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Abstract. The low-energy constants, namely the spin stiffness ρs, the staggered magnetization densityMs

per area, and the spinwave velocity c of the two-dimensional (2D) spin-1 Heisenberg model on the square
and rectangular lattices are determined using the first principles Monte Carlo method. In particular, the
studied models have different antiferromagnetic couplings J1 and J2 in the spatial 1- and 2-directions,
respectively. For each considered J2/J1, the aspect ratio of the corresponding linear box sizes L2/L1 used
in the simulations is adjusted so that the squares of the two spatial winding numbers take the same values. In
addition, the relevant finite-volume and -temperature predictions from magnon chiral perturbation theory
are employed in extracting the numerical values of these low-energy constants. Our results of ρs1 are in
quantitative agreement with those obtained by the series expansion method over a broad range of J2/J1.
This in turn provides convincing numerical evidence for the quantitative correctness of our approach. The
Ms and c presented here for the spatially anisotropic models are new and can be used as benchmarks for
future related studies.

1 Introduction

During the last three decades, the two-dimensional (2D)
spin-1/2 Heisenberg model and its generalizations have
been investigated in great detail both analytically and
numerically [1–8]. This is because these models are
regarded as the relevant models for the 2D quantum anti-
ferromagnets. Furthermore, although the phase diagram
of high temperature cuprate superconductors is not well
understood, it is generally believed that these cuprate
superconductors may be obtained by doping the quan-
tum antiferromagnetic insulators with charge carriers. As
a result, research related to these models is still very active
even today.

In addition to the spin-1/2 Heisenberg model, higher
spin antiferromagnets, in particular the spin-1 Heisen-
berg model, are of theoretical interest due to the fact
that they are relevant in explaining experimental results
of real materials as well [9–17]. For example, NDMAZ,
NENP, and PbNi2V2O8 are found to be spin-1 quasi-one-
dimensional antiferromagnets. Besides the simplest type
of these models which have spatially isotropic couplings,
the spatially anisotropic Heisenberg models are also stud-
ied thoroughly [18–34]. In particular, these generalized
models are frequently used as a route for studying quan-
tum phase transitions. Moreover, the spatially anisotropic
models are important in understanding experimental
data. Two notable examples are the 2D spin-1/2 Heisen-
berg model with antiferromagnetic couplings J1 and J2
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on the square and rectangular lattices as depicted in
Figure 1,1 and the three-dimensional (3D) quantum anti-
ferromagnet with a ladder pattern of spatial anisotropy
on a cubic lattice. The former is argued to be relevant
to the newly discovered pinning effects of the electronic
liquid crystal in the underdoped cuprate superconduc-
tor YBa2Cu3O6.45 [35,36], and the latter is considered
to be the right model for explaining the phase diagram
of TlCuCl3 under pressure [37–42]. To conclude, despite
their simplicity, the spatially anisotropic Heisenberg mod-
els are among the most important and frequently studied
systems in condensed matter physics.

Among the spatially anisotropic Heisenberg models
with quantum spin, the one shown in Figure 1 is partic-
ularly special. For this model one sees clearly that as the
magnitude of the ratio of couplings J2/J1 decreases, the
system will eventually become decoupled one-dimensional
(1D) antiferromagnetic chains (this takes place when
J2/J1 = 0). One intriguing physics to explore for this
spin-1/2 model is to examine whether a phase transi-
tion, between the antiferromagnetic and dimerized phases,
occurs before one reaches the extreme case J2/J1 = 0.
Analytic (and some numerical) evidence indicates that for
the model of Figure 1 with quantum spin, the long-range
antiferromagnetic order is destroyed only for infinitesimal
J2/J1 [43,44]. As a result, to study whether a phase tran-
sition appears at a particular value of J2/J1 > 0 using
unbiased quantum Monte Carlo simulations is subtle.

1 In this study a physical quantity with a subscript i refers to its
value in the spatial i-direction.
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Indeed, as suggested in references [30,45], square lattice
is not the appropriate lattice geometry for studying this
model and rectangular lattice should be used instead. Fur-
thermore, to capture the 2D characters of the model, the
ratio of linear lattice sizes L2/L1 needs to be adjusted
individually for each considered J2/J1. Even so, one must
carry out careful investigation for the relevant observables
so that the correct physics is obtained. For example, to
make sure that the extrapolating results are reliable, for
every J2/J1 several ratios of L2/L1 may be needed in the
calculations.

