
Eur. Phys. J. B (2017) 90: 138
DOI: 10.1140/epjb/e2017-80219-0

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Evolutionary fate of memory-one strategies in repeated prisoner’s
dilemma game in structured populations

Xu-Sheng Liu1, Zhi-Xi Wu1,a, Michael Z. Q. Chen2,b, and Jian-Yue Guan1

1 Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
2 School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China

Received 13 April 2017 / Received in final form 22 May 2017
Published online 24 July 2017 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2017

Abstract. We study evolutionary spatial prisoner’s dilemma game involving a one-step memory mecha-
nism of the individuals whenever making strategy updating. In particular, during the process of strategy
updating, each individual keeps in mind all the outcome of the action pairs adopted by himself and each
of his neighbors in the last interaction, and according to which the individuals decide what actions they
will take in the next round. Computer simulation results imply that win-stay-lose-shift like strategy win
out of the memory-one strategy set in the stationary state. This result is robust in a large range of the
payoff parameter, and does not depend on the initial state of the system. Furthermore, theoretical anal-
ysis with mean field and quasi-static approximation predict the same result. Thus, our studies suggest
that win-stay-lose-shift like strategy is a stable dominant strategy in repeated prisoner’s dilemma game in
homogeneous structured populations.

1 Introduction

Cooperation exists widely in many biological, social and
economic systems [1], and plays an important role in the
functionality of these complex systems. However, crea-
tures are considered to be selfish and always attempt to
maximize their own benefits in terms of the Darwinian
evolution theory [2–6]. Hence, understanding the emer-
gence and maintenance of cooperative behavior among
selfish individuals is of paramount importance. In recent
decades, evolutionary game theory [2–12] has been intro-
duced and proven to be the canonical theoretical frame-
work to investigate this problem. The most well-known
paradigm that describes the one-shot game between two
individuals is known as the prisoner’s dilemma game
(PDG), which has attracted much attention in a great
number of theoretical and experimental studies [4,13–16].
In the standard PDG, two players simultaneously decide
whether to cooperate (C) or to defect (D), and receive
payoffs according to their respective choices. Particularly,
for two players with the same strategy results in a benefit
R if both cooperate while a punishment P if both defect
respectively. For two players with different strategies, the
cooperator gets the sucker’s payoff S while the defector
gets the temptation to defect T . These payoffs satisfy the
relation as T > R > P > S, such that defection is the ab-
solutely best choice for rational players regardless of the
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opponent’s selection. For repeated PDG T + S < 2R is
also presumed [13]. Therefore, in the absence of support-
ing mechanisms, all the players would get the punishment
P instead of the higher reward R provided that they were
to cooperate with each other, hence resulting in a dilemma
situation.

During the process of development of evolutionary
game theory, many interesting strategies are put forward
for the PDG. In R. Axelrod’s famous tournament [13,17],
the tit-for-tat strategy (cooperating in the first round and
then doing whatever the other one did at last round) per-
forms excellently, which has stimulated much attention to
the study on reactive strategies (where the decision of one
player in each round depends on the previous move of the
opponent) in both social and biological systems. Although
the tit-for-tat strategy is found to be effective in estab-
lishing high cooperative level community, it is sensitive to
“noise”, where an accidental (or mistaking) defection can
lead to a long sequence of retaliation for tit-for-tat play-
ers. In their 1992 Nature paper [18], Nowak and Sigmund
found that the tit-for-tat strategy could be replaced by a
more generous strategy, the generous tit-for-tat strategy,
which performs better than tit-for-tat for its fault toler-
ation. Particularly, subsequent researches of Nowak and
coworkers suggested that the win-stay-lose-shift strategy
(repeating previous move whenever you are doing well, but
changing otherwise) seems to be a more popular rule for
its two advantages over tit-for-tat [19]: it can correct oc-
casional mistakes and exploit unconditional cooperators.
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Two extented win-stay-lose-shift strategies [20,21] are
proposed recently. They both take individuals’ aspiration
for payoff into consideration and found that the coopera-
tion will be promoted in a proper range of aspirations [20]
or the payoff parameters [21]. It is not difficult to find
that all these strategies require the players to have one-
step memory, i.e. they can be categorized into the class of
memory-one strategy. Actually, even “unconditional co-
operate” and “unconditional defect” can be considered as
memory-one strategies.

