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Abstract. Certain excitations, especially ones of long-range charge transfer character, are poorly described
by time-dependent density functional theory (TDDFT) when typical (semi-)local functionals are used. A
proper description of these excitations would require an exchange–correlation response differing substan-
tially from the usual (semi-)local one. It has recently been shown that functionals of the generalized gradient
approximation (GGA) type can yield unusual potentials, mimicking features of the exact exchange deriva-
tive discontinuity and showing divergences on orbital nodal surfaces. We here investigate whether these
unusual potential properties translate into beneficial response properties. Using the Sternheimer formal-
ism we closely investigate the response obtained with the 2013 exchange approximation by Armiento and
Kümmel (AK13) and the 1988 exchange approximation by Becke (B88), both of which show divergences
on orbital nodal planes. Numerical calculations for Na2 as well as analytical and numerical calculations for
the hydrogen atom show that the response of AK13 behaves qualitatively different from usual semi-local
functionals. However, the AK13 functional leads to fundamental instabilities in the asymptotic region that
prevent its practical application in TDDFT. Our findings may help the development of future improved
functionals. They also corroborate that the frequency-dependent Sternheimer formalism is excellently suited
for running and analyzing TDDFT calculations.

1 Introduction

Kohn–Sham (KS) density functional theory (DFT) [1,2]
and its time-dependent extension (TDDFT) by Runge and
Gross [3] are highly successful and among the most widely
used theoretical approaches for describing the electronic
structure and dynamics in physical, chemical and biologi-
cal systems. Many applications of TDDFT are concerned
with predicting the linear response. Consequently, the lin-
ear response of the exchange–correlation (xc) potential to
a time-dependent perturbation, which has been studied in
detail by Gross [4–7], to whom this special issue is devoted,
plays a prominent role in TDDFT research. Commonly
used functionals such as the local-density approximation
(LDA), usual generalized gradient corrections (GGAs)
such as the one of Perdew et al. [8] (PBE), and hybrid
functionals [9] predict many properties reliably. At the
same time, however, they are known to systematically
fail for certain problems. One such prominent failure of
(semi-)local functionals and usual hybrid functionals with
moderate fractions of exact exchange is their qualitatively
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wrong prediction of long-range charge-transfer phenom-
ena [10–13].

In recent years, semi-local exchange functionals and
model-potentials have been developed which yield phys-
ically interpretable eigenvalues [14] and show features
in their potentials that are very similar to important
features of the exact Kohn–Sham exchange (EXX) poten-
tial. Prominent examples of this development are the
Becke–Johnson model potential [15] with its different
modifications [16–21], especially the Tran–Blaha model
potential [22–24], and Becke–Johnson inspired new devel-
opments such as the AK13 functional [25]. A considerable
part of the great interest in these developments stems
from the hope that such functionals may allow to obtain
information about excited states and the density response
accurately at moderate computational cost [26,27]. We
review the corresponding arguments in detail in the next
section. However, the Becke–Johnson potential cannot be
used reliably in TDDFT calculations [27], because it is not
a functional derivative [19,28]. As a consequence, TDDFT
calculations with the Becke–Johnson model potential in
general will be unstable, e.g., due to zero-force theorem
violations [29]. Similar conclusions hold for other model
potentials.

Hence, the focus of the present work is a careful inves-
tigation of the response of the AK13 exchange energy
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functional, which shares many features with the Becke–
Johnson model, yet is a functional derivative. In the
present context, the most important feature that the
AK13 and Becke–Johnson potential have in common is
that for a finite system, the potential asymptotically goes
to a value that is determined by the highest occupied
eigenvalue. This leads to a discontinuity-like potential step
structure similar to exact exchange. As such discontinu-
ities are important for charge-transfer excitations [11], one
may hope that a potential with such features may lead to
a proper description of those. Therefore, our present study
of the TDDFT response of the AK13 functional is, to the
best of our knowledge, the first investigation of whether
such semi-local step structures have a beneficial impact
in TDDFT calculations, and in how far the concept of a
“potential with a non-vanishing asymptotic constant” is
beneficial in TDDFT.

Summarizing our findings, we have to note that on
the one hand, the answer that our study gives is largely
negative: the AK13 response yields instabilities in the
asymptotic region that prevent its use in TDDFT. On
the other hand, the outcome clearly demonstrates that
semi-local functionals designed to mimic exact exchange
potential features are capable of giving a response that
deviates strongly from the one that is observed with usual
semi-local functionals. Thus, our results motivate future
work on semi-local functionals that achieve an improved
response, yet circumvent instabilities. We also expect the
methodology and in-depth analysis presented in this work
to be useful for future work in the area of designing func-
tionals with improved response properties. Furthermore,
our comparison between analytical and numerical results
also adds confidence in the ability of the Sternheimer lin-
ear response formalism to correctly describe the response
of difficult potentials.

The paper is organized as follows. We first review prop-
erties of exact and approximate exchange in TDDFT that
are of particular relevance for excitations and thus moti-
vate our study of the AK13 response in detail. Next we
briefly review the functionals that we test, followed by a
recapitulation of the Sternheimer linear response formal-
ism that we use for our TDDFT calculations. After this
we present numerical calculations for the sodium dimer as
a simple test system. In order to explain the numerical
findings that emerge, we then go through the analyti-
cally solvable case of the one-electron atom. We close by
drawing our conclusions and offering an outlook.

2 Exchange response in DFT and TDDFT

Fock exchange is very frequently employed in DFT as
a part of hybrid functional constructions and amelio-
rates deficiencies of usual (semi-)local approximations,
e.g., by providing some non-locality to the functional
and by reducing self-interaction errors [30]. However, the
use of Fock exchange comes at a twofold price. On the
practical side, the computational expense of exchange
integrals is a burden. On the fundamental side, it has been
argued since the beginnings of modern DFT (see, e.g.,
Ref. [31] for examples) that it may be more consistent with

the intrinsic many-body nature of DFT to approximate
exchange and correlation together rather than divid-
ing into single-particle motivated exchange and Coulomb
correlation.

While the use of Fock exchange has proven beneficial
in ground-state calculations, as testified by the success of
hybrid functionals in questions of thermochemistry [32],
many of the advantages of using Fock exchange as part
of density functional approximations are not related to
ground-state observables, but to the use of such function-
als in TDDFT. Furthermore, some of the interest in the
Becke–Johnson and related approximations has originated
from the description of excitations [26,27]. One can read-
ily understand why Fock exchange can be beneficial in
TDDFT from arguments based on linear response theory:
following, e.g., references [5,33,34] one can interpret the
true excitations as resulting from a combination of Kohn–
Sham eigenvalue differences and exchange–correlation
(xc) kernel corrections via matrix-elements of the type

Kijkl =

∫ ∫
ϕ∗i (r)ϕj(r)

δvxc(r, t)

δn(r′, t′)
ϕk(r′)ϕ∗l (r

′) d3r d3r′ ,

(1)
where spin indices have been suppressed for clarity of
notation. From this perspective, two advantages of using
Fock exchange in TDDFT become obvious. First, it
typically leads to an eigenvalue spectrum of greater
physical interpretability, and this can translate into
improved TDDFT excitation energies [5,35–37]. Second,
step structures of the EXX potential [38–40] or xc poten-
tial [12,41–44] can translate into substantial effects in
equation (1), leading to large and important corrections
to the single-particle eigenvalue differences.

