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Abstract. The tunneling conductance for a device consisting of a metal–insulator–superconductor (MIS)
junction is studied in presence of Rashba spin–orbit coupling (RSOC) via an extended Blonder–Tinkham–
Klapwijk formalism. We find that the tunneling conductance as a function of an effective barrier potential
that defines the insulating layer and lies intermediate to the metallic and superconducting electrodes,
displays an oscillatory behavior. The tunneling conductance shows high sensitivity to the RSOC for certain
ranges of this potential, while it is insensitive to the RSOC for others. Additionally, when the period of
oscillations is an odd multiple of a certain value of the effective potential, the conductance spectrum as a
function of the biasing energy demonstrates a contrasting trend with RSOC, compared to when it is not
an odd multiple. The explanations for the observation can be found in terms of a competition between the
normal and Andreev reflections. Similar oscillatory behavior of the conductance spectrum is also seen for
other superconducting pairing symmetries, thereby emphasizing that the insulating layer plays a decisive
role in the conductance oscillations of a MIS junction. For a tunable Rashba coupling, the current flowing
through the junction can be controlled with precision.

1 Introduction

Charge transport through metal–insulator–supercond-
uctor (MIS) junctions has been a subject of considerable
interest both theoretically and experimentally owing to
the fundamental physics embedded therein and the possi-
bility of fabricating devices at very small length scales.
Tunneling spectroscopy is a direct and most effective
tool to acquire information on the interparticle interac-
tion and the nature of the superconducting gap [1,2].
When an electron incidents from the normal metal in
a metal–superconductor junction with an energy lower
than the superconducting gap, a cooper pair is injected
into the superconducting layer, a phenomenon known as
Andreev reflection (AR) [3–5]. AR is caused by the conver-
sion of current in the normal region to a supercurrent in
the superconducting region at the metal–superconductor
junction.

With the advent of spintronics in the recent past, spin
dependent transport through the junctions is an impor-
tant subject, which has recently gained eminence because
of the prospects of fabricating novel devices that are capa-
ble of manipulating the spin in addition to the charge
degree of freedom [6–8]. The phenomenon of spin–orbit
coupling (SOC) is key to the success of this emerging
field.

In low dimensions, particularly, in the context of two
dimensional electron gases (2DEG), due to breaking of
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reflection symmetry near the interface, such as InAs, etc.
[9], the quasiparticles experience a special type of SOC,
namely, Rashba spin–orbit coupling (RSOC) [10] even if
both the normal and superconducting materials have bulk
inversion symmetry. Thus the effect of RSOC becomes
salient and hence can not be skipped. The feasibility of
being able to tune the strength of RSOC using an exter-
nal field [11] provides an additional impetus. Among the
recent works in this field, many investigations have been
carried out to study the influence of RSOC on transport
properties of a 2DEG [12–25].

The Blonder–Tinkham–Klapwijk (BTK) theory [26]
provides a simple interpretation of the AR by model-
ing the metal–superconductor interface via a δ-function
type of potential or an insulating barrier of arbitrary
strength and width. We use a BTK formalism to com-
pute and perform the analysis of the conductance profile
of a MIS junction in the presence of RSOC present
at the interfaces separating the metal–insulator and the
insulator–superconductor where the quasiparticles in the
superconducting sample are described by the Bogoliubov-
de Gennes (BdG) equations [27]. We are especially con-
cerned about scrutinizing an interplay of RSOC with a
number of useful parameters that characterize the MIS
junction, such as the effective barrier potential of the
insulating region and the different superconducting gap
symmetries of the superconducting lead. The interplay
of these parameters renormalize the features of the con-
ductance spectrum in an interesting fashion and form the
focus of this paper here.
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Fig. 1. Schematic illustration of the MIS junction setup.

The paper is organized as follows. In Section 2, we
provide a brief discussion of BTK formalism and estab-
lish the notations which are used throughout the paper.
The numerical results and their corresponding discussions
of the tunneling conductance spectrum for a s-wave super-
conductor are discussed in Section 3.1 and the same for d
and p-wave superconductor are in Section 3.2. Finally, we
briefly summarize our results in Section 4.