Recently, Press and Dyson [22] have coined the term
“zero-determinant” (ZD) strategy in evolutionary games,
which responds probabilistically in terms of both the play-
ers’ and the co-players’ previous moves. The peculiarity of
ZD strategy lies in the fact that it allows players to set
their opponents’ payoffs unilaterally, i.e., independent of
their strategies or responses. This important progress has
remotivated people’s interest in the memory-one strategy
in repeated games in recent years [23–25]. In reference [26],
Vukov studied a spatial evolutionary PDG with memory-
one strategy in the square lattice population, and found
that evolution selects a generous tit-for-tat-like strategy
from the memory-one strategy set, which gives rise to a
cooperative community with a strikingly high coopera-
tion level for any value of the temptation to defection. In
addition, it was found that whether the learning process
of the strategies is accurate or not is relevant in estab-
lishing cooperation, and the more accurate handling of
specific situations is helpful in creating more cooperative
societies [26]. Very recently, Baek et al. [27] systemati-
cally compared the evolutionary performance of reactive
strategies and the memory-one strategies in the PDG in
finite, well-mixed populations (which means that each in-
dividual interacts with all the others with equal proba-
bility). They considered both deterministic strategy and
stochastic strategy spaces, and the strategy evolution is
performed by the Moran process [28]. It was found that for
memory-one strategy, stochasticity may promote or hin-
der the evolution of cooperation, which depends on the
magnitude of the temptation to defection, and the win-
stay-lose-shift like strategy (which means the entry values
of those strategies are close to win-stay-lose-shift strategy
but exist some fluctuations) seems to be of evolutionary
robustness in a large range of the parameter regime [27].

We note that reference [26] has treated the compe-
tition and evolution of memory-one strategies in pop-
ulation located on a square lattice, whose research is
mainly based on computer simulations. The studies in ref-
erence [27] have involved both theoretical derivations and
Monte Carlo simulations, but it only treated the case of
well-mixed populations. In reality, the interactions among
individuals are mostly spatially restricted, whose inter-
acting patterns are usually modeled by regular or com-
plex networks (or graphs) [29]. It has been known that
the spatial structure is a relevant factor in promoting the
evolution of cooperation [5]. In this work, we intend to
study the evolutionary fate of a memory-one strategy in
a spatially structured population via the approaches of
both theoretical analysis and the computer simulations.

As to be shown below, we find that when the strategy im-
itation (or learning) process is accurate enough, the win-
stay-lose-shift like strategy will usually stand out from the
memory-one strategy set.

2 Model

In our model, we consider the evolutionary dynamics of
PDG in homogeneous structured populations, where the
players are located on the nodes of either a regular square
lattice or on a complex network. Specifically, two types of
networks have been considered (a square lattice with peri-
odic boundary conditions and a random regular network).
During the evolution, only two possible actions, cooperate
(C) or defect (D), can be adopted by the players. After
interacting with their neighbors, the individuals acquire
their payoffs according to the payoff matrix of the PDG.
For simplicity but without loss of generality, the entries of
the payoff matrix are formulated as [30]

( C D

C 1 1 − b
D b 0

)
, (1)

where b ∈ [1, 2] denotes the temptation to defect.
To take into account of the one-step memory, the

strategy of each individual is represented by a vector of
quartuple space [5,26]. Let Pi = (pi

cc, p
i
cd, p

i
dc, p

i
dd) de-

notes the strategy of individual i. Elements in Pi rep-
resent the probabilities of adopting cooperation of indi-
vidual i when interacting with one involved neighbor in
the next move, subject to the action pair {cc, cd, dc, dd}
being the outcome of their encounter at the last round,
respectively. With this setting, there are more degrees of
freedom than the model studied in references [28,31–34]
when individuals select their behavior. For instance, strat-
egy P = (1, 1, 1, 1), (0, 0, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1) means
unconditional cooperate, unconditional defect, tit-for-tat
and win-stay-lose-shift, respectively. Note that, with this
strategy configuration, one individual may take different
actions to different neighborhoods.

