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Abstract. Quantum correlations between two free spinless dissipative distinguishable particles (interacting
with a thermal bath) are studied analytically using the quantum master equation and tools of quantum
information. Bath-induced coherence and correlations in an infinite-dimensional Hilbert space are shown.
We show that for temperature T > 0 the time-evolution of the reduced density matrix cannot be written
as the direct product of two independent particles. We have found a time-scale that characterizes the
time when the bath-induced coherence is maximum before being wiped out by dissipation (purity, rela-
tive entropy, spatial dispersion, and mirror correlations are studied). The Wigner function associated to
the Wannier lattice (where the dissipative quantum walks move) is studied as an indirect measure of the
induced correlations among particles. We have supported the quantum character of the correlations by
analyzing the geometric quantum discord.

1 Introduction

In many practical situations where classical mechanics is
enough to make a good description of a system, the in-
teraction with a surrounding (bath) leads to dissipation
and fluctuations. This program has also been extended to
quantum mechanics concluding with fundamental results
which can be summarized in the Fluctuation-Dissipation
theorem, see [1,2] and references therein. Nevertheless, if
we wish to describe the quantum non-equilibrium evolu-
tion the problem is inevitably outside of the scope of the
previous Kubo-like approach. Other approximations must
be introduced to work out an open quantum mechanics
system [3]. Of importance is the analysis of the quantum
mechanics correlations generated during the elapse of time
of the interaction with a measurement apparatus [2]. In
particular quantum mechanics correlations in a bipartite
system have generated much interest for various tasks such
as computing [4], imaging and metrology [5,6]. Thus, the
understanding of the mechanism of decoherence is an issue
of great interest as it would allow progress in construction
of quantum mechanics devices [2].

The effect of a thermal quantum bath B on a micro-
scopic system S has in particular been much discussed,
the general consensus being that B leads to dissipation
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and decoherence on S. Breaking the isolation of S is then
believed to significantly increase the decoherence [4,7,8].
Nevertheless, if this were true for all quantum mechanics
open systems, no matter how small is the interaction with
B, fluctuation and dissipative effects would become very
costly for the operation of quantum mechanics devices as
needed in quantum computation. Indeed very recently it
has been shown that entanglement between two qubits can
be generated if the two qubits interact with a common
thermal bath [9], also research on quantum information
processing – in finite dimensional systems – have led to the
picture of entanglement as a precious resource [10–13]. Ad-
ditional studies concerning the analysis of a common bath
vs individual baths have lead to support the idea of bath-
induced correlations in Markovian and non-Markovian ap-
proximations [14,15]. A related result has also been found
where the role of non-Markovian effects for the quantum
entanglement has been studied [16].

In this context an important point of view is achieved
if we could analyze systems associated with an infinite
dimensional Hilbert space. However, this is not a simple
task for dissipative systems using the quantum informa-
tion theory. In this work we propose to study – analyt-
ically – quantum correlations between two particles (in
an infinite discrete dimensional Hilbert space) interact-
ing with a thermal bath. Then we will show that indeed
the bath B generates not only dissipation, but induces co-
herence and correlations between particles immersed on
it. In order to prove this fact, we will do exact calcula-
tions of the dynamics of spinless quantum walks [17–20].
Then exact analytic results for the induced correlations
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can be computed showing that B may generate correla-
tions between particles originally uncorrelated. In what
follows, we present calculations to measure correlations
and so to define a characteristic time-scale for a maximum
coherence in the system before being wiped out by dissi-
pation. We prove that these correlations are of quantum
mechanics nature using the tools of quantum information
theory, thus we show that our results can be used to mea-
sure the quantum to classical transition as we have already
done studying associated qubit systems [21,22].

The simplest implementation that reflects the role of a
coherent superposition can be proposed in the framework
of quantum walk experiments, or its numerical simula-
tions [23–27]. A Dissipative Quantum Walk (DQW) has
also been defined as a spinless particle moving in a lattice
and interacting with a phonon bath [17,18,20–22,28,29].
These models can also be extended considering a many-
body description as we present here. In particular in this
work we will implement explicit calculations for a system
constituted by two distinguishable DQW’s. Therefore, our
approach can be used to tackle this general problem point-
ing out the interplay between dissipation and the bath-
particle interaction.

A non-Markov extension of the present DQW model
can also be introduced using the Continuous-Time
Random Walk (CTRW) approach introduced by Montroll
and Weiss [30,31]. In Appendix A a short review on the
subject of quantum jumps in presented, this picture can
also be related to the random quantum maps approach in
the context of the Renewal theory [32].