2 Theoretical model

We consider a two dimensional MIS junction setup as
shown in Figure 1 where the normal region and super-
conducting region occupy x ≤ 0 and x ≥ d respectively
with the insulating region extending from x = 0 to d.
The x ≤ 0 (metallic electrode) and x ≥ d (superconduct-
ing electrode) regions denote the electrodes that carry the
current through the junctions. The interfaces of this MIS
junctions are located at x = 0 and x = d. We have con-
sidered the presence of RSOC only at the interfaces of
the system as interfaces denote the regions where space
inversion symmetry is violated and is described by the
following potential,

Uσ(x) = Un̂ · (σ̂ × k̂)δx,0 + Un̂ · (σ̂ × k̂)δx,d. (1)

Here we have chosen, n̂ = x̂ as the unit vector along the
interface normal, U is the strength of the RSOC, σ̂ are the
Pauli matrices, and the propagation direction is denoted

by, k̂ (−i∇ with ~ = 1).
The BdG equations [27] are used here to describe the

quasiparticles in the superconducting regime. The quasi-
particle wave function has four components because of
the extra spin degrees of freedom caused by the presence
of the Rashba term. By considering a two dimensional
geometry, the BdG equations can be decoupled into 2 two
component equations, one for each spin, σ, as follows,

HσΨ(r) = EΨ(r) (2)

where σ = ±1 denote two different spin orientations. Hσ

is written as,

Hσ =

(
−∇

2

2 − EF (x) + Uσ(x) ∆̃

∆̃† ∇2

2 + EF (x)− Uσ(x)

)
(3)

where the mass of electrons is taken as unity. The Rashba
term can explicitly be written as,

Uσ(x) = −σUkNF sin θN1δx,0 − σUkIF sin θI1δx,d (4)

implying that it exists only at the junctions at x = 0 and
x = d. The Fermi energy EF (x) is defined by,

EF (x) = ENF Θ(−x) + (ENF + V0)Θ(d− x)

+(ENF + V1)Θ(x− d). (5)

ENF , (ENF + V0) and (ENF + V1) are the Fermi energies
of metallic, insulating and superconducting regions
respectively where V0 is the potential across the insu-
lating barrier region and V1 is electrostatic potential
in the superconducting region which is used to tune
the Fermi wavevector mismatch between the metal and
superconducting region. The off-diagonal terms of the
matrix are the superconducting gap parameter, ∆̃. The
superconducting order parameter for s-wave is a constant
and given by,

∆̃s = ∆0Θ(x− d) (6)

and the corresponding quantities for p-wave and d-wave
superconductors are respectively given by [23–25,28,29],

∆̃p = ∆(k±)Θ(x− d) = ±∆0e
±iθS1,S2Θ(x− d) (7)

and

∆̃d = ∆(k±)Θ(x− d) = ∆0 cos(2θS1,2∓ 2α)Θ(x− d) (8)

where α is the angle between the crystalline orientation
and x axis (see Fig. 1c in Ref. [30]). The plus and minus
signs in the gap functions are for electron and hole-like
quasiparticles. The momentum (k) dependence in the

∆̃d,p enters through θS1 and θS2 (see Eq. (12)) and

∆̃ has the dimension of energy. It can be noted that
the superconducting order parameters are different for
electron-like and hole-like quasiparticles owing to the
different phases involved between them.

Suppose an electron from the left metallic lead is
injected with the excitation energy E ≥ 0, spin σ, and
incident angle θN1. The incident electron experiences the
following processes, (i) AR with angle θN2, (ii) normal
reflection (NR) with angle θN1, (iii) transmission as elec-
tron with angle θI1 and as hole with angle θI2 to insulating
region, (iv) reflection as electron with angle θI1 and as hole
with angle θI2 at the insulating and the superconducting
interfaces and (v) transmission as electron like quasiparti-
cle with angle θS1 and as hole like quasiparticle with angle
θS2.