The latter argument is at the heart of understanding
one of the most notorious failures of TDDFT with usual
(semi-)local functionals, viz. its massive underestimation
of long-range charge transfer excitation energies [10,11]: as
argued, e.g., in references [10,12,13], long-range charge-
transfer excitations correspond to situations where the
orbital overlap in equation (1) is small, vanishing expo-
nentially as a consequence of exponential orbital decay.
Thus, the matrix elements of equation (1) vanish unless
δvxc(r, t)/δn(r′, t′) counters the exponential orbital decay.
When Fock exchange is used, the vanishing orbital overlap
does not lead to vanishing Kijkl because EXX (and also
an exact calculation including correlation [45]) leads to
a non-local kernel, i.e., a kernel that also couples regions
of space in which r and r′ are far apart. The kernel of
(semi-)local functionals, however, is local, i.e., ∝ δ(r− r′).
Therefore, Kijkl will vanish for vanishing orbital overlap,
erroneously making the TDDFT excitation energy equal
to the Kohn–Sham eigenvalue difference, unless the spa-
tial dependence of vxc(r) is such that δvxc(r, t)/δn(r, t′)
itself grows rapidly in regions of space in which the orbital
overlap vanishes.

The potentials of the LDA and usual GGAs follow
the density closely. Therefore, they do not show a rapid
increase or divergence of the kernel in regions of vanishing
orbital overlap. Consequently, these approximations fail
utterly in the description of long-range charge-transfer
excitations [10,11,13,46]. As this physics is decisive in
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many highly-relevant questions of material science, with
solar-cell development being a prominent example [47–51],
(semi-)local functionals to date are of only very limited use
in this type of research.

For a long time, it had been believed that closely follow-
ing the density is an unavoidable feature of (semi-)local
approximations. However, it recently has been demon-
strated that a functional of the GGA type can have a
functional derivative, i.e., a corresponding potential, that
resembles exact exchange in several ways [24–26,52,53].
The hope that this functional can be widely used
in ground-state material science calculations has been
curbed by the yet more recent discovery [54,55] that
it, and several other constructions following a related
logic [56–58], show divergences in regions of space where
the highest occupied molecular orbital (HOMO) has a
nodal plane overlapping with a lower occupied orbital.
While this feature makes ground-state calculations diffi-
cult, it appears attractive from the perspective of TDDFT,
where pronounced features of the potential in regions of
reduced orbital overlap are required as discussed above.

Therefore, we calculate and analyze the linear response
of such semi-local approximations in this manuscript. In
order to circumvent issues resulting from the previously
reported possible difficulties in ground-state calculations
with such functionals, and in order to focus on and
bring out the effects of the xc corrections as clearly as
possible, we resort to the Sternheimer linear response
formalism [37,59]. Thus, we can combine the potential
response of unusual semi-local functionals with a plain
LDA ground-state calculation to see just the effects of
the xc response, and we can analyze and visualize poten-
tial responses and densities in real space to obtain a clear
understanding of the functionals’ properties.

3 Functionals studied in this work

The main interest of this work is the investigation of the
linear response properties of AK13. However, in order to
put the results into perspective, we also take a look at two
well established, long-known GGAs: PBE as a paradigm
example of a well-tested, usual GGA and the B88 GGA
of Becke [56]. The latter is of particular interest for our
study because it has recently been pointed out that it
shares several unusual features with AK13, such as diver-
gences of the potential on nodal planes of the highest
occupied orbital [54,55]. For the sake of completeness, we
briefly summarize relevant aspects of these functionals in
the following.

Exchange functionals of the GGA type are typically
written in the form [60]

ESL

x [n] = Ax

∫
d3r n(r)

4
3F (s), (2)

where F (s) is the exchange enhancement factor,

Ax = − 3
4

(
3
π

) 1
3 e2 and

s =
|∇n(r)|

2(3π2)
1
3n(r)

4
3

(3)

is a dimensionless density gradient. Different GGAs differ
by different choices that are made for the enhancement
factor.

The PBE functional’s construction was guided by the
aim to fulfill energetically relevant exact constraints, such
as the homogeneous electron gas limit, proper coordinate
scaling and the Lieb–Oxford bound. These constraints go
along with an enhancement factor that goes to a con-
stant for s → ∞. A property of PBE that makes it
a natural functional to compare AK13 to in the linear
response context is the fact that PBE’s enhancement fac-
tor was designed such that the functional recovers the
linear response properties of LDA for the homogeneous
electron gas. Therefore, the PBE response can be expected
to be qualitatively similar to LDA in many cases. In other
words, PBE is a GGA from which one expects predictable,
unsurprising linear response properties.

The B88 GGA is also considered a standard functional
and it is a part of one of the most widely used hybrid
functionals [61]. However, the guidelines along which B88
was designed are quite different from the PBE ones. The
B88 functional was constructed such that it captures both
the exact asymptotic behavior of the exchange energy
density and the lowest-order gradient correction to LDA
for small density gradients [56]. In order to achieve this,
the enhancement factor of B88 diverges for s → ∞, yet
in a way that has been called “subcritical” [54], because
despite the divergence of F (s), the functional derivative
of EB88

x [n] with respect to n does not diverge for large
distances from a finite’s system center.

In contrast to the model potentials by which it was
inspired, the AK13 approximation [25] is also based on
the general GGA form of equation (2). However, the
guiding principles in its construction have not been ener-
getic considerations [62]. Instead, the aim in the design of
AK13 was to make its functional derivative, i.e., the AK13
exchange potential, close to the Becke–Johnson model
potential [15], which itself is in many respects a good
model for the exchange-only Optimized Effective Poten-
tial. The most important property of the Becke–Johnson
model which AK13 reproduces, is that asymptotically its
potential for a finite system goes to a value that is deter-
mined by the highest occupied eigenvalue. In the AK13
functional, this is achieved by choosing F (s) such that it
diverges in a specific, “critical” manner [25]. By letting
the potential go to a finite, system-dependent value, step-
structures are built into the potential which resemble the
step-structures in the exchange-only Optimized Effective
Potential that are related to the derivative discontinu-
ity [39,41]. As the derivative discontinuity is important
for charge-transfer excitations [11], one may hope that
a potential with such features may lead to a proper
description of those.