2 Dissipative quantum walks

A model of two free distinguishable particles coupled to
a common bath B can be written using the Wannier
base in the following way. Let the total Hamiltonian be
HT = HS + HB + HSB, here HS is the free tight-binding
Hamiltonian [33] (our system S), which can be written in
the form:

HS = 2E0I −
Ω

2

(
a†
12 + a12

)
,

here {a†
12, a12} are shift operators for the particles labeled

1 and 2, and I is the identity in the Wannier base

I =
∑
s,s′

|s, s′〉〈s, s′|, (1)

then:

a†
12|sj , sl〉 = |sj + 1, sl〉 + |sj , sl + 1〉 (2)

a12|sj , sl〉 = |sj − 1, sl〉 + |sj , sl − 1〉. (3)

We note that a “shift operator” translates each particle
individually. Here we have used a “pair-ordered” brac-ket
|sj , sl〉 representing the particle “1” at site sj and particle
“2” at site sl. From equations (2) and (3) it is simple to
see that

[
a†
12, a12

]
= 0 and the fact that

a12a
†
12|sj , sl〉 = 2|sj, sl〉+ |sj − 1, sl + 1〉+ |sj + 1, sl − 1〉.

HB is the phonon bath Hamiltonian HB =
∑
n

�ωnB
†
nBn,

thus {B†
n,Bn} are bosonic operator characterizing the

thermal bath at equilibrium.
The term HSB in the total Hamiltonian represents the

interaction term between S and B, here we use a lin-
ear interaction between the particles and the bath opera-
tors. Our model is a many-body generalization of the van
Kampen approach used to address the nature of a physi-
cal dissipative particle interacting with a boson bath [18].
Because the shift operators a1,2 and a†

12 are constant of
motions, any bath interaction with these shift operators
will lead to a completely positive infinitesimal generator,
see Kossakowski and Lindblad [3]. Thus, for two distin-
guishable particles we propose the interaction term HSB
in the form

HSB = �Γ

(
a12 ⊗

∑
n

vnBn + a†
12 ⊗

∑
n

v∗nB
†
n

)
, (4)

where vn represents the spectral intensity weight function
from the phonon bath at thermal equilibrium, and Γ is the
interaction parameter in the model. We have chosen this
interaction Hamiltonian in order to recover the classical
master equation for two independent random walk in the
case when Ω = 0, for a more extended discussion on this
issue see Appendix A in [21,31].

In order to study the non-equilibrium evolution of S
we derive from HT , eliminating the bath variables, a dissi-
pative quantum infinitesimal generator (see Appendix A).
Tracing out bath variables in the Ohmic approximation
and assuming as initial state of the total system a density
matrix in the form of a product

ρT (0) = ρ (0) ⊗ e−HB/kBT /Z,

where Z = Tr
(
e−HB/kBT

)
, we can write the Markov Quan-

tum Master Equation (QME) [2,3,20]:

ρ̇ =
−i

�
[Heff , ρ] +

D

2

(
2a12ρa†

12 − a†
12a12ρ − ρa12a

†
12

)

+
D

2

(
2a†

12ρa12 − a12a
†
12ρ − ρa†

12a12

)
, (5)

here D ≡ Γ 2kBT/�, where T is the temperature of the
bath B. In the present paper we are interested in solving
this QME with a localized initial condition in the Wannier
lattice, i.e., ρ(0) = |s1, s2〉〈s1, s2|.

Adding −2E0 + Ω to HT the effective Hamiltonian
turns to be

Heff = Ω

(
I − a†

12 + a12

2

)
− �ωca12a

†
12, (6)

where ωc ≡ 2ω̃cΓ
2 is related to the frequency cut-off ω̃c

in the Ohmic approximation [3,18,20]. It can be seen from
the strength function g (ω) of thermal oscillators (defined
by g (ω)Δω ↔

[∑
n v2

n

]
{ω<ωn<ω+Δω}), that the high-

frequency oscillators (beyond ω̃c) only modify the effec-
tive Hamiltonian, that is its unitary evolution, see Ap-
pendix A. This von Neumann dynamics can be defused
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by going to the interaction representation. However, here
we will be interested in studying the non-equilibrium evo-
lution of the system as a function of the rate of energies Ω
and D ≡ Γ 2kBT/�. Then, in order to simplify the analy-
sis of the QME (5) we will drop-out the term �ωca12a

†
12

in the effective Hamiltonian, which only produces addi-
tional reversible coherence. Under the assumption that
�ω̃c/kBT � 1, the dissipative coefficient D appearing
in (5) depends on the strength function and the thermal
bath correlation function. This terms only involves oscil-
lators in the low-frequency region. It is also possible to see
that the Markov approximation used to get (5) involves a
coarse-grained time scale such that ω̃cΔt � 1 in addition
to a second order weak interaction approach, which at the
end leads to the damping dissipative factor D.

From (5) is simple to see that as temperature vanishes
(D → 0) the unitary evolution is recovered. On the con-
trary, the case Ω → 0 (or D → ∞) would correspond
to two classical random walks. We note, however, that for
the present two-body quantum problem, when D/�Ω � 1,
the classical profile cannot be recovered because correla-
tions between particles are induced from thermal bath B.
In addition, here we note that the initial condition of par-
ticles would be relevant for the calculation of the time-
dependent bath-induced decoherence.

