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Abstract. Based on recent progress on fermionic exchange symmetry we propose a way to develop new
functionals for reduced density matrix functional theory. For some settings with an odd number of electrons,
by assuming saturation of the inequalities stemming from the generalized Pauli principle, the many-body
wave-function can be written explicitly in terms of the natural occupation numbers and the natural orbitals.
This leads to an expression for the two-particle reduced density matrix and therefore for the correlation
energy functional. This functional is tested for a three-electron Hubbard model where it shows excellent
performance both in the weak and strong correlation regimes.

1 Introduction

The quantum many-body problem (the problem of com-
puting the ground-state features of a system of many inter-
acting electrons) is at the very heart of quantum chemistry
and condensed matter physics. The complexity of such a
problem is so striking that its simplification is the main
goal of electronic modeling. Hartree-Fock (HF), density-
functional (DFT) and reduced-density-matrix functional
(RDMFT) theories attempt to achieve this goal by using,
respectively, one Slater determinant, the electron den-
sity or the one-body reduced density matrix as the basic
variable.

The one-body reduced density matrix is obtaining by
tracing out N — 1 particles, and reads, for a N-fermion
quantum state |¥),

5 = NTry_ [[0)(0]. (1)
In the quantum-chemistry jargon, the natural occupa-
tion numbers are the eigenvalues (organized in decreasing
order n; > ng > ...) and the natural spin-orbitals are
the eigenvectors {|p;)} of 4. The theoretical framework
of RDMFT is based on a variational principle stating
that the ground-state energy of a fermionic system can
be obtained by minimizing some energy functional on the
set of NN-representable one-body reduced density matri-
ces [1,2]. The (ensemble) N-representability conditions of
4 (the famous Pauli exclusion principle) depend on its
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eigenvalues only, reading simply [3]:
=,

where N is the number of electrons of the system under
consideration.

For pure quantum systems the occupation numbers
meet also additional requirements with tremendous phys-
ical implications [4-13]. This so-called generalized Pauli
exclusion principle provides a (large) set of constraints on
the natural occupation numbers. These are much more
stringent than the ordinary Pauli principle, and take the
form of independent linear inequalities, namely,

0<n; <1 and

(2)

D;(n)

d
H? + Z ﬁ;nz >0, (3)
i=1

where d is the dimension of the one-particle Hilbert space.
The coefficients /{2— are integers.

In RDMFT the N-representability conditions (2) can
be easily taken into account. Yet, the exact correlation
functional is, by and large, not available and therefore the
predicted RDMFT energy can be either lower or higher
than the exact ground-state energy. An exception of this
is the Miiller functional [14], for it is believed that it con-
stitutes an universal lower bound for quantum mechanics.
So far, this statement has been rigorously proved only
for two-electron systems [15,16]. To write a correlation
functional one often starts by engineering an approximate
expression for the two-body reduced density matrix

D= () Trn o[ W)(W]]. (4)
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This is normally accomplished by writing [ in terms of
the exchange-correlation hole, defined by the following
relation:

D(x1,@2) = 5p(a1)[p(@2) — P

(@1, @2)].  (5)
We used the customary compact notation = (r,<). The
electronic density, the main object in DFT, is of course
the diagonal of the one-body reduced density matrix. The
Miiller (also called Buijse-Baerends) functional describes
the exchange-correlation hole as the square of a hole
amplitude [17,18], reading |y'/2(x1,x2)//p(x1)]>. The
functional then reads:

P (@1,2) = 5p(@1)p(e2) (©

1
-3 E Vg xij(T1)xji(T2),
ij

where x;;(x) = ¢;(x)p;(x), assuming from now on real
natural orbitals. Further developments in RDMFT were
inspired by this functional. Chief among them, the
Goedecker-Umrigar functional is an extension of (6),
excluding self-interactions in the exchange-correlation and
the direct Coulomb terms [19]. Another example is the
“power” functional [20], proposed by Hardy Gross and
collaborators, that replaces the square root by a general
fractional power. Cioslowski and Pernal [21] and Csédnyi et
al. [22] have all proposed different generalizations based on
a distinction between strongly and weakly occupied natu-
ral orbitals. A different perspective is given by the study
of the cumulant part of I" (i.e., I' — %’y A7) under some of
its known representability conditions [23,24].