In the beginning, each element in the strategy vector
of all individuals are initialized with uniformly distributed
random numbers between 0 and 1. All individuals’ prob-
abilities of cooperation at their first move are decided by
the mean value of the four elements in their strategy vec-
tor, namely (pcc + pcd + pdc + pdd)/4, and thus the initial
probability of defection 1− (pcc + pcd + pdc + pdd)/4. Dur-
ing the evolution, the state of the system is updated in an
asynchronous manner. In particular, at each discrete-time
step, an edge is randomly selected in the network with
two endpoints, i and j. Then the two selected players are
allowed to interact with all their neighbors and collect the
corresponding payoffs πi and πj in terms of their actual
actions and the payoff matrix, respectively. Subsequently,
the two involved players try to promote their payoffs by
imitating (or learning) one of the opponent’s strategy. Fol-
lowing previous studies [16], the player i will adopt the
strategy of the player j with the probability Wi→j , which
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is assumed to be proportional to their payoff difference
(πj − πi). Specifically, the transition probability can be
written as [16]

Wi→j =
1

1 + exp[−β(πj − πi)]
, (2)

where β > 0 denotes the uncertainty (noise) in the imita-
tion process. From the viewpoint of biology, β can also be
regarded as the strength of selection [35,36]. In this article,
we use β = 2.5 in our Monte Carlo simulations. Obviously,
individuals with higher payoffs are imitated by others with
higher probability. It is also worth noting that individuals
can also imitate their neighbors who yielded lower payoffs,
even with somewhat lower probabilities, which indicate
that people may make mistakes in the learning process.

It is easy to see that the space of strategy is huge
in the considered model. To visit points in the strategy
space as much as possible, we consider the fuzzy learning
method as in [26], which means that the individuals do
not learn their neighbors’ strategies with exact accuracy.
Whenever the imitation process happens, the elements in
the learner’s strategy vector are replaced by a normally
distributed random number, whose expectation values cor-
respond to the elements of the neighbor’s strategy vector
and with standard deviation σ. In our current study, we
use σ = 0.005 so that the learning process is sufficiently
accurate. The above elementary process is repeated until
the system reaches a steady state where the frequency of
cooperators ρC in the system fluctuates stably.

For simplicity, we discretize the strategy space as what
has been done in references [26,27]. To be more specific,
we first divide each dimension of the strategy vector into
ten parts equally with interval 0.1, and assign each part
from small to large with number (0, 1, 2, 3, 4, 5, 6,
7, 8, 9), respectively. Then each dimension of a strat-
egy can be mapped onto an decimal integer number by
just taking the integer portion of pxy/0.1 (where xy de-
notes the combination {cc, cd, dc, dd}), which can be de-
noted by �pxy/0.1�. By doing this, each strategy is then
represented by a four-digit decimal positive integer, say
�pcc/0.1�×103+�pcd/0.1�×102+�pdc/0.1�×10+�pdd/0.1�,
which corresponds to a hypercube area of four-dimension
space with edge length 0.1. For instance, the strategy
P = (0.1, 0.2, 0.3, 0.3) can be mapped to the integer array
(1, 2, 3, 3), which corresponds to the decimal integer 1233.

The Monte Carlo simulations are carried out for a pop-
ulation of size N = 100 × 100. The simulation results are
obtained by averaging over the last 105 Monte Carlo time
steps of the total 2×105. Each data point presented below
is the result from an average of over 20−50 independent
realizations.