2.1 Solution for two QDW

We will solve this QME (5) with a localized initial condi-
tion in the Wannier lattice, i.e.,

ρ(0) = |s1, s2〉〈s1, s2| = |�0〉〈�0|. (7)

The operational calculus in the QME will be done using
Wannier vector states to evaluate elements of the density
matrix ρ(t).

To solve equation (5) we apply |s1, s2〉 from the right
and 〈s1, s2| from the left, then using equations (2) and (3)
the evolution equation can be written in terms of the usual
Wannier “brac-ket”. Therefore, we can introduce the dis-
crete Fourier transform noting that a Fourier “brac-ket”
is defined in terms of a Wannier basis for two particles in
the form:

|k1, k2〉 =
1
2π

∑
s1,s2∈Z

eik1s1eik2s2 |s1, s2〉 ,

with kj ∈ (−π, π) and s1, s2 ∈ integers. Thus finally the
QME (5) can be written as:
〈

k1, k2

∣∣∣∣
dρ

dt

∣∣∣∣ k′
1, k

′
2

〉
= F(k1, k

′
1, k2, k

′
2) 〈k1, k2 |ρ| k′

1, k
′
2〉 ,

here

F(k1, k
′
1, k2, k

′
2) ≡

{
F (1)(k1, k

′
1) + F (1)(k2, k

′
2)

+ 2D [C (k1, k
′
2) + C (k2, k

′
1) − C (k1, k2) − C (k′

1, k
′
2)]
}
,

where

F (1)(k2, k
′
2) ≡

[
−i

�

(
Ek2−Ek′

2

)
+2D(C (k2, k

′
2) −1)

]
,

is the one-particle infinitesimal generator in the Fourier
representation [29],

C (k1, k2) ≡ cos (k1−k2) and Eki ≡ Ω {1 − cos ki} .

Note that F(k1, k1, k2, k2) = 0 leading to a momentum-
like conservation law: 〈k1, k2|dρ(t)

dt |k1, k2〉 = 0.
Elements of ρ(t) can be calculated in the Wannier basis

|s1, s2〉 =
1
2π

∫ π

−π

∫ π

−π

dk1dk2 e−ik1s1e−ik2s2 |k1, k2〉.

After some algebra and using Bessel’s function properties
we can write an analytical formula for ρ(t) in Wannier
representation 〈s1, s2|ρ(t)|s′1,s

′
2〉 (to simplify the notation

we use tΩ ≡ Ωt
�

, tD ≡ 2Dt whenever it is necessary)

〈s1, s2|ρ(t)|s′1, s′2〉 = i(s1−s′
1+s2−s′

2)e−2tD

∑
{n1,n2,n3,n4,n5,n6}∈Z

(−1)n4+n5

× Js1+n1+n2+n5 (tΩ)Js′
1+n1+n3+n4 (tΩ)

× Js2+n3−n5+n6 (tΩ)Js′
2+n2−n4+n6 (tΩ)

×
6∏

ni=1

Ini (tD) , {sj , s
′
l} ∈ Z (8)

where Jn and In are Bessel’s functions of integer order
n ∈ Z. These functions satisfy that

J−n(t) = (−1)nJn(t), Jn(−t) = (−1)nJn(t),

and
I−n(t) = In(t), In(−t) = (−1)nIn(t).

This solution is symmetric under the exchange of par-
ticles1 (therefore preserving the symmetry of the initial
condition), is Hermitian and fulfills normalization in the
lattice Tr[ρ(t)] =

∑
{s1,s2}∈Z〈s1, s2|ρ(t)|s1, s2〉 = 1, ∀t;

positivity is assured because the infinitesimal generator
fulfills the structural theorem [3]. The probability of find-
ing one particle in site s1 and another in s2 is given
by the probability profile: Ps1,s2(t) ≡ 〈s1, s2|ρ(t)|s1, s2〉
and shows the expected reflection symmetry in the plane:
s1 − s2 = 0.

In the case D = 0, i.e., a quantum closed
system without dissipation, we recover the solu-
tion for two quantum walk: 〈s1, s2|ρ(t)|s′1, s′2〉D=0 =∏2

j=1 i(sj−s′
j)Jsj (tΩ)Js′

j
(tΩ), this means that from an un-

correlated initial condition ρ(0), the solution ρ(t ≥ 0)D=0

1 To prove the invariance under the exchange of particles:
{s1 ↔ s2, s

′
1 ↔ s′2}, note that in equation (8) nj are mute

variables therefore we can use the change of variables n1 ↔
n6, n2 ↔ n3, finally n4 ↔ −n4, n5 ↔ −n5 to check this
symmetry.
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is written as the direct product of two independent
quantum particles.

