα [npα+1] +

∫
drvp(r)npα+1(r))

− (Evα [npα ] +

∫
drvp(r)npα(r)).

(8)

Following the standard Kohn–Sham (KS) decomposi-
tion of the energy, the partition energy of equation (2)
can be written as:

Ep[nN ] = T nad
s [{nα}] + Enad

ext [{nα}] + Enad
H [{nα}]

+ Enad
XC [{nα}],

(9)

where Ts is the noninteracting kinetic energy, Eext is the
interaction energy of electrons with the external potential,
EH is the Hartree energy, and EXC is the exchange-
correlation energy. The superscript “nad” indicates that
each of these functionals is a non-additive contribution
defined (for an arbitrary functional Π) as: Πnad[{nα}] =
Π[nN ]−

∑
α{(1− ωα)Πα[npα ] + ωαΠα[npα+1]}.

The relationship between Ep[{nα}] and vp(r) was
derived by Nafziger and Wasserman [8]:

vp(r) =

∫
dr
∑
α

{
δEp

δnpα(r′)

δnpα(r′)

δnf(r)

+
δEp

δnpα+1(r′)

δnpα+1(r′)

δnf(r)

}
.

(10)

Substituting (9) into (10) leads to a useful decomposition
of vp(r) into contributions from kinetic, external, Hartree,
and exchange-correlation parts.

Used with approximate density functionals, PT has
been shown to fix delocalization and static correlation
errors in bond-stretching [9]. It has also been successfully
applied to the construction of approximations to non-
additive noninteracting kinetic energy functionals [10,11].
The exact properties of PT were analyzed with numeri-
cally solvable model systems of noninteracting electrons
[12–16] but the case of interacting electrons has only been
studied approximately.

Here, for the first time, we solve the exact PT prob-
lem for systems of interacting electrons. We use simple
1-D models of hydrogen dimer (H2), helium hydride
cation (HeH+) and lithium hydride (LiH) molecules. In
these model cases, two valence electrons interact via a
soft-Coulomb potential [17–19]. These models can be
solved numerically exactly. We use these exact results
to study the connection between KS and PT formalisms
and the effect of electron–electron interaction on the
most prominent features of the partition potential and
its components.

2 Model system and numerical methods

The properties of each fragment as well as the entire sys-
tem are computed on a fine real grid. Density-to-potential
inversion techniques are used to solve the PT problem
(i.e. the problem of finding vp(r) for a given density and
choice of partitioning). A more detailed discussion of the
numerical methods is presented below.

2.1 Model Hamiltonians

Our model of a 1-D dimer has two interacting valence elec-
trons. The soft-Coulomb (SC) potential is used to model
charge-charge interactions. The electronic Hamiltonian is:

H =
∑
i=1,2

{
−1

2
∇2
xi −

1√
1.0 + (xi −RH)2

− ZX√
1.0 + (xi −RX)2

}
+

λ√
1.0 + (x1 − x2)2

,

(11)

where xi is the coordinate of the ith electron, RX is the
position of the nucleus X (X stands for either H or He), ZX

is the nuclear charge and λ is the parameter that switches
the electron–electron interaction on (λ = 1) or off (λ = 0).
We use the softening parameter value of 1.0 and a simula-
tion box of 25 a.u. The case of LiH is discussed separately
in equation (21).

With the nuclear-nuclear interaction given by:

Vnn =
ZX√

3.0 + (RX −RH)2
, (12)

the equilibrium bond-length is R0 = 1.6 a.u. for H2 and
R0 = 2.1 a.u. for HeH+.
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The fragment Hamiltonians have the form:

Hpα+1 =
∑
i=1,2

{
−1

2
∇2
xi −

ZX√
1.0 + (xi −RX)2

+ vp(xi)

}
+

λ√
1.0 + (x1 − x2)2

(13)

and

Hpα = −1

2
∇2
x −

ZX√
1.0 + (x−RX)2

+ vp(x). (14)

2.2 Decomposition of vp(x)

With the strategy introduced by equations (9) and (10),
we rewrite vp(x) as:

vp(x) = vp,kin(x) + vp,ext(x) + vp,H(x) + vp,XC(x), (15)

where the components correspond to those of Ep in
equation (9). To calculate each component, we note:

δT nad
s [npα ]

δnpα(x)
= (1− ωα)(vs[npα ](x)− vs[nGS](x)), (16a)

δEnad
α [npα ]

δnpα(x)
= (1− ωα)(v(x)− vα(x)), (16b)

δEnad
H [npα ]

δnpα(x)
= (1− ωα)

∫
dx1

nGS(x1)− npα(x1)√
1.0 + (x1 − x)2

, (16c)

δEnad
XC [npα ]

δnpα(x)
= (1− ωα)(vXC[nGS](x)− vXC[npα ](x)).

