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Abstract. We provide evidence that cumulative distributions of absolute normalized returns for the 100
American companies with the highest market capitalization, uncover a critical behavior for different time
scales At. Such cumulative distributions, in accordance with a variety of complex — and financial — systems,
can be modeled by the cumulative distribution functions of g-Gaussians, the distribution function that,
in the context of nonextensive statistical mechanics, maximizes a non-Boltzmannian entropy. These ¢-
Gaussians are characterized by two parameters, namely (g, 3), that are uniquely defined by At. From these
dependencies, we find a monotonic relationship between ¢q and 3, which can be seen as evidence of criticality.
We numerically determine the various exponents which characterize this criticality.

1 Introduction

The analysis of financial data by methods developed for
physical systems has extensively attracted the interest of
physicists [1-12]. One of the reasons for such interest is
that statistical mechanics offers a productive insight to
macroeconomic systems, as the particles from thermody-
namic systems can be considered an analogue for macroe-
conomic systems such as companies, people, and states. A
clear example of this approach is the analysis of the appli-
cability of Fermi-Dirac distribution to income and wealth
[13], which states that money distribution in an econ-
omy behaves similarly with the distribution of electrons in
quantum systems. In this line, income and wealth distribu-
tions were extensively studied by Yakovenko [14-17] and
Kusmartsev [18,19] in terms of the Maxwell-Boltzmann,
Bose-Einstein, and lognormal distributions. Properties of
cumulative distributions of financial data have been also
discussed, with the argument that power law tails should
be always related to a critical behavior. A literature review
is available in [20], with a theoretical framework of statis-
tical mechanics distributions applied to income, wealth,
and expenditure distribution.

In fact, financial markets are strongly fluctuating com-
plex systems whose dynamics are difficult to understand
because of the complexity of their internal elements and
correlations, and also because of the many intractable
external factors acting on them.

However, remarkably enough, the interactions between
these various ingredients generate many observable whose

#e-mail: guiomar.ruiz@upm.es

statistical properties appear to be similar for quite differ-
ent markets. Consequently, we are allowed to refer to some
“universal” trends, on which we focus herein.

As a matter of fact, it has been observed, in financial
data, that rare events give raise to pronounced tails in
the appropriate probability distributions — tails that are
in fact frequently found in complex systems. Such is the
case of the return distributions associated with time series
[5,21] on varying time scales, At. These fat tails reveal
long-range correlations that frequently cause standard sta-
tistical mechanics to be inadequate for describing them.
This kind of scenario also emerges in the systems that
permanently reside in the neighborhood of their critical
point, where physical quantities present power-law depen-
dencies of the type f(x) ~ 27, characterized by a critical
exponent 7.

In the present work, we will be concerned with the sta-
tistical analysis of the return distributions of the 100 most
capitalized companies traded on NYSE in 1998-1999.1
Our objective is to uncover some empirical laws that seem
to govern such financial markets.

1 They were not taken from any specific index, their capitalization
being the sole criterion. Their 1999 tickers are as follows: AA, ABT,
AHP, AIG, ALD, AMGN, AOL, ARC, AT, AUD, AXP, BA, BAC,
BEL, BK, BLS, BMY, BUD, C, CA, CBS, CCL, CCU, CHV, CL,
CMB, CMCS, COX, CPQ, CSCO, DD, DELL, DH, DIS, DOW,
EDS, EK, EMC, EMR, ENE, F, FBF, FNM, FRE, FTU, G, GCI,
GE, GLW, GM, GTE, GTW, HD, HWP, IBM, INTC, JNJ, JPM,
KMB, KO, LLY, LOW, LU, MCD, MDT, MER, MMC, MMM, MO,
MOT, MRK, MSFT, MTC, MWD, ONE, ORCL, PEP, PFE, PG,
PNU, QCOM, QWST, SBC, SCH, SGP, SLB, SUNW, T, TWX,
TX, TXN, UMG, USW, UTX, VIAB, WCOM, WFC, WMT, XON,
YHOO. Their returns were calculated according to the standard
procedure, from stock prices sampled with a given frequency.
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Following along the lines of reference [22], we will apply
the so called nonextensive statistical mechanical analysis
[23,24] to the empirical distribution data of the men-
tioned normalized returns. The characteristic generalized
distribution functions of nonextensive statistics ubiqui-
tously emerge in complex systems, and very especially
as economical and financial stylized features, including
price returns and volume distributions, interoccurrence
times, characterization of wealth distributions and associ-
ated inequalities among others [25,26]. Remarkably, time
series of prizes, conveniently replaced by their correspond-
ing returns, have in fact demonstrated to be robustly
explained by the nonextensive statistics [22,26-28].