As we mentioned before a classical random walk
regime [1,31] cannot be recovered. For D � Ω/� the two-
body density matrix is ρ(t) �= ρ1(t)⊗ρ2(t), showing a com-
plex pattern structure in terms of convolutions of classical
profiles. From equation (8) it can be proved that when
D � Ω/� we get

lim
D�Ω/�

Ps1,s2(t) �= Ps1(t)×Ps2 (t) = e−2tD Is1 (tD) Is2 (tD) ,

here Psj is the classical probability profile for each parti-
cle. So a classical regime [for t → ∞] cannot be obtained.
This means that the profile for two DQW will not be a
Gaussian bell-shape in 2D. In addition, it is intriguing to
note that from the QME there exist an important competi-
tion between building correlations vs inducing dissipative
decoherence.

Note that the one-particle density matrix is recovered
tracing-out the degrees of freedom of the second one, say
j = 2:

ρ(1)(t) ≡ Tr2[ρ(t)],

then

〈s1|ρ(1)(t)|s′1〉 = i(s1−s′
1)e−tD

×
∑
n∈Z

Js1+n (tΩ)Js′
1+n (tΩ) In (tD) ,

solution that indeed shows, for D � Ω/�, a random walk
behavior for one particle [29]. In addition we note that in
the lattice the classical random walk solution is Pt(s) =
e−2Dt Is (2Dt), and from this expression it is simple to get
the Gaussian profile in the continuous limit [31].

3 Correlations and coherence in the infinite
dimension Hilbert space

3.1 Purity

To measure the influence from B into S we study the
Purity P(2)

Q (t) ≡ Tr[ρ(t)2] [4].

P(2)
Q (t) = Tr[ρ(t)2] =

∞∑
s1,s2=−∞

×
∞∑

s′
1,s′

2=−∞
〈s1, s2|ρ(t)|s′1, s′2〉〈s′1, s′2|ρ(t)|s1, s2〉

= e−8Dt
∞∑

m=−∞
Im (4Dt)

×
∞∑

α,β=−∞
(−1)α+βIα (4Dt) Iβ (4Dt) Iα+m (4Dt)

× Iβ+m (4Dt) Iα+β+m (4Dt) . (9)

We can prove that P(2)
Q (t ≥ 0) = 1 for D = 0, and for

D �= 0 we get P(2)
Q (t) ≤ 1 decreasing in the course of

time. Interestingly, for D �= 0, P(2)
Q (t) is different from the

Purity for two particles with independent quantum baths,
i.e., P(2)

Q (t) �= P(1)
Q (t)P(1)

Q (t), where

P(1)
Q (t) = e−4DtI0 (4Dt) ,

is the one-particle Purity (with independent bath [29]).
Thus a common bath produces a difference in the total
purity

ΔPQ ≡ P(2)
Q (t) − P(1)

Q (t)P(1)
Q (t) ≥ 0,

which shows the occurrence of bath-induced correlations.
An outstanding conclusion can be observed by intro-

ducing a change of basis in the representation of the two-
particle density matrix ρ(t) ≡ ρ(Ω, D, t). Using the time-
dependent unitary transformation:

〈s1, s2|U1|s′1, s′2〉 = i(s1+s2+s′
1+s′

2)Js1−s′
1

(
Ωt

�

)
Js2−s′

2

(
Ωt

�

)

in equation (8) it is possible to prove that

U1ρ(Ω, D, t)U †
1 = ρ(Ω = 0, D, t).

Thus, properties as Purity P(2)
Q (t), Information Entropy

S(t) = −Tr [ρ lnρ] (von Neumann’s entropy) can straight-
forwardly be shown in this new representation, see Fig-
ures 1a and 1b with and without a common bath. As
ρS+B(0) is a pure state, S(t) is a good measure for the
entanglement between the two particles with B. We noted
that even when the Purity is related to the Information
Entropy, P(2)

Q gives much insights: we see that ρ(t) for
two DQW’s with a common bath the system has more
Purity than the case of two DQW’s with independent
baths. The inset Figure 1b shows the difference ΔPQ from
the mentioned cases showing a maximum of correlation
for tmax

D ≈ 1.2 before the dissipation wipes out the bath-
induced coherence.

3.2 Quantum mirror correlations

Another measure to quantify the correlations build up be-
tween the particles, can be evaluated calculating correla-
tion events for two particles. We define the total-mirror
correlation T(1,2), ∀{Ω, D}, as:

T(1,2) =
∑
s1,s2

〈s1, s2|ρ(t)| − s1,−s2〉 −
(
T (1)

)2

,

where

T (1) =
∑

s1,s2,s′
2

〈s1, s2|ρ(t)| − s1, s
′
2〉 = e−2DtI0(2Dt).