3 Simulation results and theoretical analysis

We first present the simulation results of our model. The
average values of each dimension of the strategy vector
for all the individuals as a function of the temptation to
defect b on the two kinds of networks, i.e., a square lattice

Fig. 1. Average values of each dimension of the strategy vector
for all individuals in the stationary state (p̄cc, p̄cd, p̄dc, p̄dd),
as a function of the temptation to defect b for σ = 0.005 and
β = 2.5. (a) The results are for the case of the square lattice
with von Neumann neighborhood; (b) the results are for the
case of the random regular network with degree k = 4. The
results on the two kinds of networks are almost identical. For
b = 1.4 in (a), p̄cc = 0.97, p̄dd = 0.90, p̄cd = p̄dc = 0.07. The
data points are averaged over 20 independent trials.

with von Neumann neighborhood and a random regular
network with degree k = 4 are shown in Figure 1. For the
case of the square lattice, as is shown in Figure 1a, we ob-
serve that p̄cc are close to 1, while p̄cd and p̄dc are close to
0 through out the entire range of the parameter b. Unlike
the steadiness of p̄cc, p̄cd and p̄dc versus b, p̄dd decreases
continuously with the increase of the parameter b. Basi-
cally, in the whole range of b, the variant of the win-stay-
lose-shift strategy (1, 0, 0, x) (with x ∈ [0, 1]) is favored
in the population in the stationary state. Particularly, we
notice that p̄dd is always greater than 0.8 when the temp-
tation to defect is not larger than 1.6, which means that
most individuals in the system are inclined to adopt the
win-stay-lose-shift like strategy for b ≤ 1.6. The results
achieved on the random regular network, as is shown in
Figure 1b, are almost the same as those on the square
lattice.

Then we intend to measure how the stationary strate-
gies are distributed in the strategy space. The stationary
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Fig. 2. Statistical distribution of the strategies after the system evolves into the final stable state for σ = 0.005 and β = 2.5 on
the square lattice with Von Neumann neighborhood (a) and (b), and on the random regular network with degree k = 4 (c) and
(d). Here, b = 1.2 in left panels and b = 1.5 in right panels. In this figure, each strategy is mapped onto a corresponding four-digit
decimal integer, and the highest peak corresponds to the encoding number 9009. All data are averaged over 50 independent
trials.

distribution of the encoded numbers mapped from the
strategies are shown in Figure 2 for the evolutionary PDG
on the square lattice with von Neumann neighborhood
and the random regular network with degree k = 4 for
b = 1.2 and b = 1.5, respectively. The highest peak in
the distribution corresponds to the encoded number 9009,
which is close to the well-known win-stay-lose-shift strat-
egy P = (1.0, 0.0, 0.0, 1.0). We would like to point out
that due to the fuzzy learning mechanism, not all strate-
gies emergent in the system are located in the position
corresponding to 9009. As is shown in Figure 2, there also
exist some lower peaks. In fact, most lower peaks in Fig-
ure 2 are close to 9009. The top six encoding numbers in
terms of the magnitude of their frequencies, corresponding
to Figure 2b, are listed in Table 1. Obviously all these top-
ranked encoding number are in the vicinity of the number
9009.

In addition to the case of networks with degree k = 4
above, we also study our model on square lattice and ran-
dom regular networks with degree k = 8. The results are
presented in Figure 3, which imply that win-stay-lose-shift
like strategy still win out of the memory-one strategy set
in the stationary state in a wide range of the payoff pa-
rameters. The high values of p̄cd and p̄dc in Figure 3b

Table 1. The top six frequencies of strategy encode numbers
after system evolve into equilibrium state on square lattice with
von Neumann neighborhood for b = 1.5 and σ = 0.005.

No. Strategy encode number Frequency

1 9009 0.2640

2 9008 0.1422

3 9019 0.1030

4 9007 0.0858

5 9018 0.0671

6 9109 0.0534

for small value of b is due to the reason that there is al-
ways a chance for unconditional cooperate, i.e. (1, 1, 1, 1),
rather than win-stay-lose-shift like strategy, to dominate
the whole system on random regular network when b is suf-
ficiently small. As is shown in the inset of Figure 3b, the
average values of the strategy elements are more and more
close to those of the win-stay-lose-shift strategy along with
the increasing of b.