(16d)

The equivalent derivatives with respect to the npα+1

are omitted for brevity. The functional derivatives in
equations (16) can be readily calculated and used further
to obtain vp,kin(x), vp,ext(x) and vp,H(x). The remaining
vp,XC(x) is calculated as a difference between the full vp(x)
and the first three components. For the functional deriva-
tive δnpα(x′)/δnf(x) in equation (10), we use the local
approximation [20]:

δnpα(x′)

δnf(x)
≈ Qpα(x, x′) ≡ npα(x′)

nf(x)
δ(x− x′), (17)

resulting in the following equations for the components:

vp,kin(x) =
∑
α

{ωαQpα+1
(x, x)v(−)s [npα+1](x)

+(1− ωα)Qpα(x, x)v(−)s [npα ](x)}
−v(−)s [nGS](x), (18a)

vp,ext(x) =
∑
α

{
(v(x)− vα(x))

nα(x)

nGS(x)

}
, (18b)

vp,H(x) =
∑
α

{
ωαQpα+1(x, x)

∫
dx1

nGS(x1)− npα+1(x1)√
1.0 + (x1 − x)2

+(1− ωα)Qpα(x, x)

∫
dx1

nGS(x1)− npα(x1)√
1.0 + (x1 − x)2

}
,

(18c)

vp,XC(x) = v
(−)
XC [nGS](x)−

∑
α

{ωαQpα+1(x, x)v
(−)
XC [npα+1](x)

+(1− ωα)Qpα(x, x)v
(−)
XC [npα ](x)}, (18d)

where the superscript “(−)” indicates that the
x-independent constant in vs(x) at integer elec-
tron number is calculated at the limit from below.
Since this approximation satisfies the sum rule,∑
α{(1 − ωα)Qpα + ωαQpα+1} = δ(x − x′) the sum

of vp(x) components yields the exact vp(x) [20].
Although this local approximation was shown to be
reliable for various systems [8], it can still affect the
individual components. Finally, we note that since

v
(−)
s [npα ](x) = vα(x) + vH[npα ](x) + v

(−)
XC [npα ](x) + vp(x),

equations (18d) can be derived simply by construction.

2.3 Numerical methods

2.3.1 Exact diagonalization

Hamiltonians (11), (13) and (14) are all diagonalized on
a real grid using the sixth order central finite difference
method for the ∇2

xi operator [21]. We note that both (11)
and (13) are symmetric under the particle index inter-
change and all the eigenstates are either symmetric or
antisymmetric. Spatially symmetric solutions correspond
to the spin zero state while the antisymmetric spatial
solutions correspond to triplet spin states. It therefore
becomes clear that we simply need to search for the lowest
eigenstate of (13) or (14) [22,23].

2.3.2 Density-to-potential inversions

To obtain the exact vp(x), we need to perform a numerical
inversion. The following outlines the inversion algorithm
employed to find vp(x) for a particular partitioning at a
fixed set of fragment occupation numbers:

0. Start with an initial guess for vp(x).
1. Use equations (4), (13) and (14) to compute the sum

of fragment densities in the presence of vp(x).
2. Calculate the difference between the total molecular

density and the sum from 1.
3. Based on the value from 2, decide whether the sum

of the fragment densities is sufficiently close to the
total molecular density. If it is, the optimization is
done; otherwise go to 4.

4. Update vp(x). Go to step 1.

We note that the algorithm assumes that the total molec-
ular density can be pre-computed. For the convergence
criterion in step 3 we use the value of the following
functional at step k:

θ(k)[n
(k)
f ] =

1

22

∫
dx[n

(k)
f (x)− nGS(x)]2, (19)

https://epjb.epj.org/
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where the factor 2 in the denominator appears because
we have two electrons. For the update in step 4, we utilize
the Broyden’s method [24]. After the algorithm is con-
verged, we methodically vary the occupation numbers to
eventually scan the entire set and find the minimum. The
initial guess of vp(x) = 0 in step 0 and the convergence
thresholds of 10−14 in step 3 are sufficient for obtain-
ing accurate energies. To obtain accurate and smooth
potentials, we apply the following procedure. After the

initial optimization to θ(k) ∼ 10−14, we compute v
(k)
p,kin(x),

v
(k)
p,ext(x), v

(k)
p,H(x) and v

(k)
p,XC(x) using equation (18d). In

particular, we use the exact molecular density to com-

pute derivatives of equation (16) and the current n
(k)
f (x)

to compute the factors of equation (17). We then use the

computed potetials to find v̄p,kin(x) = v
(k)
p (x)−v(k)p,ext(x)−

v
(k)
p,H(x) − v(k)p,XC(x) and v̄p,XC(x) = v

(k)
p (x) − v(k)p,ext(x) −

v
(k)
p,H(x)−v(k)p,kin(x). Finally, we construct the new guess for

vp(x) by adding v̄p,kin(x), v̄p,XC(x), v
(k)
p,ext(x) and v

(k)
p,H(x).

This new guess is run through a single cycle of the algo-
rithm to return the improved results. This procedure does
not significantly improve the energy results. However, it
markedly improves the density convergence in the low-
density regions and produces smooth potentials. Applying
this procedure periodically within our algorithm can con-

verge it to machine precision (max|n(k)f (x) − nGS(x)| ∼
10−16). However, no appreciable changes in features of the
potentials are observed after the threshold of θ ∼ 10−14.

Since each fragment can only have up to 2 electrons,
the KS potentials can be obtained analytically. The
expressions for the inversions are trivial [25].

3 Illustrative results and discussion

3.3.1 H2 model

We consider first a symmetric dimer model of H2 at two
different internuclear separations: the equilibrium bond
length, R0 = 1.60 a.u., and the large separation, R = 10.0
a.u. The optimal occupations for this model is clearly
NH,left = 1.0 and NH,right = 1.0. We analyze features
of vp(x) and how they are affected by the electron–
electron interaction. Our results highlight the importance
of approximating vp,kin(x) and vp,XC(x) accurately in
density embedding calculations, as previously pointed
out by several computational studies using approximate
T nad
s [npα ] [10,11,26,27]. For the noninteracting system, we

show that vp(x) is dominated by vp,ext(x) at equilibrium
(R0 = 1.60) and by vp,kin(x) R0 = 10.0.

In Figure 1, we plot the PT deformations of the
fragment densities (δnα(x) = nα(x)−n0α(x), where n0α(x)
is the density of an isolated fragment) and partition
potentials corresponding to these two cases. At R = 10.0,
both densities are slightly shifted away from the inter-
atomic region. In contrast, at the equilibrium separation,
the densities are shifted towards the bonding region.
Furthermore, the interatomic interactions are markedly
weaker at the larger separation. This is reflected in

the density deformations and vp(x) features that are
roughly two orders of magnitude smaller than those at
the equilibrium bond distance.

In the bottom panels of Figure 1, we analyze the
origin of these features through the decomposition of
equation (15). We combine vp,ext(x) and vp,H(x) because
vp,ext(x) has a deep well and vp,H(x) has a high peak in
the internuclear region. However, their sum is on the order
of the features in vp(x). Adding the external and Hartree
components can be further justified by the fact that in
practical calculations both can be computed exactly, but
vp,kin(x) and vp,XC(x) require approximations. In the plot
for R = 10.0, we also combine vp,kin(x) and vp,XC(x),
as they are analyzed separately later in the paper. At
the equilibrium, the depth of the well in vp(x) is deter-
mined by the vp,kin(x) and the vp,ext(x) + vp,H(x) terms.
The position of the peaks is also determined by the
vp,ext(x) + vp,H(x) contribution. We note that the effect
of the non-additive XC term is small relative to the other
components. At R = 10.0, the peak in the middle comes
from vp,ext(x)+vp,H(x). The contribution from vp,kin(x) is
almost completely cancelled by vp,XC(x), but fine features

persist even when the threshold θ(k) is decreased to 10−23.
It may appear that the contributions from vp,kin(x)

and vp,XC(x) at large separation are unimportant as they
cancel each other. However, the bottom right panel in
Figure 2 shows that these features have high magnitude.
Since in practice vp,kin(x) and vp,XC(x) are approximated
separately, the accuracy of the total vp(x) can be highly
sensitive to the errors in these approximations.