In all these functionals, the exchange-correlation term
of the energy functional can be cast into the simple form

Exelr] = —% Z/

[3IS

(ﬁ) Xij (T" §)in(’l”’, §) . (7)

d3rd>r’ s
v

j

Almost all functionals fare quite well in benchmark-
ing tests, yielding errors for the correlation at least an
order of magnitude [25] smaller than B3LYP [26], per-
haps the most used DFT functional. RDMFT has also
succeeded in predicting more accurate gaps of conven-
tional semiconductors than semi-local DFT does and has
demonstrated insulating behavior for Mott-type insulators
[27,28], another major result stemming from the research
group of Hardy Gross.

Unfortunately, most RDMFT functionals were designed
having in mind singlet ground states. Furthermore, at
zero temperature one can argue that the representabil-
ity conditions (2) are unsatisfactory, and that different
results could be obtained if more (pure-representability)
constraints were imposed [29]. This is especially true in
the framework of finite basis sets [30]. For this reason, the
enforcement of additional constraints can only improve
the total energy [31,32]. Based on recent progress on
fermionic exchange symmetry and, in particular, on the
generalization of Pauli exclusion principle, our aim in
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N-particle

1-particle

Fig. 1. Schematic view of the reconstruction of N-particle
states based on one-particle information only. H is the
fermionic Hilbert space of wave functions of N fermions. P
is the polytope of pure-representable one-particle states. The
Hartree-Fock point is represented as a dot on one of ver-
texes of the polytope. The arrow goes then from H to P
(u: H — P). The image of the state |¥) is then u(|¥)) = 7.
The spectra lying on one of the facets F; (i.e. the sets of
occupation numbers with D;(7) = 0) correspond to states
satisfying D;|®) = 0.

this paper is to introduce functionals motivated by pure
representability considerations.

The paper is organized as follows: Section 2 discusses
the recent solution of the pure N-representability solu-
tion of the one-body reduced density matrix, and some
of its remarkable physical implications. Section 3 presents
two RDMFT functionals for the Borland-Dennis state,
i.e. the pinned state for three fermions in a six dimen-
sional one-particle Hilbert space (say, three fermions in six
modes). In Section 4, we generalize our results for a sys-
tem with three active (valence) electrons and an arbitrary
number of modes. In Section 5, we test the functionals
for Hubbard models and discuss the numerical quality of
the results. The paper ends with a conclusion and two
appendixes.

2 Pure representability conditions and
stability of the selection rules

For pure systems, the fermionic natural occupation num-
bers satisfy sets of generalized Pauli constraints of the
form (3). Together with the non-increasing ordering
of these numbers, these constraints define a polytope
Pn.,a in R? for the occupation numbers compatible with
pure states of N fermions in an one-particle Hilbert
space of dimension d [33]. The Hartree-Fock point,
ie. |p1,...,0nN), lies in one of the vertexes of the polytope.
The asymptotic properties of such polytopes are actively
being researched [34]. For a recent review of the gener-
alized Pauli exclusion principle and its growing impact in
quantum chemistry and condensed matter physics we refer
to [35].

The generalized Pauli principle is particularly rele-
vant whenever the set of natural occupation numbers of
a given fermionic state “saturates” a generalized Pauli
constraint, i.e., the equality holds in equation (3). This
so-called pinning effect is connected with a remarkable
simplification of the global structure of the many-body
wave function. In fact, any N-fermion state |®), with
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occupation numbers 7i = (ng,ng,...), compatible with
the pinning condition D;(7) = 0, belongs to the null
eigenspace of the operator

D; = H? + Zné—ﬁi, (8)

where n; denotes the number operator of the natural
orbital |p;) of |®). For non-degenerate natural occupa-
tion numbers, the condition D;|®) = 0 amounts to a
simple selection rule for the configurations present in the
expansion of the quantum state. Indeed, the configuration
interaction expansion of a pinned wave function

|(I)> = Z Cila»-~»iN|sDi17"'7SD7;N>7 (9)
(21,02 )EL;
where |p;,,...,piy) denotes a normalized Slater deter-

minant, is restricted to configurations belonging to Zj,
namely, the set of determinants fulfilling the selection rule

Dj|(pi17"'7g0’iN>:O' (10)
For a schematic view of the wave-function reconstruction
see Figure 1. To give an example of these representability
constraints, the rank-six approximation (i.e., six modes
or six natural spin-orbitals) for the three-electron sys-
tem (the so-called Borland-Dennis setting) is completely
characterized by four such constrains [36], namely, the
equalities ny + ng = no +ns = ng + ng = 1 and the
inequality:

(11)

This latter inequality together with the non-increasing
ordering of the natural occupation numbers defines a poly-
tope in R®, called the “Borland-Dennis Paulitope”. These
conditions imply that, in the natural orbital basis, every
Slater determinant |p;@;¢k), built up from three natural
spin-orbitals, showing up in the configuration interaction
expansion of the Borland—Dennis setting, satisfies