The momenta of electrons and holes in the normal
region are given by [30],

kN1 = kNF +
E

vNF

kN2 = kNF −
E

vNF
. (9)
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Similarly, the momenta of electrons and holes in the
insulating region are given by,

kI1 = kIF +
E

vIF

kI2 = kIF −
E

vIF
. (10)

Further the momenta of the electron-like and hole-like
quasiparticles in superconducting region are given by,

qS1 = qSF +

√
E2 − ∆̃+

2

vSF

qS2 = qSF −

√
E2 − ∆̃−

2

vSF
(11)

where vNF , vIF and vSF are Fermi velocities for respec-
tive regions, ensuring different Fermi vectors in these
three regions. Here we consider a simplification by setting
qS1 = qS2 = qSF . This simplification introduces an error of

the order δqSF /q
S
F =

√
E2 − ∆̃2/ESF . The error due to this

is of the order of ∆̃/ESF . Since ∆̃ is much smaller than
ESF , this is a reasonable assumption. However we retain
different symbols for them for the sake of convenience.
The momentum parallel to the interface is conserved in
the tunneling process. So we can write,

kN1 sin θN1 = kN2 sin θN2 = kI1 sin θI1 = kI2 sin θI2

= qS1 sin θS1 = qS2 sin θS2. (12)

The solutions of equation (2) in metal, insulator and
superconducting regions are,

ΨN (x) =

(
1
0

)
eikN1 cos θN1x + aσ

(
0
1

)
eikN2 cos θN2x

+bσ

(
1
0

)
e−ikN1 cos θN1x (13)

ΨI(x) = ασ

(
1
0

)
eikI1 cos θI1x + βσ

(
1
0

)
e−ikI1 cos θI1x

+α′σ

(
0
1

)
e−ikI2 cos θI2x + β′σ

(
0
1

)
eikI2 cos θI2x

(14)

and

ΨS(x) = cσ

(
u+e

iφ+

v+

)
eiqS1 cos θS1x

+dσ

(
v−e

iφ−

u−

)
e−iqS2 cos θS2x (15)

respectively. Here aσ and bσ denote the amplitudes of
reflection of hole (AR) and NR respectively in the metallic
region. ασ and βσ denote the amplitudes of incoming and
reflected electron in the insulating region where α′σ and

β′σ are for amplitudes of incoming and reflected hole in
the insulating region. Also cσ and dσ correspond to coef-
ficients of transmission to the superconducting leads as
electron-like quasiparticles and as hole-like quasiparticles
with,

u± =
1√
2

√
1 +

Ω±
E

v± =
1√
2

√
1− Ω±

E
(16)

where,

Ω± =
√
E2 − ∆̃2

±. (17)

The wave functions must satisfy the boundary conditions,

ΨN (x = 0) = ΨI(x = 0)

ΨI(x = d) = ΨS(x = d)

dΨI
dx

(x = 0)− dΨN
dx

(x = 0) = −2σUkNF sin θN1ΨN (x = 0)

dΨS
dx

(x = d)− dΨI
dx

(x = d) = −2σUkIF sin θI1ΨI(x = d).

(18)

All the reflection and transmission amplitudes can be
found from the boundary conditions.

In particular, the reflection amplitudes, needed to com-
pute the conductance (see Eq. (26)), are given by,

aσ = α′σ + β′σ
bσ = ασ + βσ − 1 (19)

where,

ασ = P1cσu+e
iφ+ + P2dσv−e

iφ−

βσ = P3cσu+e
iφ+ + P4dσv−e

iφ−

β′σ = P5cσv+ + P6dσu−
α′σ = P7cσv+ + P8dσu−. (20)