For the spin-1/2 model depicted in Figure 1, one pro-
posed quantitative approach to study the 2D ground state
properties for every considered J2/J1 is to adjust the
corresponding ratio L2/L1 so that the spatial winding
number squared in the 1- and 2-directions, namely 〈W 2

1 〉
and 〈W 2

2 〉 take the same values. With such a method the
2D characters of the model will not be lost and can be
obtained unbiasedly. This idea and similar ones have been
used to study the spin-1/2 model (of Fig. 1) [34] as well
as quantum phase transitions of 2D dimerized quantum
spin models [46,47].

The motivation of our study presented here is to provide
a more convincing numerical result to support the quan-
titative correctness of the method of requiring 〈W 2

1 〉 =
〈W 2

2 〉 in the simulations. Indeed, for the model in Figure 1
with quantum spin, Monte Carlo and series expansion
results of the observable spin stiffness in the 1-direction
agree with each other only for J2/J1 > 0.4 [34]. Therefore
it is desirable to carry out a more detailed investigation
so that the validity of this method can be justified. Notice
it is known that the quantum phase transition associated
with dimerization for the spin-1 model with the same spa-
tial anisotropy takes place at a finite value of J2/J1 [30].
Hence simulating the spin-1 model with the same spatial
anisotropy shown in Figure 1 provides a great opportunity
to further examine the validity of this method. Indeed as
we will demonstrate later, our Monte Carlo results of ρs1
for the spin-1 model agree quantitatively with those deter-
mined by the series expansion method from J2/J1 = 1
down to J2/J1 ∼ 0.08 [33]. Consequently our investiga-
tion gives convincing evidence for the correctness of this
method.

Notice the spatially anisotropic quantum Heisenberg
model of Figure 1 and its 1D limit are two completely
different systems [23,48–52]. Therefore an unconventional
behavior is likely to appear as one approaches the 1D limit
from the 2D model. Our study paves a way to investi-
gate the novel phenomena of dimension crossover from
a 2D system to its 1D limit. We would like to point
out that even with the method of adjusting the aspect
ratio L2/L1 in the calculations so that the two spatial
winding numbers squared reach the same numbers, the
determination of ground state bulk properties requires the
simulations being conducted at very low temperatures.
Such zero temperature calculations are computationally
demanding. Therefore instead of performing the simula-
tions at very low temperatures and using the conventional
approach of fitting the data with polynomials of the rel-
evant parameters, we carry out the calculations at finite
temperatures and employ the relevant predictions from

Fig. 1. The two-dimensional (2D) spatially anisotropic spin-
1 Heisenberg model on the square and rectangular lattices
investigated in this study.

magnon chiral perturbation theory (mχPT) to extract
the bulk properties of the considered model. Later we
will briefly argue that under certain circumstances, this
approach seems to be more efficient than the conventional
one. Indeed, for each considered J2/J1, a few tens of the
corresponding data points can be described quantitatively
by two equations with only three unknown parameters,
and particularly, we are able to arrive at high preci-
sion results with moderate computing resources. Finally,
another remarkable finding in our investigation is that,
the mχPT can also be used to examine unambiguously the
presence of the long-range antiferromagnetic order. This
will be explained in more detail in the relevant section.

This paper is organized as follows. First, after the intro-
duction, the spatially anisotropic spin-1 Heisenberg model
and the observables considered in this work are detailed.
Furthermore, the mχPT is briefly introduced and some of
its predictions relevant to our study are also listed. We
then present the data as well as the resulting numerical
results based on these data. Finally a section is devoted
to conclude our investigation.