DBD(ﬁ)=2—n1—n2—n420.

lpipjor) = (Ar—s + fos)| @i k), (12)
for s € {1,2,3}. The Borland-Dennis state, in addition,
fullfils Dpp (1) = 0, and therefore according to (9), reads:

|®BD) = alp19293) + Ble1paps) + Vle2pa06).  (13)
Noticeably, the selection rule for pinned states is stable
in the sense that being in the vicinity of the Paulitope
boundary (D;(7) ~ 0) implies approximately the simpli-
fied structure (9). This important result states that, in
other words, any many-fermion quantum state |¥) can be
approximated by the structural simplified form (9), corre-
sponding to saturation of the generalized Pauli constraint
Dj, up to an error bounded by the distance of 77 to the
corresponding polytope facet [37]:

1 ||B ) < 2D;(5). (14)
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Here Pj is the projector on the zero-eigenspace of ﬁj.

There is a growing corpus of theoretical and numer-
ical evidence that indicate that, for some systems,
ground states are quasipinned to one or more bound-
aries of the pertinent polytope [10,38-41]. It is there-
fore reasonable to assume that such ground states have
approximately a simplified structure due to pinning.
Inspired by this result, our main aim in this paper is
to produce systematically functionals for RDMFT for
quantum systems very close to the boundary of the
polytope.

A word of caution is in order here. To some extent,
the interplay between RDMFT functionals and pure N-
representability is not a happy tale. Some time ago, Pernal
[42] discovered that the so-called PNOF5 functional [43]
is strictly pure N-representable. Although this result dis-
played the mathematical quality of the functional, it also
showed that for this reason it underestimated seriously
dynamic electron correlation. Our functionals are inspired
on the structural simplification (9) but we do not require
that the final result is representable. We are just orienting
our search for a RDMFT functional in order to cap-
ture correctly strong correlation, at least for finite Hilbert
spaces.

3 Three active electrons

We consider here the Borland-Dennis wave function |®pp)
given in equation (13), which in terms of the natural
occupation numbers reads:

|®BD[7, @) = V13 |p1p2¢3) (15)
— V15 [p19405) + /1 [p20406),
with G = (o1,02,-..). By normalization,

ns + ns + ng = 1. Remarkably, just like in the famous
Lowdin-Shull functional, exact for two-fermion sys-
tems [44], the wave function (15) — only exact for a
pinned three-electron system within the rank-six approxi-
mation — is explicitly written in terms of both the natural
occupation numbers and the natural orbitals. Hence,
the Borland—Dennis state is by itself a functional of
these quantities. Likewise, any sign dilemma that may
occur when writing the amplitudes of the states (15)
can be circumvented by absorbing the possible phases
into the spin-orbitals. In addition, only doubly excited
configurations are permitted.

Remember that the occupation numbers also satisfy the
pinning constraints n; +ny_; = 1. Just for convenience we
choose a negative sign in front of the second Slater deter-
minant, which can be viewed, without loss of generality,
as a rotation of the fifth natural orbital. The two-body
reduced-density matrix for the Borland—-Dennis state can
be separated in two terms: the diagonal part

Sd) o o
il @l = > e > lpiei)eipsl,
ke{3,5,6) i<jEZ

(16)
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where Z3 = {1,2,3}, Z5 = {1,4,5} and Z5 = {2,4,6},
and the non-diagonal one

PBp 17 ¢ = -

BD |7, @ Vnans([p2es) (paps| + h.c.)

— Vnsng(|p1s) (w2p6] + h.c.)

— V/nang(|0103) {(@ape| + h.c.). (17)

This latter term is responsible, so to speak, for the pure
character of fBD. In fact, without this term, the Borland—
Dennis state would reduce to an incoherent superposition
of Slater determinants; therefore, a mixed state. The
appearance of the terms

@i(®1)p) (@) pr(®2)i(T2), (18)
n (17) is by no means new in the realm of RDMFT.
Recently, Gebauer, Cohen and Car introduced a lin-
ear scaling functional containing such terms [45]. These
new terms lead us to represent the exchange-correlation
functional (7) in a more general fashion:

SXC — —*Z/d?’xd?’x’ lcjckl T_L')X”( )Xkl( )

7kl |’I" ’I"/‘
(19)

Obviously, ff,;l(ﬁ) = g;fj(ﬁ) It is worth mentioning that
there is an important physical motivation in writing Ex.
in this way. In fact, the new functional (19) is in principle
spin inseparable, namely, V] # ExelyT] + Exe[yH]. Tt is
known that spin separablhty is not able to reproduce spin
polarizations and is therefore physically inexact [46].