The paper is organized as follows. In Section 2 we briefly
review the essential concepts and tools of nonextensive
statistics to be used. In Section 3 we show the procedure to
calculate the generalized cumulative and non cumulative
distributions of the returns of the referred financial mar-
ket, and their criticality due to the fact that — in analogy
to critical phenomena — for each value of the sampling time
there exists just one value of the generalized temperature.
Our main conclusions are drawn in Section 4.

2 Nonextensive statistics and complex
systems

Nonextensive statistical mechanics [23,24], a current
generalization of the Boltzmann-Gibbs (BG) statistical
mechanics when its associated entropy Spg does not
obey the standard asymptotic behavior Spa(N) ~ N for
N — oo (N being the number of elements), occurs to
be useful in the description of complex financial systems
[27,29-33].

The theory has been developed around the concept of
nonadditive entropy, which is maximized, with the appro-
priate constraints [34], by the family of the ¢-Gaussian
distributions

Gq(z) = A(g, By) equ[—ﬂq(x - Mq)2]7 (1)

where ¢ is a characteristic index, 8, is a sort of inverse
temperature [35], 114 is the escort averaged first moment
[36], A(q, B) is a normalization factor, and the function

exp,(z) =1+ (1 - q)x]i/(l_q), (2)

with [z]4 =z if z > 0 and [z]4+ = 0 otherwise, is a gener-
alization of the exponential function — the ¢ — 1 limit
makes exp,(z) — exp(z). The normalization factor in
equation (1) reads [37], for the values of ¢ we are now
involved (1 < g < 3):

1
Al 50) =108, F[z[(j;;l])] . 3)

The ¢-Gaussian distribution (1) generalizes the Gaus-
sian distribution in a similar way as nonadditive entropy
generalizes Spa [23].
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In fact, the ¢ — 1 limit makes equations (1)—(3)
to recover the Gaussian distribution, ie. Gi(z) =
1/(01V27) expl(z — 11)%/(20%)]. A generalization of the
Central Limit Theorem, where the g-Gaussian distribu-
tions themselves become their attractors, has already been
formulated [38—40].

3 Criticality and absolute normalized returns

The absolute normalized returns are conventionally
defined in the following manner. For the time series W (t)
that represent the prizes — or the market index value — at
time ¢, the returns over a sample interval At, Ra(t), are
defined as

Rac(t) =InW(t + At) —In W (¢t)
L W(t+ A - W(1) A
= W@ ; (4)

where the approximation holds for small variations of
W (t). By centering and normalizing R:(t), to have unit
variance, the normalized returns are obtained:

rai(t) = [Rae(t) — (Rac(t))r]/vae, ()

where (- - - )1 denotes a time average, and volatility va; is
the standard deviation of the returns over the period T

In the spirit of Figure 61 in reference [22], we are inter-
ested in studying the cumulative distribution functions
(CDF) of the absolute normalized returns, for different
time scales At, of the 100 American companies with the
highest market capitalization. In other words, we ana-
lyze the probability for an absolute return to be larger
than a threshold z, i.e. CDF(x) = P(|ra¢| > z). The
negative and positive wings of empirical distributions are
supposed to present negligible quantitative discrepancies
and, consequently, we focus on the analysis of absolute
returns.

The asymptotic behavior of such normalized returns has
been observed to follow an asymptotical power-law-like
dependence of the type CDF(z) ~ 1/x* (o > 0). This
is but one of the arguments that make ¢-Gaussian distri-
butions attractive to describe them; indeed ¢-Gaussians
asymptotically develop a power-law form G, (x) ~ x2/174
for (x> 1).

First, we analytically obtain the CDF of a ¢-Gaussian
probability distribution function (pdf), with ¢ = 0 and
re-normalized temperature 37!, as

P(|TAt|>x):1_2A(Q7ﬁ)x2Fl (aaé;’}/aT)a (6)

where a = 1/2, § = 1/(q— 1), v = 3/2, 7 = B(1 — q) 2*
and where oF) (o, d;7,7) is the hypergeometric func-
tion. Equation (6) provides a g-dependent asymptotical
(z > 1) behavior of the type ~z(1=3)/(a=1) that fits the
a-dependent asymptotical behavior of absolute normal-
ized returns, and provides the ¢g-Gaussian index through
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Table 1. Time scales of absolute normalized returns, and
the (g, ) values of their respective estimated CDFs. The
q index is obtained by a least square fitting of the tail
distribution. The £ index is obtained by fitting the whole
CDF.