The quantity T (1) can be interpreted as the one-particle
classical random walk return to the origin [31], to see this
note that

ρ(1)(t) = Tr2[ρ(t)],

http://www.epj.org
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Fig. 1. (a) Information Entropy and (b) Purity for two differ-
ent cases (using an initial condition as in Eq. (7)): two DQW’s
with a common B and two DQW’s with independent baths.
Insets show the corresponding differences, and T(1,2); all as a
function of tD = 2Dt.

and so
∑
s1

〈s1|ρ(1)(t)| − s1〉 = e−2DtI0(2Dt).

In the inset of Figure 1b we plot the correlation T(1,2)(t)
showing that there is a time-scale when this quantum cor-
relation reaches a maximum tmax

D ≡ 2Dtmax � 1.9 · · · be-
fore the long-time asymptotic regime ∼1/t, characterizing
the decoherence in the two-particles system.

3.3 Relative entropy of coherence

In this section, we will quantify the quantum coherence in
our system. For such purpose we use a entropic measure
of the quantum coherence called the Relative Entropy of
Coherence [34,35].

For any quantum state ρ = ρ (t) on the Hilbert
space H, the Relative Entropy of Coherence is defined as

CRE = S (ρdiagnal) − S (ρ) ,

where S (ρ) = Tr [ρ ln ρ] is the von Neumann entropy.
In [34], Baumgratz et al. shown that the Relative Entropy

Fig. 2. Relative entropy of coherence for two particles with
localized initial condition (see Eq. (7)) as function of t′ = tΩ ≡
Ωt/�. This function shows a crossover at t′ � 0.4 as a function
of time t′. The CRE is calculated for different values of the
dissipation parameter rD = 2D

Ω/�
.

of Coherence is a good measure of the quantum coherence.
In what follows we will use Wannier’s basis to calculate
CRE . The results of this measure is shown in Figure 2.
We have studied the CRE as a function of t′ = tΩ = Ωt

�

and we use several values of rescaled dissipation param-
eter rD ≡ 2D

Ω/�
= 0, 0.1, 0.5, 1, 2. These results can also

be used as an indicator that bath has created correla-
tions between particles for t′ < τc ≈ 0.4. For long times
t′ > τc the function CRE decreases with increasing rD;
this means that there is a strong competition between the
bath-induced coherence and the inherent decoherence due
to dissipation. Long-time values of CRE are not plotted
due to numerical computer limitations.

3.4 Quantum profile coherence

As before, let us use rD the rate of energy scales rD ≡ 2D
Ω/�

and t′ a dimensionless time (depending on the plotting we
used tΩ or tD). In Figures 3b–3d we show the probabil-
ity profile for having particles at the site s1 and s2, i.e.,
Ps1,s2(t′ = tΩ) for different values of rD (see Eq. (8)).
Here, Figure 3b corresponds to the case when the two
particles do not interact with the bath (D = 0), the inset
shown the one-axis projection of one tight-binding quan-
tum walk [29]. In Figure 3d Ps1,s2(t′ = tD) corresponds to
the high dissipative regime.

When D > 0 the probability profile is modified ap-
pearing interference patterns along of line s1 = s2, raising
the value of the probability in the direction s1 = −s2

(conservation of total momentum), see Figure 3c. In the
case Ω → 0 (or rD � 1), the Ps1,s2(t′ = tD) shows a
different pattern signing the quantum nature in its pro-
file, see Figure 3d. This is in contrast to the case of
two particles with independent baths B1 and B2 in this
case the probability profile is a Gaussian bell-shape as
is shown in the inset. We remark that for two DQW

http://www.epj.org
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Fig. 3. (a) Representation of two DQW’s interacting with B.
(b) Profile as a function of s1 and s2. The inset shows the
profile tracing out the second particle. (c) Here the pattern
can be seen even when D �= 0. (d) Profile for rD � 1 (or Ω →
0). The inset shows the Gaussian bell-shape for two particles
with independent baths. Blue indicates, roughly, the value zero
while red a high value of probability.

with a common bath the probability profile can never be
represented as a Gaussian distribution due to the bath-
induced correlations.

3.5 Geometric quantum discord

To characterize the quantum correlations in the system
we use the geometric quantum discord measure [36–39],
which is easier to obtain instead of original quantum
discord measure (which involves an optimization proce-
dure [40,41]), and it has been proved to be a necessary and
sufficient condition for non-zero quantum discord [36].

The geometric quantum discord (GQD) is defined as

DG (ρ) = min
χ∈Ω0

||ρ − χ||2 , (10)

where Ω0 denotes the set of zero-discord states and
||X − Y ||2 = Tr (X − Y )2 is the square norm in the
Hilbert-Schmidt space. Additionally, the lower bound of
the GQD is calculated using the density operator, which
is defined on a bipartite system (belonging to Ha ⊗ Hb,

with dim Ha = m and dim Hb = n) [36–39] as:

ρ =
1

mn

⎛
⎝Im ⊗ In +

∑
i

xiλ̃i ⊗ In +
∑

j

yjIm ⊗ λ̃j

+
∑

j

tij λ̃i ⊗ λ̃j

⎞
⎠ ,

here λ̃i, i = 1, . . . , m2 − 1 and λ̃j , j = 1, . . . , n2 − 1 are the
generators of SU(m) and SU(n) respectively, satisfying
Tr
(
λ̃iλ̃j