For the doublet, the two-body reduced density matrix
can be regarded as a 4 x 4 matrix in spin space [47], but
due to particle conservation only four terms are different

from zero:
N f‘TT fTi
I'= A

For the three-particle system, the 'Y term is zero. By
symmetry, DV (ry, 7o) = T (g, 7).

(20)

3.1 One frozen electron

A natural spin orbital is a direct product of a spa-
tial orbital and a spinor |¢) ® |¢;). The active space is
then described by two sets of orthonormal spatial func-
tions, namely, {gbj} and {qﬁf} Let us first consider one
electron frozen in the doublet spin configuration of the
three-electron system. Save a sign indeterminacy, which
in principle cannot be removed, the wave function reads:

Wait, 61) = > (E)y/multed, 1ok Loh).  (21)

n>0
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It is easy to show that the corresponding elements of the
two-body density matrix read:

D3, 61 = D nulobel) (@), (22)
n>0
and
ng(ﬁﬂ“? ZnHXOO Tl)Xu(ﬁ)
,u>0
+ 5 Z VX o (T1)X5,(r2). (23)
MV>0
It is instructive to realize that the last term of

equation (23) is the Lowdin-Shull functional for two active
electrons. The final expression of the exchange-correlation
functional can be written using similar approximations as
Buijse and Baerends used for their functional [17]. The
first approximation uses the fact that the coefficients /m,,
are usually very small for 4 > 1, allowing us to neglect
the product of two such terms. The second approximation
addresses the sign undeterminancy by choosing a negative
sign in front of these small coefficients and a positive one
in front of the first dominant term. This choice is justified
by the positivity of the Coulomb potential which ensures
that the off-diagonal terms (p > 1)

/le(T)Xpl(T/) d'l"d?",

24
|T _ ,r/| ( )
are positive. By the Rayleigh principle, a lower value of
the ground-state energy will be reached only if the sign of
the first small coefficient is negative [16]. In this way, the
exchange-correlation functional reads

f2 O,u,u()( ) f2 ,U.OO[L(H) = Ny, v/u' > 07 (25)
QTL;UJV(ﬁ) =nuny, VM, v > O7

with ng = 1. Furthermore, like in the Miiller functional,

;ﬁtwu(ﬁ) = /nuny, VYp,v>0. (26)

Finally, to correctly cancel the spurious self-interaction

contribution of the Coulomb term f MMj(ﬁ) =nyun,. The
remaining terms are zero.

3.2 Borland—-Dennis functional

In this section we write the doublet configuration of the
Borland—Dennis state (15) in terms of the spatial orbitals
explicitly:

Valted, Lo, 1el) —vnalted, Lo, Toh)
+ Vs[te], Los, o). (27)

[Upp |, ¢°]) =
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The corresponding two-body reduced density matrix is

ILh = naloh o)) (dodl |

+ na|dbon) (dodn| + nsldlon) (dlonl.  (28)

Notice that the first two terms of (28) also appear in the
density matrix for the rank-five approximation FgT. The
non-diagonal parts of I'gp are given by
ny
Thp(ri,m) = 7[X$o(7“1) + X1 (r)]xt (r2)
n2

+ 5 2 [Xoo(

+ S0k () + X () (o)

— AT‘L(T’l,T’Q).

1)+ X (1) X352 (2)

(29)
The last term contains the following exchange terms:

AN' (?"1 s 7"2)

= /Inax 5 (11)X5 (2)
+ VX (11X 15 (72)
+ \/n2n3X81(7’1)X$3(7’2)~
It is interesting to note that only the first term appearing
in equation (30) appears also in (23). The other two corre-

spond to the exchange terms of the Borland—Dennis wave
function. The functional then reads (see Appendix A):

(30)

ifij
ifi=je€{0,1},

_ Mitj
fBD 'ijl( ) - { (nl + ni+2)2 (31)
s 1 _ 11 _
with 4,5 € {0,1,2}. Also, fgp 1190 = fBp 2211 = n17m3. To
correctly cancel the spurious self-interaction contribution
of the Coulomb term,

fBD ,u,ul/u( ) = NNy, (32)
with p,v € {1,2,3}. Furthermore,
—nsg_n, fi4+p#3
IED i (1) = { (L-nan, ifit+p=3 33

Finally, the exchange term of '™ is nothing more than
the “twisted” exchange term A™(r; ry).