The Pi’s appearing above are respectively denoted by,

P1 = ei(XS1−XI1)d

[
iXI1 + iXS1 − UIS

2iXI1

]
P2 = e−i(XS1+XI1)d

[
iXI1 − iXS1 − UIS

2iXI1

]
P3 = (ei(XS1−XI1)d − P1)e2iXI1d

P4 = (e−i(XS1+XI1)d − P2)e2iXI1d

P5 = ei(XS1−XI2)d

[
iXI2 + iXS1 − UIS

2iXI2

]
P6 = e−i(XS1+XI2)d

[
iXI2 − iXS1 − UIS

2iXI2

]
P7 = (ei(XS1−XI2)d − P5)e2iXI2d

P8 = (e−i(XS1+XI2)d − P6)e2iXI2d. (21)
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Further,

cσ = −du−
v+

L4

L3

dσ =
1 + UNI+iXN1

iXN1−UNI

v−L2eiφ− − u+u−
v+

L1L4

L3
eiφ+

eiφ± = ∆̃±/|∆̃±|
UNI = −2σUkFN sin θN1. (22)

All the Li and the Xi appearing in equations (21) and
(22) are given by,

L1 = P1 + P3 +
iXI1(P1 − P3)

iXN1 − UNI

L2 = P2 + P4 +
iXI1(P2 − P4)

iXN1 − UNI

L3 = P5 + P7 −
iXI2(P5 − P7)

iXN2 + UNI

L4 = P6 + P8 −
iXI2(P6 − P8)

iXN2 + UNI
XN1,N2 = kN1,N2 cos θN1,N2

XI1,I2 = kI1,I2 cos θI1,I2
XS1,S2 = qS1,S2 cos θS1,S2
UIS = −2σUkFI sin θI1. (23)

Using the BTK formalism, the normalized differential
tunneling conductance at zero temperature is given by,

G(E) =
GS(E)

GN
(24)

where the numerator in RHS is given by,

GS(E) =
∑
σ

∫ π/2

−π/2
dθN1 cos θN1Gσ(E, θN1). (25)

In the above expression, the angle and spin resolved
conductance, Gσ(E, θN1) is given by,

Gσ(E, θN1) = 1 + |aσ(E, θN1)|2 kN2

kN1
−|bσ(E, θN1)|2 (26)

and GN is the conductance for a metal–metal–metal
junction.

To make lucid connection to experiments, where disor-
der effects (although small in cleaner samples) are impera-
tive, we have incorporated the effect of finite quasiparticle
lifetimes in all our calculations. In order to consider the
shortening of finite quasiparticle lifetime due to the inelas-
tic scattering in the superconductor near the interface,
one can introduce [31] a Γ factor into the Bogoliubov
equations which renormalizes the quasiparticle energies,
E by E ± iΓ and it is defined by, Γ = 1

τQP
where τQP

is the finite quasiparticle lifetime. Recently it was shown
the conductivity data of disordered MoC superconducting
films [32] can only be satisfactorily explained by invoking

a finite quasiparticle lifetime. A reasonable estimate of Γ
yields Γ/∆0 = 0.05.

Before we embark into discussing our results, let us
include a note on the values of the parameters used in our
numerical computation. The Fermi energy of the metallic
region has been taken to be 150 times the supercon-
ducting gap, that is, ENF = 150∆. The strength of the
RSOC term is considered to have representative values
of U = 1 and U = 3 which represent small and interme-
diate values respectively. We have checked with smaller
and larger values of the RSOC parameters in addition
to the ones considered here, however there have similar
ramifications on the results discussed here. The Rashba
free case is included for comparison. It may be noted
that the strength of Rashba coupling has the dimension
of energy scaled by the Fermi wavevector, which is ren-
dered dimensionless.1 Lastly, the potential mismatch of
the superconducting region with respect to that of the
metallic electrode is taken as, V1 = 103ENF [33], implying
a large shift of the superconducting Fermi energy com-
pared to the normal state Fermi energy and thus should
be a reasonable assumption.

3 Interplay of RSOC and effective barrier
potential

3.1 s-wave superconductor

We begin with the results for a s-wave superconductor.
We introduce a dimensionless effective barrier potential
χ = kIF d where kIF is the Fermi wave vector and d is the
barrier width of the insulating region. The Fermi wave vec-
tor of the insulating region is proportional to the barrier
potential, V0 (see Eq. (5)). As we shall see, this effective
barrier potential, χ ∼

√
V0d is going to play a key role in

the subsequent analysis.
In Figure 2, the tunneling conductance, G is shown as

function of χ for a s-wave superconductor as the RSOC
strength is tuned. We can see that the tunneling conduc-
tance oscillates as the effective barrier potential increases.
These oscillations in conductance profile correspond to
Fabry Perot-like oscillations observed in various junc-
tion devices [34,35]. In fact the oscillation frequency of
the conductance profile depends on the parameters of
the insulating region lying between the metallic and the
superconducting leads.