)
= 2δij , and Im is the identity operator in m-

dimension. In this expression the vectors �x ∈ Rm2−1 and
�y ∈ Rn2−1 of the subsystems A and B are given by:

xi =
m

2
Tr
(
ρλ̃i ⊗ In

)
=

m

2
Tr
(
ρAλ̃i

)

yj =
m

2
Tr
(
ρIm ⊗ λ̃j

)
=

n

2
Tr
(
ρBλ̃j

)
,

and the correlation matrix T ≡ [tij ] is given by

T ≡ [tij ] =
mn

4
Tr
(
ρλ̃i ⊗ λ̃j

)
.

The lower bound of the GQD is calculated in the following
form:

DG (ρ) ≥ 2
m2n

(
||�x||2 +

2
n
||T ||2 −

m−1∑
i=1

ηi

)
, (11)

where ηi, i = 1, 2, . . . , m2−1 are eigenvectors of the matrix(
�x�xt + 2

nTT t
)

arranged in non-increasing order [37].

3.5.1 Lattice bipartition, the qubit-qubit set

We need to define a procedure on the lattice in order to
study the GQD (a similar approach has been done in [22]),
in this context introducing a bipartition we will end with
a qutrit-qutrit system.

In Figure 4a we show the mirror bipartition used in
this work (a similar bipartition has been used for a spin
system under the SU (2) projection [42]). In the present
case, tracing out (in the lattice) sites different from ±s it
is possible to define a three-level system. Thus, in order to
trace over all non-mirror sites (�= ±s) we defined the kets

|A〉 ↔ |s〉
|B〉 ↔ | − s〉
|φ〉 ↔ |s′〉, s′ �= ±s.

Then, the ket |s1, s2〉, representing a state of two particles,
can be written in the form

|s1, s2〉 = |αβ〉 ⊗ |R〉, (12)

where {α, β} ∈ {A, B, φ}, and R is the complement, i.e.,
the set of all non-mirror sites.
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Replacing (12) in (8) and tracing over |φ〉 we obtain
the density matrix ρAB. Thus ρAB turns to be a reduced
(9 × 9) matrix, where the new ordered basis can be writ-
ten as:

{|AA〉, |AB〉, |Aφ〉, |BA〉, |BB〉, |Bφ〉, |φA〉, |φB〉, |φφ〉}.

In order to simplify this analysis we now reduce the rep-
resentation to a qubit-qubit set, then we do not con-
sider elements of the density matrix ρAB with vectors
contribution:

{|Aφ〉, |Bφ〉, |φA〉, |φB〉, |φφ〉},

i.e., representing the basis for the one-particle state and
the empty state.

Therefore final density matrix reduces to a (4 × 4) ma-
trix, within this approach we obtain the representation of
a qubit-qubit system. Then, the lower bound of the GQD
from equation (11) is reduced to:

DG (ρ) ≥ 1
4

(
||�x||2 + ||T ||2 − kmax

)
, (13)

where kmax is the largest eigenvalue of K = ||�x||2 +
||T ||2 [36]. Now, we calculate the total mirror contribu-
tion for the GQD defined as

DT
G (ρAB) =

∞∑
s=1

D
(s)
G (ρAB) , (14)

where D
(s)
G (ρAB) corresponds to equation (13) for a fixed

value of s (D(s)
G (ρAB) measures the quantum correlation

between particles 1 and 2 to be confined at sites ±s). We
have plotted DT

G (ρAB) as a function of time t′ = tΩ, for
different values of rD ≡ 2D

Ω/�
. In Figure 4b the GQD (lower

bound given by Eq. (13)) is shown for different values of
rD = 0.1, 0.5, 1, 2.

One important conclusion from this result is that bath-
induced correlations (between the particles) are in fact
of quantum nature because DT

G (ρAB) > 0 for almost all
t > 0 and rD > 0. Note that only if rD = 0 the GQD
vanishes at all times. From Figure 4b, we can see that the
GQD shows a non-monotonic behavior as function of rD

then a characteristic time-scale τM can be defined sign-
ing its maximum value; note that as rD decreases τM is
delayed. In this figure we have not plotted the long-time
behavior of GQD because we have numerical computed
limitations.