4 Linear response TDDFT in the
Sternheimer approach

The most commonly used form of linear response TDDFT,
often going by the name “Casida formalism” [33,34], is
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based on expanding the density response into particle–
hole excitations. Here, we take a different route and solve
the Sternheimer equations [34,59]. So far, the Sternheimer
approach is not as widely used as Casida’s formalism, but
it has the advantages of parallelizing very efficiently [37]
and of not requiring the explicit calculation of unoccupied
orbitals. As some of us have recently elsewhere presented
the time-dependent Sternheimer approach in detail in the
form that we also use here [37], we can restrict ourselves
to presenting the basic equations in the following.

In practice, a Sternheimer linear response calculation
boils down to self-consistently solving the set of equations

[hKS,σ − εjσ − ~ω̄]φ+
jσ = −Q̂σj [V +

ext + V +,σ
Hxc ]ϕjσ, (4)

[hKS,σ − εjσ + ~ω̄]φ−jσ = −Q̂σj [V +
ext + V +,σ

Hxc ]ϕjσ, (5)

for the orbital response components φ+
jσ, φ−jσ and excita-

tion energies ~ω̄. Here,

hKS,σ = − ~2

2m
∇2 + υext(r) + υσHxc(r) (6)

is the usual unperturbed ground-state Kohn–Sham Hamil-
tonian, with the Hartree and exchange–correlation (xc)
contributions υσHxc(r) = υH(r) + υσxc(r). The Kohn–Sham
ground-state orbitals, which have been chosen to be
real-valued, and eigenvalues of spin σ are denoted by
ϕjσ(r), εjσ, respectively. A finite η � ω is added [37,59]
to the excitation frequencies, i.e., ω̄ := ω + iη. This η
results from the adiabatic switch-on process, see below
and reference [37]. It also improves the numerical stability

of equations (4) and (5). Q̂σj denotes the spin-dependent
projector

Q̂σj := 1− |ϕiσ〉〈ϕiσ| . (7)

The Fourier components V +
ext of the external potential that

appear on the right-hand sides of equations (4) and (5)
are defined by the time-dependent, adiabatically applied,
quasi-monochromatic external perturbation

υext(r, t) = eηt
[
V +

ext(r)e−iωt + V −ext(r)eiωt
]
, (8)

where

V +
ext =

(
V −ext

)∗
. (9)

The Hartree- and xc-contributions

V +,σ
Hxc = V +

H + V +,σ
xc , (10)

appearing on the right-hand sides of equations (4) and (5)
are obtained by solving the Poisson-like equation

∇2V +
H = −4πe2

(
n+
↑ + n+

↓

)
, (11)

and computing

V +,σ
xc (r) =

∑
τ=↑,↓

∫
n+
τ (r′)fσ,τxc (r, r′, ω̄) d3r′. (12)

Here,

fσ,τxc (r, r′, ω̄) :=

∫
fσ,τxc (r, r′, t− t′)ei ω̄(t−t′) d(t− t′) (13)

is the Fourier transform of the exchange–correlation kernel

fσ,τxc (r, r′, t− t′) :=
δυσxc[n↑, n↓](r, t)]

δnτ (r′, t′)

∣∣∣∣∣
n↑,n↓

. (14)

The density response

n+
σ =

Nσ∑
j=1

ϕjσ
(
φ+
jσ + φ−jσ

)
(15)

enters into equations (11) and (12), and thus a closed self-
consistent cycle is obtained.

The chosen xc approximation enters the Sternheimer
equations in two places. First, it is part of the ground-
state Hamiltonian of equation (6) and contributes to
the eigenvalues and ground-state orbitals that feature
in equations (4) and (5). Second, it determines the xc
potential response of equation (12). Using the linear
response formalism instead of, e.g., a real-time propaga-
tion scheme [63–66] is decisive for studying the AK13
approximation’s TDDFT performance, because AK13
ground-state orbitals are difficult to compute for finite,
three-dimensional systems due to the previously dis-
cussed [54,55] particular features of the AK13 potential.
However, in the linear response approach one can combine
the ground-state orbitals of one exchange (and correla-
tion) approximation with the kernel of some other approx-
imation. In this way, we can test the kernel resulting from
AK13.

In practice, we solve the Sternheimer equations by start-
ing with equations (4) and (5) with merely V +

ext on the
right-hand side in order to generate initial values for
the orbital responses φ+

jσ and φ−jσ, where our external
perturbation is

V +
ext(r) = e (E · r), (16)

and E is a spatially homogeneous electric field. With n+
σ

calculated according to equation (15) we obtain a com-
plete set of quantities to start the self-consistency iteration
by evaluating V +,σ

Hxc via equations (10)–(12). Thus, we can
construct the right-hand sides of equations (4) and (5) via
equations (7)–(12) and from there calculate new versions
of φ+

jσ and φ−jσ by solving equations (4) and (5) again.
These steps are iterated until a self-consistent solution is
found.

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 159 Page 5 of 14

5 Numerical results for Na2

Clusters of nearly-free-electron metals are in general
reasonably well described by semi-local functionals
[67–69]. This is particularly true for sodium-clusters, as
sodium (Na) is “the nearly-free-electron metal par excel-
lence” [70]. For this reason, Na-clusters have often served
as test systems for density functionals [71–74], and one
can argue that a semi-local approximation should at least
work for those. If it passes this test, then further tests on
more complicated systems are worthwhile, whereas test-
ing it for more complicated systems makes little sense if
already the simplest test, Na clusters, fails. In this logic,
we here chose the dimer Na2, which is known to be reason-
ably well described by (TD)LDA [73–75], as the primary
test system for which we evaluate the AK13 response.

The ground-state calculations were done with the
Bayreuth version [76] of the Parsec program [77]. The
TDDFT calculations are based on a recently developed
Sternheimer program package [37]. We used a Cartesian
grid with a spacing of 0.45 Bohr (a0) and sphere radii
between 20 and 25 a0, as indicated in the figure cap-
tions. The two Na atoms are located at x1 = −2.9 a0

and x2 = +2.9 a0 on the x-axis and are described by a
Troullier–Martin [78] pseudopotential (rc = 3.09 a0 for s-,
p-, and d-shell). These parameters were chosen to ensure
that the occupied as well as the first unoccupied eigen-
values of the ground-state calculation were converged to
at least 10−4 Rydberg (in the following, frequencies and
potential responses are given in Rydberg atomic units),
and that the obtained TDLDA spectrum is in agree-
ment with the one of reference [74]. The terms “density
response”, and “potential response” in the following refer
to the “+” Fourier components unless stated otherwise.

For the reasons that have been discussed in detail in
reference [55], using the AK13 GGA in self-consistent
ground-state calculations is cumbersome and our attempts
at converging such calculations have not been successful.
Therefore, our interest here is not in using AK13 to set
up the left-hand side of equation (4), but in using AK13
for computing the potential response of equation (12). In
this way, by combining the AK13 response with a “usual”
approximation for hKS, we can bring out the effects of the
AK13 x kernel most clearly. For maximum transparency
we chose the LDA for the ground-state Hamiltonian, with
which we combine the AK13 x potential response. In order
to calculate the latter, the AK13 kernel and potential
response, respectively, have to be constructed. These are
calculated in Appendix A.