2 Microscopic models and corresponding
observables

The 2D spin-1 Heisenberg model we consider in this study
is defined by the Hamilton operator

H =
∑
x

[
J1~Sx · ~Sx+1̂a + J2~Sx · ~Sx+2̂a

]
, (1)

and is depicted by Figure 1. In equation (1), 1̂ and 2̂
refer to the two spatial unit-vectors and a is the lattice
spacing. In addition, J1 and J2 are the antiferromagnetic
couplings in the 1- and 2-direction, respectively. Finally

the ~Si shown above is a spin-1 operator at site i.
A physical quantity measured in our simulations is the

staggered susceptibility χs, which is given by

χs =
1

L1L2

∫ β

0

dt
1

Z
Tr[M3

s (0)M3
s (t) exp(−βH)]. (2)

Here β is the inverse temperature, L1 and L2 are the spa-
tial box sizes in the 1- and 2-direction, respectively, and
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Z = Tr exp(−βH) is the partition function. Furthermore,
M3
s appearing in equation (2) is the third component

of the staggered magnetization ~Ms =
∑
x(−1)x1+x2 ~Sx.

Another observables considered here is the uniform sus-
ceptibility χu, which takes the form

χu =
1

L1L2

∫ β

0

dt
1

Z
Tr[M3(0)M3(t) exp(−βH)]. (3)

Here ~M =
∑
x
~Sx is the (uniform) magnetization. Using

the fact that the magnetization is a conserved quan-
tity, the expression of χu shown in equation (3) can be
rewritten as

χu =
β

L1L2

〈(∑
x

S3
x

)2〉
, (4)

which is the most well-known formula for χu in the lit-
erature. With the definitions given in equations (2) and
(3), both χs and χu can be measured efficiently with the
loop-cluster algorithm utilizing improved estimators [4].

Specifically, both of these two observables can be
expressed in quantities related to the clusters. In partic-
ular, χu is associated with the temporal winding number
Wt =

∑
C Wt(C) which is the sum of winding num-

bers Wt(C) of the loop-clusters C around the Euclidean
time direction. Similarly, the spatial winding numbers
Wi for i ∈ {1, 2} are defined in the same manner. With
the convention employed here, the spin stiffness ρs (for
J2/J1 = 1) can be obtained directly from the standard
relation ρs = 3

4β

(
〈W 2

1 〉+ 〈W 2
2 〉
)

in the zero-temperature

and infinite-volume limits. In addition, the temporal wind-
ing number squared 〈W 2

t 〉 calculated in this study is
exactly the susceptibility χ and is related to χu by
χu = β

L1L2
〈W 2

t 〉. Finally the spinwave velocity c can be
estimated from these winding numbers squared by the
method detailed in references [41,53,54].

3 Low-energy effective theory for magnons

In this section we summarize the relevant theoretical
predictions, namely the finite-volume and -temperature
expressions of χs and χu from mχPT [48–52]. These
predictions are used to calculate the desired low-energy
constants. Due to the spontaneous breaking of the SU(2)s
spin symmetry down to its U(1)s subgroup, the low-
energy physics of antiferromagnets is governed by two
massless Goldstone bosons, the magnons. The systematic
low-energy effective field theory for magnons is formulated
in term of the staggered magnetization. The staggered
magnetization of an antiferromagnet is described by a
unit-vector field ~e(x) in the coset space SU(2)s/U(1)s =
S2, i.e. ~e(x) =

(
e1(x), e2(x), e3(x)

)
with ~e(x)2 = 1. Here

x = (x1, x2, t) denotes a point in (2+1)-dimensional space-
time. To leading order, the Euclidean magnon low-energy

effective action takes the form

S[~e ] =

∫ L1

0

dx1

∫ L2

0

dx2

∫ β

0

dt
(ρs1

2
∂1~e · ∂1~e

+
ρs2
2
∂2~e · ∂2~e+

ρs
2c2

∂t~e · ∂t~e
)
, (5)

where the index i ∈ {1, 2} labels the two spatial directions
and t refers to the Euclidean time-direction. The temporal
spin stiffness ρs is given by ρs =

√
ρs1ρs2, where ρs1 and

ρs2 are the spin stiffness in the spatial directions. Finally,
the parameter c in equation (5) is the spinwave velocity.
Notice the physical quantities, namely ρs, ρs1, ρs2, and c
appearing inside equation (5) are the bulk ones [52]. By
introducing x′1 = (ρs2/ρs1)1/4x1 and x′2 = (ρs1/ρs2)1/4x2,
equation (5) can be rewritten as

S[~e ] =

∫ L′
1

0

dx′1

∫ L′
2

0

dx′2

∫ β

0

dt
ρs
2

(
∂′i~e · ∂′i~e

+
1

c2
∂t~e · ∂t~e

)
. (6)

If one additionally requires L′
1 = L′

2 = L, then the
condition of square area is obtained.