In addition, Figure 2 shows the formation of vp,kin(x)
according to equation (18a). Top left panel shows

v
(−)
s [nGS](x) along with v

(−)
s [nH](x)’s. We observe that

v
(−)
s [nH](x) matches closely with v

(−)
s [nGS](x) in the

nuclear regions. The difference between the fragment and
molecular KS potentials δvs(x), plotted at the top right,
has the flat region around their nucleus. The differences
are weighted by the corresponding npα(x)/nGS(x) terms
and summed, producing the total vp,kin(x). We note that

vp,kin(x) has a well from the peak in v
(−)
s [nGS](x). The

peak in vp,XC(x) has the same origin [28–31] and it nearly
cancels the well in vp,kin(x). This cancelation is not exact
and the fine features in vp,kin(x) + vp,XC(x) can still be
observed.

We turn off the electron–electron interaction in the sys-
tem by setting λ = 0. The results are shown in Figure 3.
Our method recovers the trivial result that vp,H(x) and
vp,XC(x) are zero. At both separations, vp(x) has a single
well. At equilibrium, this well is dominated by vp,ext(x).
In contrast, at R = 10.0, the well is predominantly
determined by vp,kin(x). The vp(x) plots are consistent
with previously reported ones for noninteracting systems
[13,16], but the present work shows that the well in
vp(x) is dominated by different components at different
internuclear distances.

3.3.2 HeH+ model

We study the features of vp(x) in the simplest het-
eronuclear molecular ion HeH+ at equilibrium separation.

https://epjb.epj.org/
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Fig. 1. 1-D H2 model at R0 = 1.60 a.u. (left) and R = 10.0 a.u. (right). Top: deformations of the fragment densities
δnα(x) = nα(x)− n0

α(x), where n0
α(x) is the density of an isolated fragment. Bottom: partition potential vp(x) and its com-

ponents defined through equation (15). Vertical dashed lines indicate the position of nuclei. The electron–electron interaction
parameter λ = 1.

Fig. 2. The relationship between features of vp,kin(x) and the peak of molecular vs(x) for H2 model at λ = 1 and R = 10.0.

Top left: molecular KS potential v
(−)
s [nGS](x) and fragment KS potentials v

(−)
s [nH](x). Top right: the differences between the

molecular and fragment potentials. Bottom left: npα(x)/nGS(x) terms. Bottom right: kinetic and XC contributions to the
partition potential. Vertical dashed lines indicate the position of nuclei.

https://epjb.epj.org/
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Fig. 3. Same as Figure 1, but for λ = 0.

Fig. 4. Summary of the PT results for the model system of HeH+ at equilibrium separation and λ = 1. Left: fragment energies
(top) and PT chemical potentials (bottom) at varying occupations on H atom. Right: density deformations relative relative to
the isolated fragments with the optimal electron occupations (top) and corresponding partition potential along its components
(bottom). Vertical dashed lines indicate the position of nuclei (H is on the left).

This model has non-integer optimal occupations. We use
this fact to analyze the relationship between the kinetic
component of vp(x) and the KS gap of PT fragments.

The left two panels of Figure 4 show the behavior of
Ef [{nα}] as a function of the number of electrons on
the hydrogen atom, at the equilibrium bond distance

of 2.09 a.u. The curvature of the energy plot is an
important consequence of accounting for the finite-
distance interfragment interactions (in contrast, the plot
of energy versus the number of electrons in DFT consists
of straight-line segments). This curvature does not
smoothen the graph at integer occupations, where it still

https://epjb.epj.org/
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Fig. 5. The relationship between vp,kin and ∆He defined through equation (20). ∆He-term stands for −(1−ωHe)∆
HeQpHe(x, x).

Vertical dashed lines indicate the position of nuclei (H is on the left).

has a cusp. The graph has a minimum when NH ≈ 0.3175.
At this occupation, we also observe the chemical poten-
tial equalization of the fragments. A rigorous definition
of fragments allows the discussion of the nature of a
chemical bond and the optimal occupations suggest the
amount of the ionic character a bond has. The connection
between 1-D models and real bonds is, of course, not
obvious. More generally, the physical interpretation of
PT fragment properties is still an open question.

The top right panel of Figure 4 shows the density
deformations relative to the isolated fragments with
the optimal electron occupations. We observe that both
He and H densities are shifted towards the interatomic
region. The partition potential that facilitates this shift
is plotted at the bottom right of Figure 4, along with its
components. Although its overall shape is similar to H2 at
equilibrium bond distance, vp(x) of HeH+ is dominated
by vp,ext(x). Naively, this can be attributed to the fact
that HeH+ is an ion and the electron-nuclear interactions
are the dominant ones.