However, we found that we could not converge the
self-consistency iteration of the Sternheimer equations
with the AK13 x potential response. The lower panel
of Figure 1 shows the AK13 exchange potential response
during the first five iterations of the Sternheimer equa-
tions. In the figures we omitted the last few grid
points that lie close to the numerical boundary and are
therefore affected by inaccuracies from the real-space
finite differences. It is evident that the changes of the
AK13 potential response are enormous from one step
to the next and the potential response even changes
its sign. Oscillations build up at the boundaries of the

Fig. 1. The real part of the x(c) response for Na2 according to
equation (12) for PBE (upper panel) and AK13 (lower panel)
for an external electric field with polarization along the Carte-
sian (1,1,1) direction and an energy ~ω = 0.3 Ry for the first
five self-consistency steps (SC). For PBE, also the converged
result is shown. A boundary sphere with radius r = 25 a0 was
used.

simulation sphere and travel to the inside during the
self-consistency iteration, impeding convergence. We tried
to stabilize the numerical calculations in different ways,
e.g., by starting the AK13 Sternheimer self-consistency
iteration from a converged self-consistent LDA linear
response calculation or using different mixing schemes.
However, none of the employed approaches nor combina-
tions of them lead to a self-consistent, converging AK13
linear response calculation, even after several hundred
iterations.

As a demonstration of how the xc response for a “usual”
GGA looks like, the upper panel of Figure 1 depicts the
xc response of PBE. The PBE potential response differs
relatively little from one self-consistency step to the next,
and the Sternheimer iteration converges within nine steps.
Thus, there is no problem with the GGA form in the
Sternheimer approach per se, but something peculiar is
happening in the AK13 calculation.
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Fig. 2. Real and imaginary part of the potential response for
Na2 of PBE (upper panel) and AK13 (lower panel) along the
x-axis for an external electric field with a polarization direc-
tion of (1,0,0) and energy ~ω = 0.11 Ry. The data is obtained
by performing a self-consistent LDA ground-state and linear
response calculation and subsequently evaluating the poten-
tial response for PBE and AK13, respectively, using the density
and density response from the self-consistent LDA calculation.
In addition, the potential of the applied external electric field is
shown as a reference. A simulation sphere with radius r = 20 a0
was used.

In order to understand what is going on, we eval-
uated the potential response again in a different way.
Instead of trying to analyze the self-consistent AK13
potential response, we performed a self-consistent LDA
ground-state and linear response calculation and subse-
quently evaluated equation (12) with the density response
obtained from LDA (which does not show any spurious
features) and the x- and xc-kernel of AK13 and PBE,
respectively. A striking feature of the AK13 response is
revealed in this way. When the external electric field
is applied in the (1,1,1) direction, the AK13 potential
response exhibits an overall slope and a rising behav-
ior towards the boundaries of the simulation sphere
along all three coordinate axes. When changing the

polarization direction to (1,0,0), the rising feature of the
AK13 potential response vanishes along the y- and z-
direction, but remains visible along the x-axis. The PBE
response, on the contrary, always falls off to zero. Figure 2
illustrates these findings, and also displays the potential
of the external electric field as a reference. We stress that
the observed features are numerically stable and not arti-
facts of how the potentials and densities are computed
numerically.

Summarizing these findings, we note that the direction
of the AK13’s potential response slope depends on the
direction of the external electrical field, and the slope is
proportional to the external field’s modulus. The real part
of the AK13 potential response becomes larger than the
potential of the external electric field for large distances,
making it the asymptotically leading term. These some-
what surprising findings call for further explanation. To
this end, we take a look at the hydrogen atom, for which
exact relations for the exchange response can be derived
as shown below.

6 Analytical analysis of the exchange
potential response

In the following section we contrast the exact analyti-
cal result for the hydrogen atom response with the one
obtained from the different functionals.

6.1 Asymptotics of the exact exchange potential
response

One may argue that a one-electron system is quite a chal-
lenging test for a semi-local functional because of the
well-known self-interaction problem, i.e., one might argue
that failing the one-electron test may not necessarily imply
that a semi-local approximation is useless. E.g., the LDA
ground-state energy for the hydrogen (H) atom is not
particularly accurate, yet LDA is nonetheless a useful
approximation for a lot of many-electron systems. How-
ever, for our present purposes the H-atom is a good test
case, and a very relevant one, because our aim here is
not testing quantitative performance, but understanding
qualitative features of the exchange response. For this, the
H-atom is ideal because the exact potential response can
easily be derived.

For every one-electron system the exact exchange func-
tional just cancels the Hartree contribution [79]. Thus,
in this case the exact exchange potential is the negative
Hartree potential,

υex
x (r, t) = − υH(r, t) = −e2

∫
d3r′

n(r′, t)

|r− r′|
, (17)

and consequently the exact x kernel is also just the
negative Hartree kernel, from which the potential response

V +
x,ex(r) = −V +

H (r) = −e2

∫
d3r′

n+(r′)

|r− r′|
(18)
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follows. From equation (18) the asymptotic behavior of
the exact x potential response can be determined via a
multipole-expansion

V +
x,ex(r) = −e2

∫
d3r′

n+(r′)

|r− r′|
= −e2

=0︷ ︸︸ ︷∫
n+(r′) d3r′

r

+e

=:p+︷ ︸︸ ︷
−e
∫

r′ n+(r′) d3r′ · r

r3
+O

(
1

r3

)
= e

p+ · er
r2

+O
(

1

r3

)
r→∞−−−→ 0, (19)

where the density response integrates to zero due to par-
ticle number conservation and p+ := −e

∫
r′ n+(r′) d3r′ is

the dipole moment of the density response (i.e., the transi-
tion dipole). Thus, the exact exchange potential response
tends to zero asymptotically proportional to 1

r2 or faster.
In directions perpendicular to the dipole moment p+ it
decays proportionally to at least 1

r3 .

6.2 Asymptotics of the potential response of PBE,
AK13, and B88

In order to calculate the asymptotic behavior for the
exchange–correlation approximations that we want to
compare to equation (19), the asymptotics of the density
response is required, cf. equation (12). For the transition
from the 1s orbital to the 2px orbital of a hydrogen atom,
it is given by

n+(r) = ϕ1s(r)ϕ2px(r), (20)

or explicitly,

n(r) =
1

a3
0π
e−2 r

a0 , (21)

and

n+(r) =
1

a3
0π
√

32

x

a0
e−

3
2
r
a0 . (22)

In Appendix B we derive this relation from the Stern-
heimer equations.

Based on this density response we can proceed to eval-
uate the potential response of the PBE, AK13 and B88
approximations. Since all of these originate from the GGA
form (2), we calculate the elements required for the evalua-
tion of the potential response asymptotics for the general
GGA form in Appendix A. One then just has to insert
the enhancement factors F (s) for PBE , AK13 and B88,
respectively, into the resulting equations to obtain the
potential response for these functionals.