With the Euclidean action equation (6), the finite-
volume and -temperature expressions of χs and χu in the
cubical regime, where the condition βc ≈ L is met, are
calculated in reference [52] and take the following forms

χs =
M2

sL
2β

3

{
1 + 2

c

ρsLl
β1(l)

+

(
c

ρsLl

)2 [
β1(l)2 + 3β2(l)

]
+O

(
1

L3

)}
, (7)

and

χu =
2ρs
3c2

{
1 +

1

3

c

ρsLl
β̃1(l) +

1

3

(
c

ρsLl

)2

×
[
β̃2(l)− 1

3
β̃1(l)2 − 6ψ(l)

]
+O

(
1

L3

)}
, (8)

respectively. In equations (7) and (8), the functions βi(l),

β̃i(l), and ψ(l), which only depend on l = (βc/L)1/3,
are shape coefficients of the space-time box. The explicit
formulas of these shape coefficients can be found in
reference [52].

4 Determination of the low-energy constants

In order to determine the low-energy constants as func-
tions of J2/J1 for the 2D spatially anisotropic spin-1
Heisenberg model given by equation (1) (and depicted
in Fig. 1), we have performed simulations for 0.0435 ≤
J2/J1 ≤ 1.0 with various box sizes using the loop algo-
rithm [55,56]. The value of J2/J1 = 0.0435 is included
in our consideration since it is slightly below the critical
point (J2/J1)c = 0.043648(8) determined in reference [30].
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Table 1. The numerical values of c at finite lattices for
J2/J1 = 1. These results are obtained from the squares of
spatial and temporal winding numbers.

L1/a c/(J1a)

36 3.0645(11)
48 3.0647(16)
60 3.0651(16)
72 3.0647(15)

The results at J2/J1 = 0.0435 provide an opportunity to
examine whether our Monte Carlo data at J2/J1 = 0.0435
can be captured quantitatively by the relevant predictions
of mχPT. Without loss of generality, we have set J1 =
1.0 in our Monte Carlo simulations. The cubical regime
is determined by the condition 〈W 2

1 〉 ≈ 〈W 2
2 〉 ≈ 〈W 2

t 〉.
Notice equations (7) and (8) are obtained for a (2+1)-
dimensional box with equal extent in the two spatial
directions. Since J2 ≤ J1 in our calculations, the box sizes
L1 and L2 used in the simulations must satisfy L2 ≤ L1 so
that the condition 〈W 2

1 〉 ≈ 〈W 2
2 〉 can be fulfilled. Finally

interpolation of the data points is necessary as well in
order to use equations (7) and (8). After employing all
these requirements in our calculations, the low-energy con-
stants can be extracted by fitting the Monte Carlo data
to the effective field theory predictions. First of all, in the
next subsection we focus on our Monte Carlo results of
the isotropic situation J2/J1 = 1.

4.1 The low-energy constants for the isotropic model

As a first step toward a high accuracy determination of
the desired low-energy constants, the spinwave velocity
c is calculated through the square of winding numbers
as suggested in references [53,54]. Specifically, for a given
square lattice with linear box size L1, one tunes the inverse
temperature β to a value β? so that 〈W 2

1 〉 ≈ 〈W 2
2 〉 ≈

〈W 2
t 〉. Then the c corresponding to this finite lattice is

estimated to be c ∼ L1/β
?. The numerical values of c

obtained by this method for several box sizes L1 are
given in Table 1, and a weighted average of these val-
ues of c leads to c = 3.0648(8)J1a. The result of c, namely
c = 3.0648(8)J1a reached here has (much) better preci-
sion than its early known Monte Carlo results [57], and
is in nice agreement with the spinwave theory estimate
c = 3.067J1a [3]. Furthermore, since for the isotropic case
one can reach the condition 〈W 2

1 〉 = 〈W 2
2 〉 without per-

forming any interpolation, we employ equations (7) and
(8) directly with a fixed c = 3.0648(8)J1a to simultane-
ously fit the uninterpolated data of χs and 〈W 2

t 〉. The
numerical values of Ms and ρs obtained from the fit
are given by Ms = 0.80460(4)/a2 and ρs = 0.8731(6)J1,
respectively. In addition, the χ2/DOF of this fit is around
1.0. Notice the Ms and ρs calculated here also match
excellently with Ms = 0.80426/a2 and 2πρs = 5.461J1
determined by the spinwave theory. The results of the fit
are shown in Figure 2.