3.3 New functional

In this paper we seek a good compromise between
the dynamical-correlated functional fg and the static-
correlated functional Igp. A linear superposition of these
two density matrices would be a good starting point.
Although the result would be not representable, it would
fulfill the sum rule [ I'(zq, z2; &}, 2)dxs = y(21,2}). For
engineering the exchange-correlation functional we pro-
ceed, however, in the following way. Notice that the final
outcome of the Sections 3.1 and 3.2 is the proposal of two
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exchange-coorelation functionals which share one common
term:

= FIii, ¢°] + Falit, &°]
Flit, ¢*] + Faplit, ¢°].

&alit, ¢°]

Epplit, ¢°] = (34)
Typically these functionals undercorrelate, each repre-
senting just a fraction of the correlation energy. Assume
that the functional F[7, ¢°] + F3[f, ¢°] + Faplit, ¢°] over-
correlates. We seek a constant « such that the new
functional

+ a(Fal, ] + Feolid, 6°)), (35
gives an energy close to the one of the ground state.
We call this the “a-functional”. The terms of the new

functional can be easily written. For instance, VYu,v > 0

f/,l,l/l/p,( )
[+ (8,67 + 0507 + 6.6, + 6262)(1 — )] y/Mpmy, (36)

as well as fl,(7 ) = a/mng and [l (1) = ay/nang. In
Appendix B we give an argument on how to compute a.

It is worth mentioning that the fully polarized case can
be easily tackled for the Borland—Dennis state by separat-
ing the natural orbitals in two sets, namely {1,2,4}, for
which we use latin letters (a,b...), and {3, 5,6}, for which
we use greek letters (u,v,...). Similar expressions to (31)
and (33) can be easily obtained.

4 Generalizations

4.1 Higher-rank representability conditions

In rank seven there are four generalized Pauli constraints

Di(l) =2—ng —nz —ng —ns >0,
Do(il) =2 —n1 —nz —ng —ng > 0,
D3(fi) =2 —ny —ng —ng —ny >0,
Dy(fi) =2 —ny —ng —ny —ng > 0. (37)

The saturation of the four constraints (D, (7)) = 0) implies
the saturation of the lower-rank Borland—Dennis relation
Dpp(i7) = 0. This can be explained in the following way:
for the settings of N fermions in a d-dimensional one-
particle Hilbert space and N fermions in a d’-dimensional
one-particle Hilbert space, such that d < d’, the corre-
sponding polytopes satisfy: Py g = Py |ngpr==ny=0-
It means that, intersected with the hyperplane given
by ngy1 = --- = ng = 0, the polytope Py coin-
cides with Py 4. Therefore P3¢ = Ps5 7|n,=0. In this case
D1 (1) = Dy(it) = D4(7) = 0 implies ny = 0 and therefore
Ds(t) = Dpp(ii) = 0.

If one generalized constraint is not fixed, one Slater
determinant is added to the Borland-Dennis wave func-
tion. The rule to add such a determinant is simple: the
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natural orbitals in the configuration correspond to the
occupation numbers not appearing in the unsaturated
generalized Pauli constraint. For instance, if D4(77) # 0
the new Slater determinant is |¢@3¢4¢7). We do not con-
sider here the unsaturation of the third constraint, because
we would end up in a six-rank wave function. Let us con-
sider that Ds(7i) = D3(R) = Dy(7) = 0 and Dy () # 0,
the structure of the wave function then reads:

|P7[7, F]) = /N3 |[p10203) + /15 |P10405)

+ VX |papaps) + vz lo1pser),  (38)
where A = 1 — ng — ns — ny. This shows that |®7), as for
the Borland—Dennis state, can be written in terms of the
natural orbitals and the natural occupation numbers.

4.2 Frozen electrons

In quantum chemistry it is customary to separate the
one-particle Hilbert space in core (fully occupied), active
(partially occupied) and virtual (empty) spin-orbitals.
The core spin-orbitals are pinned (completely populated)
and are not treated as correlated. For the case of r core
(and consequently d — r active orbitals) the Hilbert space
is isomorphic to the wedge product between a Hilbert
space of 1 electrons in a r-dimensional one-particle Hilbert
space and a Hilbert space of d — r electrons in a d — r-
dimensional one-particle Hilbert space Hence, the wave
function can be written as |¥,.) = |1, ..., @) A [Dactive),
where |U2°tive) ig the part of the wave function belonging
to the space of fractional occupied natural orbitals. While
the first r natural occupation numbers are saturated
to 1, the remaining d — r natural occupation numbers
(Np41,--.,nq) satisfy a set of generalized Pauli constraints
and lie therefore inside the polytope Pn_,q—, [37]. For
the “active” Borland—Dennis state we can apply the same
considerations discussed in the last section, namely: if the
corresponding constraint (11) is saturated, the wave func-
tion fulfills (72,41 + Mpp2 + Aria)|¥) = 2|T), and the set of
possible Slater determinants reduces to just three. Follow-
ing our preceding reasoning, the corresponding two-body
density matrix reads

r r+6
Drimp =Y D nylei;) (pips| + Tap,
i=1 j=1
where we use the fact that n; =--- =n, = 1.