The important equations are equations (A.16)
and (A.17). Together with equations (A.13)–(A.15) they
allow expressing the potential response V +

x,SL(r), where

SL stands for PBE, AK13 and B88, in terms of the
density, the density response and derivatives of these
two. According to equations (21) and (22), in the H-atom
calculation the density is spherically symmetric, but
the density response only exhibits cylindrical symmetry
around the x-axis. Therefore, we calculate all derivatives
in cylindrical coordinates. The gradient and Laplacian of
the density for the H-atom case are (cf. Eq. (21))

∇n(r) =
2

a0

(
eρ
−ρ
r

+ ex
−x
r

)
n(r)

=:− 2

a0
er n(r), (23)

∇2n(r) =
4

a2
0

(
1− a0

r

)
n(r), (24)

where r2 = x2 + y2 + z2 = x2 + ρ2, eρ and ex are the cor-
responding unit vectors in cylindrical coordinates and
er := eρ

ρ
r + ex

x
r .

With these two equations, we calculate the reduced
density gradients (cf. Eqs. (A.2), (A.3) and (A.4))

s =
2

a0

1

2 (3π2)
1
3

n(r)−
1
3 (25)

u =
8

a3
0

1

8 (3π2)
n(r)−1 = s3 (26)

t =
4

a2
0

1− a0
r

4 (3π2)
2
3

n(r)−
2
3

= s2
(

1− a0

r

)
. (27)

The derivatives of the density response are (cf. Eq. (22))

∇n+(r) =
1

a0

(
−3

2
er +

a0

x
ex

)
n+(r) (28)

∇2n+(r) =
1

a2
0

(
9

4
− 6

a0

r

)
n+(r), (29)

and analogously we obtain (cf. Eqs. (A.13), (A.14)
and (A.15))

s+(r) = − 1

a0

7
6 + a0

r

2 (3π2)
1
3

n+(r)

n(r)
4
3

(30)

u+(r) = − 1

a3
0

27
2 + 10a0r
8 (3π2)

n+(r)

n(r)2
(31)

t+(r) = − 1

a2
0

53
12 −

2
3
a0
r

4 (3π2)
2
3

n+(r)

n(r)
5
3

. (32)
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Thus, we have derived all quantities that allow to evalu-
ate the general form of the GGA potential response from
equations (A.16) and (A.17) for the 1s→ 2px excitation.
Inserting the appropriate enhancement factors we find the
asymptotic behavior of the PBE potential response as

V +
x,PBE(r)

r→∞−−−→ (1 + κ) V +
x,LDA(r), (33)

where κ is the parameter fixed in the PBE construction [8]
and

V +
x,LDA(r)

r→∞−−−→ 4

9
Ax

n+(r)

n(r)
2
3

. (34)

(Formally, LDA corresponds to the general GGA form of
Eq. (2) with FLDA(s) ≡ 1.) The corresponding asymptot-
ical result (with B1 being the parameter from the AK13
construction [25]) for the AK13 potential response is

V +
x,AK13(r)

r→∞−−−→ 91

144
Ax

B1

a0

1

(3π2)
1
3

n+(r)

n(r)
, (35)

and for B88 we obtain

V +
x,B88(r)

r→∞−−−→ 313

96

a0e
2

r2

n+(r)

n(r)
. (36)

Comparing equations (33)–(36) shows that the PBE
response, as expected, is similar to the LDA one, but that
the AK13 and B88 responses differ markedly. Inserting
equations (21) and (22) we can determine the asymptotics
of the potential response for the 1s→ 2px excitation. For
PBE, it falls off to zero just like LDA,

lim
r→∞

V +
x,PBE(r) ∝ x e−

1
6
r
a0

r→∞−−−→ 0, (37)

whereas for AK13 we find

lim
r→∞

V +
x,AK13(r) ∝ x e

1
2
r
a0

r→∞−−−→∞, (38)

and for B88

lim
r→∞

V +
x,B88(r) ∝ x

r2
e

1
2
r
a0

r→∞−−−→∞. (39)

Comparing this to the exact result given in equation (19),
we see that for the studied excitation the PBE response,
although falling off too rapidly, goes to the correct lim-
iting value (zero). The one of AK13 and B88, however,
grows exponentially. We thus find that neither B88 nor
AK13 are modeling the exact exchange response well for
this one electron transition. The strength of the diver-
gence observed for AK13 is also an important step in
understanding the numerical convergence problems.

6.3 Numerical confirmation

Finally, in order to really rule out that our non-converging
AK13 calculations in Section 5 are a consequence of

numerical issues in our Sternheimer implementation, we
check our numerics by reproducing the just derived ana-
lytical result with our Sternheimer program. To this end,
we do a numerical quasi-exact ground-state calculation of
the hydrogen atom with the code used in Section 5, and
also do the linear response calculation quasi-exactly for
the hydrogen atom. By quasi-exact we mean that numer-
ical convergence parameters were chosen very stringent
and only the external perturbation potential in the Stern-
heimer equations (4) and (5) is taken into account, which
is the exact situation for the hydrogen atom. The hydro-
gen atom was described using a Troullier–Martins [78]
pseudopotential (rc = 1.39a0), and we tested that with
this pseudopotential energies and eigenvalues are close
to the ones from the true hydrogen potential. With the
thus numerically obtained density response we numeri-
cally evaluate the AK13 potential response. The result is
depicted in Figure 3.

According to equation (35) the AK13 potential response
is expected to be proportional to the ratio of the density
response and the density. The upper panel of Figure 3
shows the absolute value of these two quantities on a log-
arithmic scale. Over a wide region of space we find close
agreement. In the interior and in the outer region of the
displayed simulation volume the two curves slightly devi-
ate from each other. The dotted red line in the lower
panel of Figure 3 shows that this is a consequence of

the numerical and analytical results for n+(r)
n(r) deviating

from each other in the center of the grid and close to
the boundaries. These deviations are expected and eas-
ily understood. The deviation in the interior is expected
because of the use of a pseudopotential and the finite
discretization, which lead to a numerical ground-state
density that lacks the exact cusp at the nuclear posi-
tion (x = 0), as in every pseudopotential calculation. The
deviations close to the grid boundary are a consequence
of the necessity of enforcing the zero-boundary condition
in the calculation of the ground-state orbitals. As the
analytical density vanishes asymptotically and thus never
becomes zero exactly, the numerical data has to slightly
deviate from the correct asymptotic behavior near the
boundary.

However, the important observation in Figure 3 is that
the numerical evaluation of the AK13 response does show
the same behavior as the analytical evaluation in all
regions of space where it can be expected to show it (i.e., in
those regions of space where the analytical and the numer-
ical density are close to each other). The solid magenta
curve in the lower panel of Figure 3 confirms that the

ratio |V +
AK13|/|

n+

n | tends to a constant for large values
of x, as it should. Therefore, we confirm the reliability
of our Sternheimer implementation, and also confirm the
conclusion that the non-converging Sternheimer iterations
for AK13 are not a result of numerical problems, but are
to be attributed to the strongly diverging response of the
AK13 approximation.