Besides the method of employing the predictions of
mχPT, ρs can be determined directly from the spa-
tial winding numbers squared. Such a calculation of ρs

Fig. 2. Results of fitting the cubical regime data points of χs

(top panel) and 〈W 2
t 〉 (bottom panel) calculated at J2/J1 = 1

to their mχPT predictions. The solid lines are obtained using
the results from the fits.

through 〈W 2
1 〉 and 〈W 2

2 〉 provides a good opportunity to
verify the quantitative correctness of mχPT. Hence we
have carried out new simulations with J2/J1 = 1.0 for sev-
eral box sizes L at low temperatures [58–61].2 The newly
obtained ρs data as a function of the box sizes L is shown
in Figure 3. Remarkably, the ρs determined from the spa-
tial winding numbers squared is in quantitative agreement
with that calculated using the predictions of mχPT. For
instance, by applying polynomials up to third (fourth)
order in 1/L to the relevant data of 6 ≤ L ≤ 72 (6 ≤ L ≤
72), we arrive at ρs = 0.8728(5)J1 (ρs = 0.8730(10)J1).
These values of ρs match nicely with those we calculated
earlier using the related formulas from mχPT. To extract
ρs directly from the squares of spatial winding numbers,
one has to obtain the zero-temperature values of the rele-
vant observables. This is computationally demanding. In
addition, it is also crucial to include as many data points
as possible in the fits so that one can reach a accurate
result of ρs. Hence when obtaining the ground state prop-
erties of a system is challenging, our approach, i.e. fitting
the data using the relevant equations from mχPT, seems

2 These simulations at low temperatures for J2/J1 = 1 were done
using the SSE of ALPS [58–61].
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Fig. 3. The values of ρs as a function of the box sizes L for
J2/J1 = 1.0. The results are obtained directly from the squares
of spatial winding numbers and the dotted line is added to
guide the eyes.

to be a more efficient way of calculating these low-energy
constants since the related simulations are performed at
finite-temperature and cubical regime.

4.2 The low-energy constants for the anisotropic
models

After having determined high precision values of Ms, ρs,
and c for J2/J1 = 1.0, we turn to the calculations of these
low-energy constants for the anisotropic models. Simi-
lar to the strategy used for the calculations associated
with J2/J1 = 1.0, the numerical values of c for various
anisotropies J2/J1 considered here are determined using
the square of winding numbers first. In particular, for each
J2/J1 6= 1.0 the box sizes L1 and L2 as well as β are
chosen so that the condition 〈W 2

1 〉 ≈ 〈W 2
2 〉 ≈ 〈W 2

t 〉 is sat-
isfied. Notice interpolated data of χs and 〈W 2

t 〉, based on
the spatial winding numbers squared, are used in order
to employ equations (7) and (8) for the fits. In addition,
the effective box sizes L shown in equations (7) and (8)
are given by L =

√
L1L2. Figures 4 and 5 demonstrate

the results of the fits for all the considered J2/J1. The
obtained Ms, ρs, and c are shown in Table 2, Figures 7
and 8. Notice Figure 7 indicates that the antiferromag-
netism is indeed weakened as one increases the anisotropy.
Furthermore, the numerical values of ρs1 obtained from
our Monte Carlo data and the series expansion results
determined in [33] are in nice agreement from J2/J1 = 1
down to J2/J1 ≈ 0.08. Although the truncation errors
of series expansion results are large for small values of
J2/J1, the outcomes of series expansion without the trun-
cation errors agree very well with those of Monte Carlo
for J2/J1 ≥ 0.08.