Though the implementation of simulation in our
work is similar to reference [26], our results imply that
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Fig. 3. Average values of each dimension of the strategy vector
for all individuals in the stationary state (p̄cc, p̄cd, p̄dc, p̄dd),
as a function of the temptation to defect b for σ = 0.005 and
β = 2.5. (a) The results are for the case of the square lattice
with Moore neighborhood; (b) the results are for the case of
the random regular network with degree k = 8 (the inset shows
the detailed variance of average values with b ∈ [1.0, 1.2]). The
data points are averaged over 50 independent trials.

win-stay-lose-shift- (rather than tit-for-tat-) like strategy
will win out of the memory-one strategy set in the station-
ary state in a wide range of the payoff parameters which is
quite different from the conclusion in reference [26], where
the tit-for-tat like strategy dominates the system in most
parameter space. We would like to point out that our theo-
retical analysis presented below provides solid support for
the correction of our simulation results. Consequently, it
would be reasonable to guess tentatively that there could
be an error in the author’s code which would be very dif-
ficult to find out the error, if one exists, without the code
the author used. Nevertheless, the results that the more
accurate handling of strategies learning process can help
create more cooperative societies in reference [26] can be
reproduced correctly.

In what follows, we would like to present some ap-
proximate theoretical analysis to explain why the strat-
egy 9009 is the most abundant one in the steady state.
According to the analytical method used in the previ-
ous work [22,24,37], the evolutionary process of the re-

peated PDG between two players, say i and j with strate-
gies Pi = (pi

cc, p
i
cd, p

i
dc, p

i
dd) and Pj = (pj

cc, p
j
cd, p

j
dc, p

j
dd),

can be depicted by the iteration of the transition ma-
trix, denoted by M(Pi, Pj), acting on some vector V =
(vcc, vcd, vdc, vdd)T , in which each element vxy denotes the
frequency of the arising of action pair xy ∈ {cc, cd, dc, dd}.
The transition matrix M(Pi, Pj) can be written as

M(Pi, Pj) =
⎡
⎢⎢⎢⎢⎢⎣

pi
ccp

j
cc pi

cc(1 − pj
cc) (1 − pi

cc)p
j
cc (1 − pi

cc)(1 − pj
cc)

pi
cdp

j
dc pi

cd(1 − pj
dc) (1 − pi

cd)p
j
dc (1 − pi

cd)(1 − pj
dc)

pi
dcp

j
cd pi

dc(1 − pj
cd) (1 − pi

dc)p
j
cd (1 − pi

dc)(1 − pj
cd)

pi
ddp

j
dd pi

dd(1 − pj
dd) (1 − pi

dd)p
j
dd (1 − pi

dd)(1 − pj
dd)

⎤
⎥⎥⎥⎥⎥⎦

.

In terms of the mathematical property of transition matrix
M (which is actually the transition matrix of a Markov
chain with non-negative elements), there must exist a sta-
tionary vector Vs with a unit eigenvalue satisfies [22]

V T
s M = V T

s , (3)

which corresponds to the equilibrium state of any iterated
two-player game. Then we have

V T
s M ′ = 0, (4)

where M ′ = M − E and E denotes the identity matrix.
In terms of Cramer’s rule and the Laplace expansion

of matrix M ′, the dot product between Vs and an ar-
bitrary vector x = (x1, x2, x3, x4)T can be given by the
determinant of the matrix M ′ [22]

D(Pi, Pj, x)=det

⎡
⎢⎢⎢⎢⎢⎣

−1 + pi
ccp

j
cc −1 + pi

cc −1 + pj
cc x1

pi
cdp

j
dc −1 + pi

cd pj
dc x2

pi
dcp

j
cd pi

dc −1 + pj
cd x3

pi
ddp

j
dd pi

dd pj
dd x4

⎤
⎥⎥⎥⎥⎥⎦

.

(5)

Consequently, the equilibrium payoff of the individual i
from playing against its neighbor j can be calculated
as [22]

f(Pi, Pj) =
Vs · R
Vs · I =

D(Pi, Pj , R)
D(Pi, Pj , I)

, (6)

where R = (1, 1 − b, b, 0)T is the payoff vector of the in-
dividual i by playing against the individual j with the
emerged action pair {cc, cd, dc, dd}, i.e., equation (1). Here
I is the vector with all elements 1.