For the sake of completeness we depict the PBE poten-
tial response in Figure 4. The figure is in line with
the analytical result for PBE and shows that the PBE
response does not show any divergences.

https://epjb.epj.org/
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Fig. 3. Quasi-exact numerical ground-state and response cal-
culation of the hydrogen atom. A sphere with radius r = 15 a0
and a grid spacing of ∆r = 0.20 a0 was used. Upper panel,
red curve, plotted against left ordinate: absolute value of the
AK13 potential response |V +

AK13| evaluated with the ground-
state density and density response of the quasi-exact numerical
calculation for the hydrogen atom. Dashed blue curve, plot-
ted against right ordinate: ratio of the density response to

the density |n
+

n
|. The plot demonstrates that both functions

are proportional to each other. Lower panel, solid magenta
curve, plotted against left ordinate: numerical data for |V +

AK13|
divided by the numercial data for |n

+

n
|. Dotted red curve, plot-

ted against right ordinate: numerical data for |n
+

n
| divided by

the analytical data for |n
+

n
|. The dashed black line serves as

a reference for perfect proportionality between analytical and
numerical data.

Finally, we take a look at the B88 response. As
explained earlier, one has to keep in mind that B88,
like AK13, is built with a diverging enhancement fac-
tor, yet the divergence is milder. Figure 5 depicts the
potential response for B88, evaluated in the same way on
the numerical, quasi-exact density and density response as
just described for AK13. The potential response is smooth
in regions of space where the density is high. Close to the

Fig. 4. PBE potential response evaluated with the ground-
state density and density response of the quasi-exact numerical
calculation for the hydrogen atom.

Fig. 5. B88 potential response evaluated with the ground-
state density and density response of the quasi-exact numerical
calculation for the hydrogen atom.

grid boundary we observe a strong rise and see a spike
that we attribute to the influence of the grid boundary
on the finite differences. However, these features do not
hinder convergence of the Sternheimer equations with the
B88 approximation. We could obtain fully self-consistent,
converged Sternheimer results for the H-atom 1s → 2px
excitation for B88. The excitation energy is not too dif-
ferent to the one found with xLDA or xPBE. On a grid of
radius r = 15 a0 and with a grid spacing of ∆r = 0.20 a0,
which leads to a numerical accuracy of a few mRy, we find
excitation energies of 542, 572, 575 mRy for xLDA, xPBE
and B88, respectively.

Thus, the B88 response calculations show that a diverg-
ing enhancement factor and potential response need not
necessarily lead to problems in TDDFT calculations.
In order to clarify the situation further, we depict in
Figure 6 the asymptotics of both functionals, i.e., Figure 6

https://epjb.epj.org/
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Fig. 6. Analytical asymptotic behavior of the AK13 and
B88 functional according to equations (35) and (36). The
solid red and dashed black curves are plotted against the
left ordinate and depict the data along the x-direction for
(y, z) = (0,0) a0. The dashed blue and dashed magenta curves
are plotted against the right ordinate and show the data along
the y-direction for (x, z) = (1,0) a0. The offset of 1 a0 in the
x-direction was chosen to avoid the orbital nodal plane.

visualizes equations (35) and (36) evaluated for the exact
density and density response. The potential response of
both functionals rises with the same exponential rate in
the asymptotic limit, but the one of B88 is moderated
by 1

r2 . Figure 6 shows that this leads to a considerably
slower rise. This finding is in line with earlier observations
for ground-state calculations [54]: although both AK13
and B88 diverge on some orbital nodal planes, it is pos-
sible to converge ground-state calculations for B88 but
not for AK13. The milder divergence of the B88 ground-
state potential can be numerically covered, whereas the
pronounced divergence of AK13 leads to serious prob-
lems. From our Sternheimer results we conclude that the
situation is similar for the potential response.

7 Conclusion

We investigated the linear response of the AK13 GGA
with the aim of exploring whether the unusual features
of its functional derivative can be exploited beneficially in
TDDFT calculations. We found that we cannot converge
such calculations. Contrasting the AK13 response with the
one of the PBE GGA, for which the Sternheimer equations
can be solved without any problem, revealed that AK13
leads to an asymptotically increasing exchange response
that is absent in PBE. By comparing this to the exact
response, which we calculated for the hydrogen atom, we
traced this finding back to AK13’s diverging enhancement
factor and identified the feature as not being in agreement
with the proper exchange behavior. Comparison with the
B88 exchange GGA, which also has a diverging enhance-
ment factor but leads to a self-consistent solution of the
Sternheimer equations, showed that a diverging enhance-
ment factor in itself does not need to ruin the response

properties, but the particular form that is chosen in AK13
is problematic for TDDFT applications.

Our original hope was that the AK13 functional may
have been useful for providing “kernel corrections” to the
linear response in situations where usual GGAs, which
closely follow the density, do not. Long-range charge-
transfer excitations would have been a hallmark example.
Our study showed that even much simpler excitations can-
not be calculated with the adiabatic AK13 functional. The
peculiar results found here for AK13 indicate that it is
very difficult to develop a semi-local functional that leads
to pronounced but beneficial response properties. Whereas
it is clear that the GGA potential response would have to
be sharply increasing in regions of vanishing orbital over-
lap in order to provide a non-vanishing correction, our
results here showed that too much of a divergence can
ruin the response properties altogether. A possible way
out of this disaccord may be to try to model the response
semi-locally, but not semi-locally in the density, but semi-
locally in the orbitals, such as done in meta-GGAs [80]. In
this way, it may be possible to obtain finite “kernel cor-
rections” in a different manner, namely not by providing
a potential with diverging properties, but by providing a
relative potential offset of the donor- and acceptor regions
of a charge-transfer system.
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Appendix A: Details of how the GGA kernel
enters the Sternheimer equations

We here give some details about how to use function-
als of the GGA form in the Sternheimer approach. It is
an appealing feature of the Sternheimer equations that
they do not require the xc kernel by itself, but only
the xc potential response. This is advantageous as the
potential response only depends on one three-dimensional
spatial coordinate, whereas the xc kernel depends on two.
Thus, it is easier to analyze the effects of a particular xc
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approximation on the linear response by looking at the xc
potential response instead of the xc kernel itself.