Interestingly, while for J2/J1 ≥ 0.05 the χ2/DOF of the
fits are smaller than 1.2, the fit using the data of J2/J1 =
0.0435 has a very poor quality. Specifically, we arrive at a
χ2/DOF ≥ 38 by fitting the interpolated data of χs and
〈W 2

t 〉 calculated at J2/J1 = 0.0435 to equations (6) and
(7). This implies that the data of χs and 〈W 2

t 〉 determined
at J2/J1 = 0.0435 cannot be described by equations (7)

Fig. 4. Results of fitting the cubical regime interpolated data
points of χs calculated at J2/J1 = 0.8, 0.6, 0.4, 0.2, 0.1, 0.08,
0.06, and 0.05 to their mχPT predictions. The filled squares
in the bottom panel are the uninterpolated data points deter-
mined at J2/J1 = 0.0435. The solid lines are obtained using
the results from the fits. No result of mχPT fit associated with
J2/J1 = 0.0435 is shown since such a fit is of poor quality.

and (8), hence no antiferromagnetic order is present in the
system. In other words, J2/J1 = 0.0435 is already beyond
the critical point. This finding agrees with the conclusion
obtained in reference [30] that the critical point (J2/J1)c
is given by (J2/J1)c = 0.043648(8). Although J2/J1 =
0.0435 is only slightly away from (J2/J1)c = 0.043648(8),
it is remarkable that the signal for the breaking down of
the long-range antiferromagnetic order is persuasive.

Figure 6 amplifies the parts of Figures 4 and 5 contain-
ing the uninterpolated data of χs and 〈W 2

t 〉 calculated at
J2/J1 = 0.0435. Notice that in the cubical regime of the
broken phase and on a large lattice with a fixed J2/J1,
the corresponding staggered susceptibility and temporal
winding number squared asymptotically scale as χs ∼
β and 〈W 2

t 〉 ∼ 1/β. On the other hand, under simi-
lar conditions one should find χs saturate to a constant
and 〈W 2

t 〉 ∼ T exp(−∆/T ) ∼ exp(−∆β)/β in the non-
magnetic phase, where ∆ is the energy gap and T is
the temperature. A first glance at Figure 6 would lead
one to conclude that these two observables obtained at
J2/J1 = 0.0435 should be better described by the associ-
ated formulas in the Néel phase. Particularly, if the results

https://epjb.epj.org/
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Fig. 5. Results of fitting the cubical regime interpolated data
points of 〈W 2

t 〉 calculated at J2/J1 = 0.8, 0.6, 0.4, 0.2, 0.1, 0.08,
0.06, and 0.05 to their mχPT predictions. The filled squares
in the bottom panel are the uninterpolated data points deter-
mined at J2/J1 = 0.0435. The solid lines are obtained using
the results from the fits. No result of mχPT fit associated with
J2/J1 = 0.0435 is shown since such a fit is of poor quality.

Table 2. The numerical values of Ms, ρs, and c deter-
mined from the fits. ρs1 (ρs2) can be obtained by the
relation ρs1 = L1

L2
ρs (ρs2 = L2

L1
ρs). The χ2/DOF for all

the considered values of J2/J1 are smaller than 1.2 except
for J2/J1 = 0.0435 which has a χ2/DOF ≥ 38.

J2/J1 L1 L2 Msa
2 ρs/J1 c/(J1a)

0.8 206 180 0.8024(2) 0.779(12) 2.75(2)
0.6 180 132 0.7923(2) 0.670(11) 2.428(20)
0.4 244 140 0.7664(2) 0.514(9) 2.037(18)
0.2 272 102 0.6882(2) 0.3062(54) 1.570(13)
0.1 356 88 0.5680(2) 0.1582(23) 1.247(10)
0.08 332 72 0.5135(2) 0.119(2) 1.163(10)
0.06 416 76 0.4142(2) 0.0695(6) 1.0623(40)
0.05 390 64 0.3092(2) 0.03672(26) 1.0063(32)

in Figure 6 were calculated in the disordered phase, then
the magnitude of 〈W 2

t 〉 as a function of β should diminish
much more rapidly since 〈W 2

t 〉 ∼ exp(−∆β)/β in the dis-
ordered phase and the considered values of β are already
very large (βJ1 > 150). Hence, without the information

Fig. 6. The uninterpolated data of χs (top panel) and 〈W 2
t 〉

(bottom panel) calculated at J2/J1 = 0.0435. The related
simulations were done on a lattice with L1 = 422 and L2 = 64.

of (J2/J1)c = 0.043648(8) and the result of poor fitting
quality, one might naively conclude that J2/J1 = 0.0435
is still in the broken phase. We would like to emphasize
the fact that with a careful analysis using the conven-
tional approach, one still reaches the same conclusion that
the long-range antiferromagnetic order is not present at
J2/J1 = 0.0435.