4 Phase-space (lattice) representation

A important point of view is achieved if we introduce a
quasi probability distribution function (pdf) for the infi-
nite dimensional discrete Hilbert space associated to two
DQW’s. The crucial point in defining a Wigner function is
to assure the completeness of the phase-space representa-
tion [43,44]. Then for this purpose we consider the enlarged
lattice of integers (Z) and semi-integers (Z2). Denoting

�k = (k1, k2), �x = (x1, x2), xj ∈ (Z ⊕ Z2)

Fig. 4. (a) The bipartition to calculated the GQD. (b) The
function DT

G (ρAB) takes into account all the mirror contribu-
tions (qubit-qubit set) as defined in (14). A characteristic time
τM can be defined when these correlations are maxima.

we define

Wt(�k, �x)=
∑

x′
1,x′

2∈(Z⊕Z2)

〈x1+x′
1, x2+x′

2|ρt|x1−x′
1, x2−x′

2〉
e−i2
k·
x′

(2π)2
,

(15)
which indeed fulfills

∑

x∈(Z⊕Z2)

∫ π∫

−π

d�k Wt(�k, �x) = 1

where ρt ≡ ρ(t) is the two-body density matrix. Note that
when ρ(t) satisfies the exchange of particles symmetry
(due to the particular initial condition we have used) our
definition of the Wigner function fulfills also the invari-
ance under exchange of particles but in the phase-space;
i.e., under the exchange x1 ↔ x2 and k1 ↔ k2 (indicat-
ing that Wt(�k, �x) has a reflection symmetry in the planes:
x1 − x2 = 0 and k1 − k2 = 0).

The present definition of Wt(�k, �x) can be proved to be
equivalent to the definition using phase-point operators in
finite systems [44–46]. We remark the prescription that

〈�x|ρt|�x′〉 = 0,

if some index xj ∈ Z2 (this is so because
Wannier’s index are on Z). Thus, our Wt(�k, �x) ful-
fills the fundamental conditions pointed out by Wigner

et al. [43]:
∫ π∫

−π

d�k Wt(�k, �x) = 〈�x|ρt|�x〉 ≥ 0 and
∑


x∈(Z⊕Z2)
Wt(�k, �x) = 〈�k|ρt|�k〉 ≥ 0. In addition, we noted

that the enlarged lattice (Z ⊕ Z2) is the crucial key for
a correct definition of a Wigner function. From the dis-
crete Fourier transform we can obtain the inverse relation

http://www.epj.org


Page 8 of 10 Eur. Phys. J. B (2017) 90: 164

on the Wannier lattice (sj ∈ Z, ∀j = 1, 2) as:

〈s1, s2|ρt|s′1, s′2〉 =
∫ π∫

−π

d�k Wt

×
(

k1, k2,
s1 + s′1

2
,
s2 + s′2

2

)
ei
k·(
s−
s′).

Note that the inverse relation demands the necessity of
a Wigner function defined on the enlarged lattice. After
some algebra using solution (8) in definition (15) we get

Wt(�k, �x) =
e−2tD

4π2
(−1)2x1+2x2

∑
{α,β,q,n2,n3,n5}∈Z

(−1)n2+n3+q

× J2x1+2α−q(−2tΩ sin k1)J2x2+2β+q(−2tΩ sin k2)
× In2(tD)In3 (tD)In5(tD)In2+n5−α(tD)

× In3+n5+β(tD)In2+n3+n5−q(tD)eiq(k1−k2).
(16)

As we commented before this solution is symmetric under
exchange of particles because we have used a localized
initial condition. In the case D = 0 we recover the non-
dissipative description

Wt(�k, �x)D=0 =
(−1)2x1+2x2

4π2
J2x1

× (−2tΩ sin k1)J2x2(−2tΩ sin k2)

representing two-independent quantum walks, and show-
ing the possibility to be negative depending on the argu-
ment of the Bessel’s functions and sites on the enlarged
lattice. Thus, our Wigner function Wt(�k, �x) can be used to
detect whether a point in phase-space has a pure quantum
mechanics character or not. In Figure 5 we show several
portraits, in particular it is clear to identify regions where
Wt(�k, �x) < 0. Therefore we propose to use Wt(�k, �x) to
measure the quantum to classical transition. In Figure 5
we show patterns for several values of Δk ≡ k1 − k2 and
tD = 5 on the enlarged lattice Z ⊕Z2. On the other hand,
putting Ω = 0 in Wt(�k, �x) simplifies its analytical expres-
sion and shows also that there are domains where it is
negative. This proves the quantum mechanics character
of the bath-induced correlations between the two DQW,
even in the large dissipative regime 2D

Ω/�
� 1. Note that

the behavior of the Negative Volume of Wigner’s func-
tion in phase-space can enlighten the understanding of
the quantum character of the system behavior, as well as
supporting the characterization of the typical time-scale
for the coherence between particles, work along this line
is in progress.