The starting point for the derivation of the AK13 poten-
tial response is the GGA form of the (semi-local) exchange
energy functional from equation (2). The corresponding

potential to this is the functional derivative
δESL

x [n]
δn(r) , which

can be extracted from reference [60] and rearranged to

υSL
x [n](r) =

4

3
Ax n(r)

1
3

×
[
F (s)−

(
3

4

t

s
− 3

4

u

s2
+ s

)
F ′(s)−

(
3

4

u

s
− s2

)
F ′′(s)

]
︸ ︷︷ ︸

=:B(r)

,

(A.1)

with

s =
|∇n(r)|

2 (3π2)
1
3 n(r)

4
3

(A.2)

u =
∇n(r) · ∇|∇n(r)|

8 (3π2)n(r)3
(A.3)

t =
∇2n(r)

4 (3π2)
2
3 n(r)

5
3

. (A.4)

According to equation (14) the kernel is the functional
derivative of the potential. Thus, it takes the form

fSL

x [n](r, r′) =
4

9
Ax n(r)−

2
3 δ(r− r′)B(r)

+
4

3
Ax n(r)

1
3
δB(r)

δn(r′)
, (A.5)

with

B(r) = F (s)−
(

3

4

t

s
− 3

4

u

s2
+ s

)
F ′(s)

−
(

3

4

u

s
− s2

)
F ′′(s). (A.6)

Aside from derivatives of the exchange enhancement fac-
tor, the functional derivatives of s, u and t are needed for
δB(r)
δn(r′) . These are given by:

δs(r)

δn(r′)
=

n(r)∇n(r) · ∇δ(r− r′)− 4
3 |∇n(r)|2 δ(r− r′)

2 (3π2)
1
3 n(r)

7
3 |∇n(r)|

(A.7)

δu(r)

δn(r′)
=

n(r)∇|∇n(r)| · ∇δ(r− r′)

8 (3π2)n(r)4

+
n(r)∇n(r) · ∇

(
∇n(r)·∇δ(r−r′)
|∇n(r)|

)
8 (3π2)n(r)4

−3∇n(r) · [∇ |∇n(r)|] δ(r− r′)

8 (3π2)n(r)4
(A.8)

δt(r)

δn(r′)
=

n(r)∇2δ(r− r′)−
[
∇2n(r)

]
· 5

3 δ(r− r′)

4 (3π2)
2
3 n(r)

8
3

(A.9)

Altogether these equations yield the functional deriva-

tive of B(r) in terms of the functional derivatives of δs(r)
δn(r′) ,

δu(r)
δn(r′) and δt(r)

δn(r′) :

δB(r)

δn(r′)
= −F ′(s)

[
3

4

1

s

δt(r)

δn(r′)
− 3

4

t

s2

δs(r)

δn(r′)

−3

4

1

s2

δu(r)

δn(r′)
+ 2 · 3

4

u

s3

δs(r)

δn(r′)

]
−F ′′(s)

[
3

4

t

s

δs(r)

δn(r′)
− 2 · 3

4

u

s2

δs(r)

δn(r′)

+
3

4

1

s

δu(r)

δn(r′)
− s δs(r)

δn(r′)

]
−F ′′′(s)

[
3

4

u

s
− s2

]
δs(r)

δn(r′)
(A.10)

In none of the Sternheimer equations (4), (5), (11), (12)
and (15) the kernel is needed explicitly standalone. The
only point where it enters the formalism is by set-
ting up the exchange–correlation potential response via
equation (12). As the GGA form (2) is an approxima-
tion for the exchange energy and is used in the adiabatic
approximation

fSL

x (r, r′, ω̄) = fSL

x (r, r′),

throughout this manuscript, equation (12) together with
equation (A.5) becomes

V +
x,SL(r) =

∫
d3r′ n+(r′) fSL

x (r, r′)

=
4

9
Ax n(r)−

2
3 B(r)n+(r)

+
4

3
Ax n(r)

1
3

∫
d3r′ n+(r′)

δB(r)

δn(r′)
. (A.11)

In the occuring integral, the integration variable is r′ and

the only dependences on r′ in δB(r)
δn(r′) are buried in the

δ-functions of δs(r)
δn(r′) , δu(r)

δn(r′) and δt(r)
δn(r′) . Thus, the r′ inte-

gration in equation (A.11) comes down to integrals of the
form

ζ+(r) :=

∫
d3r′ n+(r′)

δζ(r)

δn(r′)
, (A.12)

where ζ is s, u or t, respectively. These integrals are given
by:

s+(r) =
n(r)∇n(r) · ∇n+(r)− 4

3 |∇n(r)|2 n+(r)

2 (3π2)
1
3 n(r)

7
3 |∇n(r)|

(A.13)
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u+(r) =
n(r)∇|∇n(r)| · ∇n+(r)

8 (3π2)n(r)4

+
n(r)∇n(r) · ∇

(
∇n(r)·∇n+(r)
|∇n(r)|

)
8 (3π2)n(r)4

−3∇n(r) · [∇ |∇n(r)|] n+(r)

8 (3π2)n(r)4
(A.14)

t+(r) =
n(r)∇2n+(r)−

[
∇2n(r)

]
· 5

3 n
+(r)

4 (3π2)
2
3 n(r)

8
3

(A.15)

At this point the exchange potential response of
equation (A.11) is fully determined and can be expressed
in terms of s+(r), u+(r) and t+(r), which yields:

V +
x,SL(r) =

4

9
Axn(r)−

2
3B(r)n+(r)

+
4

3
Axn(r)

1
3

∫
d3r′n+(r′)

δB(r)

δn(r′)
(A.16)

=
4

9
Axn(r)−

2
3B(r)n+(r) +

4

3
Axn(r)

1
3 I and

I = −F ′(s)
[

3

4

1

s
t+(r)− 3

4

t

s2
s+(r)

−3

4

1

s2
u+(r) + 2 · 3

4

u

s3
s+(r)

]
−F ′′(s)

[
3

4

t

s
s+(r)− 2 · 3

4

u

s2
s+(r)

+
3

4

1

s
u+(r)− s s+(r)

]
−F ′′′(s)

[
3

4

u

s
s+(r)− s2 s+(r)

]
(A.17)

This is the potential response for a spin-independent
calculation. The spin-scaling relation

fSL,σ,τ
x [n↑, n↓](r, r

′) = 2 fSL

x [2nσ](r, r′) δστ , (A.18)

for the x kernel then leads to the spin-dependent potential
response

V +,σ
x,SL (r) =

∑
τ=↑,↓

∫
d3r′ n+

τ (r′) fSL,σ,τ
x [n↑, n↓](r, r

′)

= 2

∫
d3r′ n+

σ (r′) fSL

x [2nσ](r, r′), (A.19)

in the adiabatic approximation. For implementing a given
GGA, it only remains to compute the first, second and
third derivatives of the exchange enhancement factor, i.e.,
F ′(s), F ′′(s), F ′′′(s).