Moreover, the RSOC term has an interesting effect on
the conductance profile. Figure 2 reveals that the tun-
neling conductance is highly sensitive to RSOC when χ
is odd multiples of a quantity η, that is χ = (2p + 1)η
(p = 0, 1, 2, 3, . . .) where η has a value, nearly 1.59 in units
of kIF d (marked as A in Fig. 2), and zero (hence negligi-
bly sensitive) (marked as B in Fig. 2) when χ is nearly
even multiples of η. There is another region (marked as
C in Fig. 2) where χ is neither even, nor odd multiple of
η, which we denote by χ ∼ (4p+ 1)η/2. This region is of
the importance to us as the conductance enhances as the

1 Dimension of RSOC, [U ] = [E]/[kF ] =
h[ν]λ
2π

=
~c[λ]
[λ]

= 1 (with

~ = c = 1).
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Fig. 2. Black line with circle denotes conductance for U = 0.0,
the green line with square denotes conductance for U = 1.0, the
red line with diamond denotes conductance for U = 3. Same
color coding is followed in subsequent plots. The variation of
the conductance, G for a s-wave superconductor as a function
of χ (kIF d) for different strengths of RSOC. The other param-
eters are U = 1000ENF , E/∆0 = 0.0, Γ/∆0 = 0.05. The values
of U and Γ/∆0 are used for the rest of the paper.

strength of RSOC is made larger. For some values of χ, the
value of conductance increases with RSOC and at other
values it decreases. RSOC broadens the conductance peak
and the peak value diminishes. Further with the inclusion
of the RSOC term, there is emergence of cusps instead
of peaks. From inset of Figure 2 it is clear that for lower
values of RSOC, initially the peak value of the G, that is
Gmax increases with the increasing effective barrier poten-
tial, but then it starts to decrease. But for higher values
of RSOC, the Gmax initially increases but then it remains
almost constant. Also it is found that the for higher val-
ues of effective potential, χ the effects of RSOC is very
minimal.

Let us see how realistic are our predictions made on the
conductance oscillation. We shall take typical numbers
to test predicted periodicity corresponding to junction
parameters that are similar in magnitude with the exper-
iments. For a typical Fermi energy, EF to have a value
of few eV, the Fermi wavevector can be obtained using,

kF =
√

2mEF

~2 . Taking EF = 1 eV and m same as the bare

electronic mass, kF comes out as 5.14× 109 m−1. So if the
width of the insulating region is few nanometers, then the
product of the Fermi wave vector and the width of the
insulating region comes out in the order of tens. In our
computation, we choose the values of χ as the multiple
of η which are order of tens. Thus the parameters for
our computation correspond to experimentally relevant
parameters.

Now we show the tunneling conductance as the function
of biasing energies (scaled by the superconducting gap),
for different values of RSOC for χ to be an odd multiple
of η, and not an odd multiple of η in Figures 3a and 3b
respectively. Specifically we focus on χ = 5η (that is,
p = 2 for region A) and 5η/2 (that is, p = 1 for region

Fig. 3. The variation of the conductance, G for a s-wave
superconductor as a function of E/∆0 for different strengths
of RSOC for (a) χ = 5η and (b) χ = 5η/2.

C) corresponding to the above cases respectively. There
is no particular reason for choosing different values for
p, however features are distinct in these region as seen
from Figure 2. These values of χ show contrasting fea-
tures, that is, decreases with RSOC for one (χ = 5η) and
increases for the other (χ = 5η/2). Thus it is clear that
the magnitude of the effective barrier potential will decide
whether RSOC will enhance or decrease the value of the
conductance through a MIS junction.