To employ equations (7) and (8) in our analysis,
certain constraints such as large enough lattices must
be fulfilled. Hence one may suspect that the poor fit-
ting quality associated with the data at J2/J1 = 0.0435
is because the required conditions for the validity of
equations (7) and (8) are not met. To rule out this possi-
bility, we have performed simulations on smaller lattices
for J2/J1 = 0.0435. The χ2/DOF for the newly deter-
mined data on smaller lattices is given by χ2/DOF ≥ 3.0.
Notice if the poor fitting quality associated with the data
of J2/J1 = 0.0435 is rooted in the fact that the conditions
for our simulations do not meet the validity requirement
of equations (7) and (8), then the fitting results related to
the data of smaller lattices should have a worse χ2/DOF
than that of larger lattices. Hence, one should consider the
poor fitting quality from the fit using the data obtained at
J2/J2 = 0.0435 as a signal for the breaking down of anti-
ferromagnetism. In summary, the results demonstrated in
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Fig. 7. The Monte Carlo results of Msa
2 (top panel) and

c/(J1a) (bottom panel) as functions of J2/J1. The solid lines
are added to guide the eyes.

Table 2, Figures 7 and 8 not only confirm the quantitative
correctness of calculating the low-energy constants with
the method employed here, these conclusions also pro-
vide convincing evidence that the mχPT can be applied
efficiently to detect the breaking down of the long-range
antiferromagnetic order.

5 Conclusions and discussions

In this study, we have calculated the low-energy constants,
namely the spin stiffness ρs, the staggered magnetization
density Ms per area, and the spinwave velocity c of the
spin-1 Heisenberg model with antiferromagnetic couplings
J1 and J2 on the rectangular lattices using the quan-
tum Monte Carlo simulations. The relevant finite-volume
and -temperature predictions of mχPT are employed in
extracting the numerical values of these low-energy con-
stants. Such an approach is of computational efficiency
as well, since the related simulations are conducted at
finite temperatures. The precision of Ms, ρs, and c
obtained here for J2/J1 = 1.0 is improved. Furthermore,
the anisotropy J2/J1 dependence of Ms, ρs (ρs1), and c
are investigated in detail as well. In particular, the results
ofMs and c determined here for the spatially anisotropic
models are new and can serve as benchmarks for future

Fig. 8. The Monte Carlo (MC) as well as the series expansion
(SE) results of ρs1, ρs2, and ρs as functions of J2/J1. The
series expansion results shown in the figure are estimated from
reference [33]. The solid lines are added to guide the eyes.

related studies. Our Monte Carlo and the series expansion
results of ρs1 are in nice agreement for J2/J1 ≥ 0.08 [33].
Consequently the quantitative correctness of our approach
is justified. It is remarkable that the series expansion
method leads to consistent values of ρs1 with those from
Monte Carlo simulations in such strong anisotropic regime
J2/J1 ≥ 0.08. We also confirm that the mχPT can be
used efficiently to study the breaking down of long-range
(antiferromagnetic) order. Specifically, for a considered
relevant parameter, one can conclude that a phase tran-
sition from the long-range antiferromagnetic phase to a
disordered phase already takes place before reaching that
given parameter, if the fits using predictions of mχPT
lead to poor fitting quality. Indeed, the outcomes of the
fit using the data of J2/J1 = 0.0435 is consistent with the
conclusion obtained in reference [30] that the critical point
(J2/J1)c is given by (J2/J1)c = 0.043648(8). Considering
the subtlety of quantitatively capturing the 2D charac-
ters of the spin-1/2 quantum Heisenberg model with the
same spatial anisotropy as the one considered here, our
study paves a way to unbiasedly investigate the novel phe-
nomena of 2D to 1D dimension crossover of the related
spin-1/2 model.

Simulations were done based on the loop and SSE algorithms
in ALPS [55,56]. F.-J.J. is supported partially by MOST of
Taiwan.
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