Appendix B: Deriving the hydrogen atom
density response from the Sternheimer
equations

We start from the Sternheimer equations (4) and (5),
which for an exact calculation of the hydrogen atom read

[h− ε1s − ~ω̄]|φ+〉 = −Q̂ V +
ext |ϕ1s〉 = −V +

ext |ϕ1s〉
[h− ε1s + ~ω̄]|φ−〉 = −Q̂ V +

ext |ϕ1s〉 = −V +
ext |ϕ1s〉,

(B.1)

where |φ+〉 and |φ−〉 are the orbital responses of an orbital
starting its propagation in the hydrogen atom 1s ground-
state orbital |ϕ1s〉, ε1s is the eigenenergy of the hydrogen
atom 1s ground-state orbital and h is the ground-state
Hamiltonian of the hydrogen atom.
The projector Q̂ = 1 − |ϕ1s〉〈ϕ1s| is of no effect in this
case, as 〈ϕ1s|V +

ext|ϕ1s〉 = 0. This is because |ϕ1s〉 is an even
function with respect to its spatial coordinates, but V +

ext
is a linear function with regard to its spatial coordinates
according to equation (16) and thus is spatially odd.

The calculation for the hydrogen atom is of course a
spin-dependent one. However, as only one spin channel is
occupied, and as there is no preference for either of the
two possibilities, the spin index is omitted in this section.
|φ+〉 and |φ−〉 are orthogonal to |ϕ1s〉 [37] which can
easily be verified by projecting 〈ϕ1s| onto equations (4)
and (5). Hence, |φ+〉 and |φ−〉 can be expanded in terms
of the unoccupied ground-state orbitals |ϕj〉 with j > 1 as
|ϕ1〉 := |ϕ1s〉:

|φ+〉 =

∞∑
j=2

c+j |ϕj〉

|φ−〉 =
∞∑
j=2

c−j |ϕj〉 (B.2)

Inserting this into the Sternheimer equations (B.1) and
projecting 〈ϕi| onto them yields

〈ϕi|[h− ε1s − ~ω̄]|φ+〉 =
∞∑
j=2

(εj − ε1s − ~ω̄) c+j 〈ϕi|ϕj〉

=− 〈ϕi|V +
ext |ϕ1s〉 (B.3)

〈ϕi|[h− ε1s + ~ω̄]|φ−〉 =
∞∑
j=2

(εj − ε1s + ~ω̄) c−j 〈ϕi|ϕj〉

=− 〈ϕi|V +
ext |ϕ1s〉, (B.4)

where εj is the corresponding hydrogen ground-state
energy eigenvalue of |ϕj〉. From this the coefficients c±i
can be determined as

c±i =
−〈ϕi|V +

ext |ϕ1s〉
εi − ε1s ∓ ~ω̄

, (B.5)
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which by inserting these coefficients into equation (B.2)
results in

|φ+〉 = −
∞∑
i=2

〈ϕi|V +
ext |ϕ1s〉

εi − ε1s − ~ω̄
|ϕi〉 (B.6)

|φ−〉 = −
∞∑
i=2

〈ϕi|V +
ext |ϕ1s〉

εi − ε1s + ~ω̄
|ϕi〉. (B.7)

For the further derivation the matrix element

〈ϕi|V +
ext|ϕ1s〉

(16)
= eE 〈ϕi|x|ϕ1s〉,

has to be calculated, where the external electric field
points in the x-direction (E = E ex). In order to evaluate
this, each of the three parts ϕi, x and ϕ1s, respectively, can
be expressed by spherical harmonics. Reference [81] cal-
culates such integrals of three spherical harmonics, from
which the dipole selection rules can be derived. One finds:

〈ϕi|x|ϕ1s〉 = 〈ϕnpx |x|ϕ1s〉 · δi,npx (B.8)

With this and equations (B.6) and (B.7) the density
response can be expanded in terms of the unoccu-
pied ground-state orbitals according to equation (15).
With real-valued ground-state orbitals and the definition
~ω1i := εi − ε1s one arrives at:

n+(r, ω̄) = ϕ1s(r)[φ+(r, ω̄) + φ−(r, ω̄)]

= −
∞∑
n=2

eE

~
〈ϕnpx |x|ϕ1s〉ϕ1s(r)ϕnpx(r)

×

 1

ω1n − ω̄
+

1

ω1n + ω̄︸ ︷︷ ︸
=:C

, (B.9)

with

<(C) =
2ω1n [(ω2

1n − ω2) + η2]

[(ω1n − ω)2 + η2][(ω1n + ω)2 + η2]

=(C) =
4ω1n ω η

[(ω1n − ω)2 + η2][(ω1n + ω)2 + η2]
. (B.10)

As already mentioned in Section 4, the parameter η is
introduced to model the switch-on process of the external
perturbation. In the adiabatic limit of η → 0, the density
response for ω 6= ω1n becomes

n+(r, ω) = −
∞∑
n=2

eE

~
〈ϕnpx |x|ϕ1s〉ϕ1s(r)ϕnpx(r)

× 2ω1n

(ω1n − ω) (ω1n + ω)
. (B.11)

In line with the objective of Section 6.2 to evaluate the
potential response for the 1s → 2px excitation, equa-
tion (B.11) has to be considered in the limit ω → ω12.

In this case the term for n = 2 dominates all other
contributions. Thus, this yields

n+(r, ω → ω12) ∝ ϕ1s(r)ϕ2px(r), (B.12)

for the density response of the 1s→ 2px excitation of the
hydrogen atom. As the interest in Section 6.2 lies only in
the spatial dependence of the investigated quantities, we
use

n+(r) = ϕ1s(r)ϕ2px(r), (B.13)

i.e., drop the proportionality factors. Inserting the
explicit, analytic forms of ϕ1s(r) and ϕ2px(r) [81],
equations (21) and (22) follow.
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25. R. Armiento, S. Kümmel, Phys. Rev. Lett. 111, 036402

(2013)
26. T.F.T. Cerqueira, M.J.T. Oliveira, M.A.L. Marques, J.

Chem. Theory Comput. 10, 5625 (2014)

https://epjb.epj.org/


Page 14 of 14 Eur. Phys. J. B (2018) 91: 159

27. A. Karolewski, R. Armiento, S. Kümmel, Phys. Rev. A 88,
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29. M. Mundt, S. Kümmel, R. van Leeuwen, P.-G. Reinhard,
Phys. Rev. A 75, 050501(R) (2007)
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100, 153004 (2008)
43. J.I. Fuks, N.T. Maitra, Phys. Rev. A 89, 062502 (2014)
44. N. Maitra, J. Chem. Phys. 144, 220901 (2016)
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Phys. Chem. Chem. Phys. 15, 20016 (2013)
48. T. Körzdörfer, J.-L. Bredas, Acc. Chem. Res. 47, 3284

(2014)
49. Y. Li, C.A. Ullrich, J. Chem. Theory Comput. 11, 5838

(2015)
50. Y. Li, C.A. Ullrich, J. Chem. Phys. 145, 164107 (2016)
51. Y. Li, M. Dhanashree, S. Patil, S. Guha, C.A. Ullrich, Mol.

Phys. 114, 1365 (2016)
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94, 165149 (2016)
54. T. Aschebrock, R. Armiento, S. Kümmel, Phys. Rev. B
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69. D. Hofmann, S. Kümmel, J. Chem. Phys. 137, 064117
(2012)
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