Hence we show the variation of the tunneling conduc-
tance, G as a function of Rashba strength, U for different
values of χ in Figures 4a and 4b which correspond to
χ = (2p + 1)η and χ = (4p + 1)η2 . The features reveal
that when the effective barrier potential is nearly an
odd multiple of η, the RSOC diminishes the tunneling
conductance and the peak height increases with increas-
ing value of p. But after a certain value of p, the peak
height decreases which is clear from the inset of Figure 2.
From Figure 4b, it is clear that when the effective barrier
strength, χ ∼ (4p + 1)η2 , the tunneling conductance ini-
tially increases with the RSOC strength but afterwards it
decreases with RSOC. So the dependency of the tunneling
conductance on the RSOC strength is crucially dependent
on the effective barrier potential.

https://epjb.epj.org/
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Fig. 4. The variation of the conductance, G for a s-wave super-
conductor as a function of Rashba strength, U with E/∆0 = 0
for (a) χ = (2p+ 1)η and (b) χ = (4p+ 1) η

2
.

Table 1. Behavior of amplitudes of AR and NR with
RSOC.

Case χ ∼ (2p+ 1)η χ ∼ (4p+ 1)η/2

AR Decreases with RSOC Increases with RSOC
NR Increases with RSOC Decreases with RSOC

In equation (26), for the barrier potential to be an
odd multiple of η, with increasing RSOC, the contribu-
tion of the amplitude AR (the term coming from aσ)
decreases and the amplitude of NR (the term coming
from bσ) increases. But for effective barrier potential
where the tunneling conductance increases with RSOC,
the reverse happens, that is the amplitude of NR decreases
and the amplitude of AR increases. Thus a scrutiny of
Figures 4a and 4b yields that the Rashba free case dom-
inates when χ is near an odd multiple of η and for some
other values of χ, the RSOC augments the conductance
spectrum. These results are summarized in Table 1 where
the behavior of amplitudes of AR and NR with RSOC are
tabulated.

If we look into the equation (26), it is clear that a larger
aσ enhances Gσ, while a larger bσ decreases it. So all the
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Fig. 5. The variation of the conductance, G for a p-wave super-
conductor as a function of χ for different strengths of RSOC
with E/∆0 = 0.

results can be explained from the behavior of AR and NR
amplitudes. As we must emphasize that there is no a priori
intuition how the interplay of this factor with RSOC in
deciding the behavior of conductance.

3.2 Other pairing symmetries

To ascertain whether the superconducting gap function
has an additional role to play in the shape and features of
the conductance spectrum, and in particular how it inter-
plays with the RSOC, we have considered other pairing
symmetries, such as the p-wave and d-wave superconduct-
ing correlations. We find that the tunneling conductances
as the function of effective barrier potential, χ for a p and
d-wave superconductor show similar oscillatory behavior
with the same periodicity as observed for a s-wave super-
conductor. The differences in conductance profiles lie in its
values. However there is a significant differences in the fea-
tures of the conductance spectrum as a function of biasing
energies for the p- and d-wave superconductors compared
to that of the s-wave superconductor.

3.2.1 p-wave superconductor

We show the tunneling conductance as the function of
effective barrier potential, χ for a p-wave superconductor
in Figure 5. The comparison between Figure 2 (for the
s-wave case) and Figure 5 reveals that the maximum and
minimum values of the conductance for a p-wave super-
conductor is larger than that of a s-wave superconductor.
From the inset of Figure 5 it is understandable that for
the Rashba free case, the Gmax initially increases and
then slowly decreases with increasing value of χ. With
the inclusion of RSOC, the Gmax increases initially, and
hence remains almost constant.

Now we study the tunneling conductance as the
function of E/∆0 for a p-wave superconductor in
Figures 6a and 6b for two representative values of χ for
which the dependence of conductance spectrum on RSOC

https://epjb.epj.org/
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Fig. 6. The variation of the conductance, G for a p-wave
superconductor as a function of E/∆0 for different strengths
of RSOC for (a) χ = 5η and (b) χ = 5η/2.
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Fig. 7. The variation of the conductance, G for a d-wave
superconductor with α = π/4 as a function of χ for different
strengths of RSOC with E/∆0 = 0.0.