At g B8
4 1.53 1.78
8 1.526 1.67
16 1.48 1.52
30 1.46 1.42
60 1.45 1.33
120 1.42 1.25
240 1.39 1.14
390 1.365 1.10
780 1.35 1.03
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Fig. 1. Cumulative distributions of absolute normalized
returns that correspond to different time scales At for the 100
American companies with the highest market capitalization
(points), and the fitted cumulative g-Gaussian distributions
(lines). In order to better visualize the results, each ¢-Gaussian
CDF and the respective experimental data have been multi-
plied by a positive factor, ¢ # 1.

the relation:

3+«
1= 1+a

(7)

Even in the case that empirical data of a particular time
scale did not attain the asymptotical behavior yet, we
observe that cumulative distributions are also properly
fitted by the CDF of a ¢-Gaussian pdf (6). We obtain
the value of 8 associated to the index ¢ that corresponds
to each time scale At, by a least squares fitting tech-
nique. Our ¢ versus At results (see Tab. 1), are in a quite
satisfactory agreement with reference [22].

The fitted CDF's are represented, for all time scales, in
Figure 1, together with the experimental data provided in
reference [22]. The convergence of the CDF exhibits that,
as At increases, the value of ¢ decreases. Hypothetical final
convergence to a Gaussian (¢ — 1) appears to be abrupt
(see Fig. 2).

Figures 3 and 4 exhibit the good agreement with the
g-Gaussian pdfs that lead to equation (6), with respect to
the derivatives of the experimental cumulative distribu-
tions.
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Fig. 2. Dependence, versus temporal scale At, of nonextensive
index ¢, for the estimated ¢-Gaussian pdfs of normalized abso-
lute returns. Inset: log—log representation shows a power-law
dependence of the type ¢ — 1 o« At~ ", with 7 = 0.081 4 0.004.
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Fig. 3. Log-log representation of the probability density dis-
tributions of absolute normalized returns for different time
scales At. Points have been obtained by numerical derivation
of cumulative values. Lines represent the g-Gaussian pdfs that
lead to the fitted CDF's in Figure 1. In order to better visual-
ize the results, each g-Gaussian and the respective numerically
estimated values, are multiplied by a positive factor ¢ # 1.
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Fig. 4. Log-linear representation of the probability density dis-
tribution of absolute normalized returns, for time scale At = 4.
Points have been obtained by numerical derivation of cumula-
tive values. Line represents the g-Gaussian pdf that leads to the
corresponding CDF in Figure 1, i.e. ¢ = 1.53 and § = 1.78. The
error bars are generated by the diversity of numerical methods
to obtain the derivatives (points) of the cumulative distribution
values (forward, backward and central differences).
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Fig. 5. Log-log representation of the re-normalized inverse
temperature 3 versus temporal scale At, for the estimated g-
Gaussian pdfs of normalized absolute returns. A power-law
dependence of the type 7! o At™7 is observed, with v =
0.106 £+ 0.002.
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Fig. 6. Log-log representation of the re-normalized inverse
temperature 3 versus q — 1, for the estimated ¢g-Gaussian pdfs
of normalized absolute returns. A power-law dependence of the
type 87! o (¢ — 1) 79 is observed, with § = 1.29 & 0.07.

We have also observed that simple relations exist
between the quantities (g, 8) involved for each time scale
At. A power-law dependence is observed for both ¢ and
B as a function of time scale At, the exponents being
7 =0.081£0.004 (Fig. 2) and v = 0.106 £ 0.002 (Fig. 5).
Figure 6 shows in fact that the re-normalized temperature
B~! is not a free value, but it also exhibits a power-
law dependence versus ¢, mainly 87! = (¢ — 1), with
6 =1.29 + 0.07.

4 Conclusions

Our results show that g¢-statistics describes complex
behaviour that emerges in the analysis of the present
particular financial data. Similar results have been previ-
ously obtained in references [22,27,30]. But, undoubtedly,
the novelty of the present results is that we have also
exhibited that both parameters (g, ) of the nonexten-
sive scenario are specific values that are fixed by At. Such
behavior is analogous to the behavior of a variety of other
systems that are properly described by g¢-statistics, for
example scale-free d-dimensional geographically-located
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networks [41], quark-gluon soup in high-energy particle
collisions [42], LHC/CERN and RHIC/Brookhaven exper-
iments [43] and anomalous diffusion in confined granular
media [44]. Another simple and paradigmatic example is
the logistic map where, as a reminiscence of this type of
behavior, the g-generalized Lyapunov exponent depends
on the value of ¢ that characterizes the sensitivity to initial
conditions at the edge of chaos [45,46]. This frequent fea-
ture comes from the fact that g-statistics typically emerges
at critical-like regimes and appears to be deeply related
to an hierarchical occupation of phase space.
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