On account of the intrinsic stochasticity of the strat-
egy transformation, accurate prediction of the cooperation
probability of an individual in every move is impossible.
Here, we alternatively consider the situation that the sys-
tem evolves sufficiently slowly such that each individual
and its neighbors can be assumed to be in their stable
state when strategy updating happens, i.e. we regard that

http://www.epj.org


Page 6 of 7 Eur. Phys. J. B (2017) 90: 138

the system evolves in a way analogous to the quasi-static
process in thermodynamics. Now let n(Pm, t) denote the
frequency of the strategy Pm at time t. Based on the above
analysis, the time evolution of the probability n(Pm, t)
obeys the following master equation

dn(Pm, t)
dt

=
∑
Pl

n(Pl, t)n(Pm, t)[T (Pl → Pm)

− T (Pm → Pl)], (7)

where T (Pl → Pm) represents the transition rate

T (Pl → Pm) =
1

1 + exp[−β(πPm − πPl
)]

. (8)

Here πPx (x ∈ {k, l}) stands for the mean payoff acquired
by using the strategy Px

πPx =
∑
Py

n(Py, t)f(Px, Py), (9)

where f(Px, Py) denotes the mean payoff acquired by
adopting strategy Px playing against the strategy Py, i.e.,
equation (6).

As in the case of Monte Carlo simulations, we slice the
the strategy space into discrete points to simplify the prob-
lem. In particular, we first divide each dimension of the
strategy space into ν parts equally, which will generates
(ν + 1)4 strategy points totally. To ensure the transition
matrix M(Pi, Pj) to remain nonsingular in the calcula-
tion, we just consider all the points except those on the
edges, faces and corners of the four-dimensional hyper-
cube of the strategy space. By doing so, we finally have
ν − 1 points in each dimension, and we thus have totally
N = (ν − 1)4 points. Similar to the way that we have
encoded the strategies by four-digit integers in Figure 2,
we use (ν − 1)-based positional notations to encode these
strategy points. The initial frequency of each strategy is
set to 1/N . By solving the equation (7) numerically, we
obtain the distribution of the strategies survival in the sta-
tionary state. As is shown in Figure 4, the win-stay-lose-
shift like strategy, corresponding to the encoding number
9009, is proved to dominate in the system.

4 Conclusions and discussion

In summary, we have studied the evolutionary prisoner’s
dilemma game in square lattice and random regular net-
works by taking into account of one-step memory of the
players, which is different from the well-mixed case of ref-
erence [27]. In our model, strategies are represented by
points in a four-dimensional hypercube space. The indi-
viduals make decisions according to what they and their
opponents have done at the last encounter. Monte Carlo
simulation results suggest that the memory-one strategy,
which behaves like the classical win-stay-lose-shift strat-
egy, is mostly evolutionary robust in a wide range of the
payoff parameters. Our theoretical analysis with mean

Fig. 4. Statistical distribution of the encoding numbers of the
strategies, calculated by solving the master equation numeri-
cally for β = 0.1 and b = 1.2. Here we let ν = 11. Note that
in our approximate theoretical analysis, we only consider the
weak-selection case, i.e., small value of β, so that the evolu-
tionary process can be regarded as a quasi-static process.

field and quasi-static approximation show that the win-
stay-lose-shift like strategy dominate the whole system in
the equilibrium. The quasi-static approximation requires
the system evolves sufficiently slowly, which means that
what we treat theoretically is actually the weak selec-
tion process [5]. Surprisingly, our simulation results under
strong selection (large value of β) indicate that the con-
clusions achieved by theoretical analysis can be extended
to the strong selection case. To sum up, both our simu-
lation and theoretical results indicate that the win-stay-
lose-shift like strategy is the stable dominant strategy in
evolutionary spatial prisoner’s dilemma games.

Finally, it is worth mentioning that two different theo-
retical analysis methods have been used in reference [27].
The first one is to construct a Markov matrix with fi-
nite strategy space by computing fixation probability of
all strategy pairs in finite populations to find the unique
invariant strategy distribution. The other one uses pertur-
bative method to compute exact strategy abundance in
the limit of weak selection to determine the most favored
stochastic strategy. Their analytical methods are totally
different with ours, albeit the main conclusions of both
works are similar. Our current work therefore provides an-
other new and efficient analytical method to address the
evolutionary fate of memory-one strategies in networked
prisoner’s dilemma games.
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