5 Numerical investigations

To illustrate our results we use a simple but non-trivial
fermionic system, namely the few-site Hubbard model.
This model is capable of exhibiting both weak and
strong (static) correlation. Besides its importance for
solid-state physics, the Hubbard model is one of the
paradigmatic instances used to simplify the description of
strongly correlated quantum many-body systems and to
test RDMFT functionals [48]. The Hamiltonian (in sec-
ond quantization) of the one-dimensional r-site Hubbard
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Fig. 2. For the three-electron Hubbard model we present
the energy predicted for the Borland—Dennis and the «-
functionals. The upper and bottom panels correspond to
the four- and the five-site Hubbard model, respectively. The
Hartree-Fock and ground-state energies are also shown (see
text).

model reads:

-

N |+

> (elcirne +he) +2UD i, (39)
2,S 2

i € {1,2,...,r}. The operators czg and ¢, are the
fermionic creation and annihilation operators for a parti-
cle on the site ¢ with spin ¢ and 7, is the particle-number
operator. The first term in equation (39) describes the
hopping between two neighboring sites while the second
represents the on-site interaction.

The one-body reduced density matrix inherits the sym-
metries of the corresponding wave function. For the
Hubbard model with periodic boundary conditions, the
lattice translation and the z-component of the spin define
such symmetries. The spatial part of the natural orbitals
is nothing more than a Bloch state that satisfies

Tilq) = e"*q), (40)
where ¢ = 27 /r and T, is the one-particle translation
operator. Using the basis of natural orbitals, the energy
can be computed analytically for the rank five approxi-
mation for the three-electron Hubbard model [38,49]. For
r = 4 the result turns out to only depend on the first
occupation number

1
E. (t,U) = —5(15— 2U + /912 + U?).

This result is important because it allows us to compute
the value of «. Indeed, for » = 4 in equation (B.2) we

(41)
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Fig. 3. For the three-electron Hubbard model we present the
percentage of the correlation energy recovered by the Borland—
Dennis and the a-functionals. The percentage is plotted as a
function of the relative coupling.

approximate G[7l., Gx] — Fliix, §x] = Fpy (t,U). We com-
puted the best a for 4- and 5-site three-fermion Hubbard
model by averaging equation (B.2) for U/t € [—6, 6]. This
value turns out to be ~0.72, which we used from now on.

In Figure 2 we present the performance of the two func-
tionals introduced in this paper (Borland-Dennis and the
a-functional and compare them with the ground-state and
Hartree-Fock energies for the four- and five-site Hubbard
model. For the three-electron problem in the three-site
Hubbard model, the Borland Dennis functional is exact.
It is worth mentioning the striking performance of the
Borland—Dennis functional for negative values of the rel-
ative strength. With our new functional we recovered
almost the full correlation energy. Although it slightly
overcorrelates for large negative values of the relative
strength, its performance is still remarkable (see Fig. 3).
Part of the reason for the overcorrelation for negative val-
ues is the very low value of the correlation energy for this
sector of interaction.

6 Conclusions

Inspired by the recent solution of the pure representabil-
ity problem for the one-body reduced density matrix, we
proposed a new way of producing RDMFT functionals.
Our approach is based on the specific simplified struc-
ture exhibited by the many-body wave functions whose
occupation numbers are pinned to one or more bound-
aries of the polytope of physical states. Some of the states
reconstructed in this way depend explicitly on the nat-
ural occupation numbers as well as the natural orbitals
yielding explicit expressions for the two-body reduced den-
sity matrix. Although this kind of expressions can only
be written for Hilbert spaces of low dimensionality it is
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possible to combine this information with other known
functionals to derive a general purpose formula.