The non-integer occupation numbers allow to establish
the relationship between vp,kin(x) and the fragment gaps
∆α = Iα − Aα, where Iα is the ionization potential and
Aα is the electron affinity of a fragment in the presence
of vp(x). If we assume the near-linearity of the fragment
KS potentials [32], equation (18a) can be approximated
as vp,kin(x) ≈ vnlp,kin(x), where:

vnlp,kin(x) =
∑
α

{
nα(x)

nGS(x)
vs[nα](x)

− (1− ωα)∆αQpα(x, x)

}
− v(−)s [nGS](x).

(20)

Figure 5 indicates that this approximation is in excel-
lent agreement with the exact vp,kin(x). The right
panel in Figure 5 compares the molecular KS poten-
tial to the weighted sum of the fragment KS poten-
tials,

∑
α nα[nα](x)/nGS(x)vs(x) from equation (20). We

can see that these two contributions almost entirely
cancel out and vp,kin(x) is largely determined by the
(1− ωHe)∆

HeQpHe
(x, x) term (note that there is no contri-

bution from ∆H because pH = 0). Additional calculations
on model systems suggest that the fragment KS term

closely mimics −v(−)s [nGS](x) in the high density regions,
but it misses its low density peak-and-step features.

3.3.3 LiH model

We consider a heteroatomic dimer model of lithium
hydride that separates into neutral fragments. In this
model, the core electrons are not treated explicitly but
their effects are simulated by adjusting the parameters of
the external potential function. The modified electronic
Hamiltonian of equation (11) is:

H =
∑
i=1,2

{
−1

2
∇2
xi −

1√
2.25 + (xi −RLi)2

− ZX√
0.6 + (xi −RH)2

}
+

1√
0.7 + (x1 − x2)2

,

(21)

where the SC parameters for Li, H and electron–electron
interactions (2.25, 0.70 and 0.60, respectively) are cho-
sen following the same considerations as in reference [30].
These parameters produce the correct ionization potential
difference between isolated Li and H atoms. The indi-
vidual ionization potentials produced by this model are
higher than the real ones, making the densities less dif-
fuse and allowing us to use a simulation box of 25 a.u.

The results for LiH are summarized in Figure 6. The
left two graphs show the fragment energies and chemical
potentials at varying occupation numbers. Ef is minimized
when NH (and obviously NLi) is equal to 1. This point is
a cusp in Ef as expected from equation (3). R = 10.0 a.u.
can be taken as the large separation limit in our model and
it shows that the bond breaking is homolytic. Although
not obvious from the plot, the graph of Ef is curved,
similar to the one for HeH+ in Figure 4. The chemical
potentials exhibit a step-like feature into integer occupa-
tions, which prevent the condition of equation (8) to be
satisfied. The right two graphs show vp(x) and its decom-
position. Similarly to the case of H2, vp(x) has a peak
in the internuclear region, dominated by the vp,ext(x) +
vp,H(x) term. Moreover, the vp,kin(x) and vp,XC(x) almost
completely cancel out. Analogously to the case of H2,
their features are connected to the features of the molec-
ular KS potential [28–31]. In addition to the peak, in this
case, vp,kin(x) and vp,XC(x) also display a step. The steps
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Fig. 6. Summary of the PT results for the model system of LiH, defined through equation (21) at R = 10.0. Left: fragment
energies (top) and PT chemical potentials (bottom) at varying occupations on H atom. Right: partition potential and its
components (top); kinetic and XC contributions to vp(x) (bottom). Vertical dashed lines indicate the position of nuclei (H is
on the left).

almost entirely cancel out. The remaining small peak we
observe in the top right panel of Figure 6 is likely due to
the long range nature of SC potentials.

4 Concluding remarks

In spite of the simplicity of this model, we expect the same
features discovered here to be present in real molecules.
Explicit treatment of core electrons and 3D-Coulomb
interactions would be of course needed to verify this.

Finally, the decomposition of vp(x) through
equation (15) provides a useful way for identifying
the origin of important features of vp(x) and linking
them to the approximations used in practical density-
embedding calculations. We plan to investigate in future
work the extent to which approximate XC and non-
additive kinetic energy functionals reproduce the features
of vp(x) observed here.

We thank Hardy Gross for asking the question that inspired
this work. We still owe him pictures of the exact vp(r) for
a real molecule. We acknowledge support from the National
Science Foundation CAREER program under Grant No.
CHE-1149968.
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