Fig. 8. The variation of the conductance, G for a d-wave super-
conductor with α = π/4 as a function of E/∆0 for different
strengths of RSOC for (a) χ = 5η and (b) χ = 5η/2.

shows distinct features. Figure 6a shows that with increas-
ing value of RSOC the tunneling conductance decreases,
while Figure 6b shows the contradicting character.

3.2.2 d-wave superconductor

It may be noted form equation (7) that the d-wave order
parameter can have any arbitrary phase (given by α).
For concreteness, one can consider α = 0, π/4, etc. It
is observed that the conductance plots corresponding to
α = 0 have very similar variation with the biasing energy
as that of a s-wave superconductor. Thus they are not
repeated here and we only present the plots for α = π/4.

We present the tunneling conductance as a function of
χ for a d-wave superconductor in Figure 7 which shows
oscillations with the same periodicity as that for the s-
wave and p-wave cases. From Figures 2, 5 and 7 it is easily
seen that p wave superconductor shows maximum zero
bias (E/∆0 = 0) conductance. Figures 8a and 8b denote
the tunneling conductances as a function of biasing energy,
E/∆0 for two distinct values of χ. Figure 8 also reveals the
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distinct effect of RSOC on conductance profile for different
effective barrier potential.

As said earlier, it can be seen that the conductance
profiles as the function of E/∆0 for different types of
superconducting order parameters are different. The dif-
ference is due to the fact that corresponding to different
pairing symmetries, the AR becomes maximum and NR
becomes minimum at different values of E/∆0. But for
all superconducting order parameters, the dependence of
tunneling conductance on RSOC are almost same.

It is known that the tunneling conductance charac-
teristics for a d-wave case corresponding to α = π/4
(see Eq. (8)) host a peak at zero energy. It is known as
zero bias conductance peak (ZBCP) which is a signa-
ture of zero energy surface Andreev boundstate (SABS)
[28,36–38]. However in our case the peak, although can
be cursorily seen at E = 0, is severely suppressed due to
the inclusion of the finite quasiparticle lifetime (τ) and a
finite width of the insulating region (d). In this limit of
τ → 0 and d → 0, the sharp divergence at E = 0 can be
recovered.

4 Conclusions

We have investigated the tunneling conductance of a
device consisting of a MIS junction where the insulat-
ing layer is defined by a barrier width, d and a barrier
potential, V0 with RSOC being present at the interfaces
of the system. The key results can be highlighted as fol-
lows. We observe an oscillatory behavior for the tunneling
conductance spectrum as a function of the effective bar-
rier potential (containing both V0 and d). The spin–orbit
term shows interesting interplay with the effective barrier
potential, in the sense that the conductance is highly sen-
sitive to RSOC for certain ranges of this potential; while
for others it is nearly insensitive. In particular, the sen-
sitivity is larger when the periodicity is odd multiples of
a certain value of this effective potential, while it is less
sensitive when the above condition is violated. This peri-
odicity has also a role to play in the profile of the tunneling
conductance as a function of the biasing energy. Further,
larger values of RSOC have a destructive effect on the
conductance when the periodicity satisfies the odd multi-
ple condition, while it has just the reverse trend when the
periodicity is not an odd multiple. These results are shown
to have a simple explanation in terms of amplitudes of the
normal and Andreev reflections. Qualitatively similar fea-
tures persist for the oscillation profile corresponding to
other superconducting pairing gaps, such as p and d-wave
symmetries. Although the conductance as a function of
the biasing energy shows different behavior, in the sense
that the conductance peaks occur at different energies for
different pairing symmetries.

As stated earlier, the strength of RSOC can be tuned
using an external gate voltage. Hence our studies on the
conductance spectrum have the prospects of being impor-
tant inputs to experimental studies which aim to achieve
desired conductance of a MIS junction device. Desired cur-
rent can be attained with precision by tuning the RSOC

strength to an appropriate value as pointed out by our
work.
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