Our method leads to a hierarchy of exchange correla-
tion functionals, depending to the degree of correlation
one wishes to reach. In our example, we produced a cross-
breed functional by combining a dynamical-correlated and
a static-correlated functional. The results are remarkable
even in the highly correlated regime. Last but not least,
the Borland—Dennis functional contains twisted exchange-
correlation terms of the type X?%l(m)xfj(rg). These terms,
not new but anyhow not common in the realm of RDMFT,
are crucial, for example, for capturing correctly the time
evolution of the system [50].
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Appendix A: Borland—Dennis functional

The one-body reduced density matrix corresponding to
the Borland—Dennis state (27) is given by the following
expressions:

An = (n1 +12)[60) ()]
+ (1 +n3) o)) (@1] + (n2 +n3)|od) (43,

and A5 = 37, ni|¢7) (67]. Notice that

Php(r1)php(r2) = (n1 4 n2) xdo(r1)xdo(r2)
+ (m + "3)2X11 (rl)XIl (r2) + )ZXEQ 1
+ (n1 + nans) [xdo(r1)x 1 (r2) + x11 (1) xdo (r2)
( (71)x3a(r2) + X2a (1) X0 (72)

( )x11(r2)

X1 (r)x3a(r2) + xda ()X,

(n2 + ns3

+ (no + ngng)[xo

+ (ng + ning)|

where we used the mnormalization condition
n1 + no + n3 = 1. Self interaction should be canceled, so
that

fl;g,oooo = (n1 + ”2)2:f1£%,1111 = (n1 +n3)%,
[ﬁ) 2222 = (2 +n3)?.

Notice that, by taking nong & 0, almost all the prefactors

of the remaining terms of pTBD(rl)pTBD(rg) show up in
(28) so that the only important term to be added is

™ 2
BD,1122 — JBD,2211 = "17M3- (A1)
Furthermore,
pBD(T1>pBD 7«2 annjxn(Tl)ij (TQ) (A2)

ij


https://epjb.epj.org/
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and therefore fé]%,iijj = —n;n;. Finally, pgD(rl)pﬁD(rg)

contains terms like

(n1 + n2)naxdo (r1)x11 (r2) = (1 = n3)naxdo (r1)xi: (r2).

A quick inspection teaches us that flg%,iiw = —n3_in,
provided that ¢ + p # 3. Whenever ¢ + u = 3,
Fb iy = (1= m)my.. (A.3)

Appendix B: Calculation of «

In this Appendix we provide an argument for choosing a.
Remember that, for the best value of «, the minimiza-
tion of the functional (35) should be approximatively the
ground-state energy. Therefore, the functional evaluated
on the minimizers (7, and @) satisfies

g[ﬁ*;@*] Encw[ﬁ*,ﬁ*] = Egsa (Bl)
where
Glite, §a] = /(5(:c — & \hy[ity, @) (2, 2 )da
1 _‘* _‘* 5 _‘*; _’* 9
+7/7[ﬂ s P (@1, 1) V[, Bl (2 m2)d.’1}1d$2.
2 |’I“1 — ’!‘2‘
Therefore,
_'*7 _'* - _’*7 _’* _Es
Folfls, §s] + FBD[1l4, Ps]
References

1. T.L. Gilbert, Phys. Rev. B 12, 2111 (1975)

2. K. Pernal, K.J.H. Giesbertz, Top. Curr. Chem. 368, 125
(2016)

3. A.J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

A. Klyachko, J. Phys. 36, 72 (2006)

5. M. Altunbulak A. Klyachko, Commun. Math. Phys. 282,
287 (2008)

6. C. Schilling, D. Gross, M. Christandl, Phys. Rev. Lett.
110, 040404 (2013)

7. C.L. Benavides-Riveros, J.M. Gracia-Bondia, M.
Springborg, Phys. Rev. A 88, 022508 (2013)

8. R. Chakraborty, D.A. Mazziotti, Phys. Rev. A 89, 042505
(2014)

9. R. Chakraborty, D.A. Mazziotti, Phys. Rev. A 91, 010101
(2015)

10. C.L. Benavides-Riveros, M. Springborg, Phys. Rev. A 92,
012512 (2015)

11. C. Schilling, Phys. Rev. A 91, 022105 (2015)

12. C.L. Benavides-Riveros, N.N. Lathiotakis, M.A.L.
Marques, Phys. Chem. Chem. Phys. 19, 12655 (2017)

13. R. Chakraborty, D.A. Mazziotti, J. Chem. Phys. 148,
054106 (2018)

14. A.M.K. Miiller, Phys. Lett. A 105, 446 (1984)

=

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.
25.

26.
27.
28.
29.
30.
31.

32.
33.

34.
35.
36.
37.

38.
39.

40.

41.

42.

43.

44.
45.

46.

47.

48.

49.

50.