5 Discussions

We have analyzed two free spinless initially uncorrelated
particles (in the lattice) in interaction with a common
boson thermal bath B. Even when the QME is a second

x1 2&x ∈Z x1 2&x ∈Z

x1 2&x ∈Z 2 x1 2&x ∈Z 2

x1 2&x ∈Z Z⊕ 2 x1 2&x ∈Z Z⊕ 2
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Fig. 5. Wigner function on the enlarged lattice for two DQW’s
as a function of {x1, x2} ∈ (Z ⊕ Z2) for tD ≡ 2Dt = 5 and two
values of Δk. Due to the conservation of the pseudo-momentum
Wigner’s function does only depends on Δk. Domains where
Wt is negative are shown in dark blue (white points are put to
lighten when starts to be Wt < 0). In (a), (b), (c) Δk = 0, and
(d), (e), (f) Δk = π/3.

order approach, the Markov approximation is enough to
show bath-induced correlation among free particles. We
have solved analytically the QME showing that if D �= 0,
we get ρ(t) �= ρ1(t) ⊗ ρ2(t), ∀t > 0, i.e., the time evolu-
tion is not a direct product of two independent particles
if the temperature of the bath is non null. For D = 0 the
probability profile Ps1,s2(t) ≡ 〈s1, s2|ρ(t)|s1, s2〉 is ballis-
tic and starts to be modified by the presence of dissipa-
tion D > 0, showing a X-form pattern. In the case of
large dissipation, rD ≡ 2D

Ω/�
� 1, this structure is accen-

tuated and additional interferences are observed. Several
correlations measures: T(1,2), Purity and Relative Entropy
of Coherence CRE have been analyzed showing a degree
of coherence between particles, these correlations are in-
duced by the common bath B despite the presence of dis-
sipation for temperature T �= 0. PQ, Mirror Correlation
T(1,2) and GQD have been used to show the existence of
a time-scale when the quantum correlations reach a max-
imum. All these measured of correlations have also been
indirectly supported by an independent analysis using a
Wigner function defined on the enlarged lattice of integers
and semi-integers (Z ⊕ Z2); showing that this function is
negative in some domains of phase-space. Thus we propose
to use the total negative volume of the Wigner function in
phase-space to characterize the quantum to classical tran-
sition in this type of many-body system, work along this
line is in progress.
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Appendix A: Semigroup for two
distinguishable quantum random walk

Starting from the total Hamiltonian HT and eliminating
the bath variables (in the Markov approximation), the
Kossakowski-Lindblad infinitesimal generator [3] can be
written in the form

KL [•] = − i

�
[Heff , •] + F [•] − 1

2
{F ∗ [1] , •}+ , (A.1)

where Heff is the effective Hamiltonian, 1
2F ∗ [1] can be

regarded as a dissipative operator, and F [•] the fluctu-
ating superoperator (F ∗ [•] is the dual operator of F [•],
and {•, •}+ the anticommutator). Using a separable initial
condition for the total density matrix ρT (0) = ρ(0) ⊗ ρe

B,
and working in a second order approximation we can write
(ρe

B is the thermal density matrix of the bath at temper-
ature T )

Heff = HS − i
1
2�

∫ ∞

0

dτ TrB ([HSB, HSB (−τ)] ρe
B) ,

F [ρ(t)] =
(

1
�

)2 ∫ ∞

0

dτ TrB [HSBρ(t) ⊗ ρe
BHSB (−τ)

+ HSB (−τ) ρ(t) ⊗ ρe
BHSB] ,

where HSB (−τ) = e−iτ(HS+HB)/� HSB eiτ(HS+HB)/� [3,20].
Noting that a12 and a†

12 are constant in time,[
a12, a

†
12

]
= 0 and using the full expressions of HS , HB

and HSB, after some algebra we can write

F [•] =
π4Γ 2

2�/kBT

[
a12 • a†

12 + a†
12 • a12

]
, (A.2)

where πΓ 2kBT/� is a dissipative constant (here we have
used the Ohmic approximation for the strength function
g (ω) of the bath, i.e., g(ω) =

∑
k |vk|2 δ (ω − ωk) ∝ ω, if

0 < ω < ω̃c). In a similar way the effective Hamiltonian
can be calculated given

Heff = HS − ωc� a12a
†
12,

here ωc ≡ 2ω̃cΓ
2 is an upper bound frequency.

Using these expressions we can write down the
QME (5) in the form

ρ̇ = L [ρ] , L [•] ≡ − i

�
[Heff , •] + F [•] − 1

2
{F [1] , •}+ ,

then the solution can be written in the formal form:

ρ (t) =
∞∑

m=0

∫ t

0

dtm

∫ tm

0

dtm−1 · · ·
∫ t2

0

dt1 {L0 (t − tm)

F [•]L0 (tm − tm−1) · · ·F [•]L0 (t1)} ρ (0) , (A.3)

where it is evidenced that the system is exposed to a suc-
cession of quantum jumps associated to the superopera-
tor F [•], and intercalating a smooth evolution character-
ized by

L0 (t) ρ = exp
{(

− i

�
[Heff , •] − 1

2
{F [1] , •}+

)
t

}
ρ.

This picture allows to generalize the description of a
QDW into a non-Markovian evolution using the CTRW
approach [30,31]. See also a related contribution, in the
present issue, for describing completely positive quantum
maps in the context of the Renewal theory [32].
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