Eur. Phys. J. B (2018) 91: 133

R.L. Frank, E.H. Lieb, R. Seiringer, H. Siedentop, Phys.
Rev. A 76, 052517 (2007)

P. Blanchard, J.M. Gracia-Bondia, J.C. Virilly, Int. J.
Quant. Chem. 112, 1134 (2012)

M.A. Buijse, E.J. Baerends, Mol. Phys. 100, 401 (2002)
O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys.
122, 204102 (2005)

S. Goedecker, C.J. Umrigar, Phys. Rev. Lett. 81, 866
(1998)

N.N. Lathiotakis, S. Sharma, J.K. Dewhurst, F.G. Eich,
M.A.L. Marques, E.K.U. Gross, Phys. Rev. A 79, 040501
(2009)

J. Cioslowski, K. Pernal, J. Chem. Phys. 111, 3396 (1999)
G. Csényi, S. Goedecker, T.A. Arias, Phys. Rev. A 65,
032510 (2002)

M. Piris, in Natural Orbital Functional Theory (John
Wiley & Sons, New Jersey, 2007), pp. 385427

M. Piris, Phys. Rev. Lett. 119, 063002 (2017)

N.N. Lathiotakis, M.A.L. Marques, J. Chem. Phys. 128,
184103 (2008)

P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch,
J. Phys. Chem. 98, 11623 (1994)

S. Sharma, J.K. Dewhurst, S. Shallcross, E.K.U. Gross,
Phys. Rev. Lett. 110, 116403 (2013)

K. Pernal, New J. Phys. 17, 111001 (2015)

S.M. Valone, J. Chem. Phys. 73, 1344 (1980)

I. Mayer, 1. Pépai, I. Baké, A. Nagy, J. Chem. Theory
Comput. 13, 3961 (2017)

I. Theophilou, N.N. Lathiotakis, M. Marques, N. Helbig,
J. Chem. Phys. 142, 154108 (2015)

A.E. DePrince III, J. Chem. Phys. 145, 164109 (2016)
A. Sawicki, A. Huckleberry, M. Kus, Commun. Math.
Phys. 305, 441 (2011)

T. Maciazek, A. Sawicki, J. Phys. A 51, 07LT01 (2018)
C.L. Benavides-Riveros, Chem. Modell. 14, 71 (2018)
R.E. Borland, K. Dennis, J. Phys. B 5, 7 (1972)

C. Schilling, C.L. Benavides-Riveros, P. Vrana, Phys. Rev.
A 96, 052312 (2017)

C. Schilling, Phys. Rev. B 92, 155149 2015

C.L. Benavides-Riveros, C. Schilling, Z. Phys. Chem. 230,
703 (2016)

F. Tennie, V. Vedral, C. Schilling, Phys. Rev. A 94, 012120
(2016)

C. Schilling, M. Altunbulak, S. Knecht, A. Lopes, J.D.
Whitfield, M. Christandl, D. Gross, M. Reiher, Phys. Rev.
A 97, 052503 (2018)

K. Pernal, Comput. Theor. Chem. 1003, 127 (2013)

M. Piris, J.M. Matxain, X. Lopez, J. Chem. Phys. 139,
234109 (2013)

P. Léwdin, H. Shull, Phys. Rev. 101, 1730 (1956)

R. Gebauer, M.H. Cohen, R. Car, Proc. Natl. Acad. Sci.
U.S.A. 113, 12913 (2016)

T. Baldsiefen, A. Cangi, F.G. Eich, E.K.U. Gross, Phys.
Rev. A 96, 062508 (2017)

C.L. Benavides-Riveros, J.M. Gracia-Bondia, Phys. Rev.
A 87, 022118 (2013)

E. Kamil, R. Schade, T. Pruschke, P.E. Bléchl, Phys. Rev.
B 93, 085141 (2016)

C.L. Benavides-Riveros, N.N. Lathiotakis, C. Schilling,
M.A.L. Marques, Phys. Rev. A 95, 032507 (2017)

C.L. Benavides-Riveros, M.A.L. Marques, 2018, in
preparation


https://epjb.epj.org/

	Static correlated functionals for reduced density matrix functional theory
	1 Introduction
	2 Pure representability conditions and stability of the selection rules
	3 Three active electrons
	3.1 One frozen electron
	3.2 Borland-Dennis functional
	3.3 New functional

	4 Generalizations
	4.1 Higher-rank representability conditions
	4.2 Frozen electrons

	5 Numerical investigations
	6 Conclusions

	Author contribution statement
	Appendix A Borland-Dennis functional
	Appendix B Calculation of 

	References

