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Abstract. In many practical systems, the periodic driven force and noise are introduced multiplicatively.
However, the corresponding researches only focus on the first order moment of the system and its stochastic
resonance phenomena. This paper investigates a harmonic oscillator subject to random mass and period-
ically modulated noise. Using Shapiro-Loginov formula and the Laplace transformation technique, the
analytic expressions of the first-order and second-order moment are obtained. According to the analytic
expressions, we find that although the first-order moment is always zero but second-order moment is peri-
odic which is different from other harmonic oscillators investigated. Furthermore, we find the amplitude
and average of second-order moment have a non-monotonic behavior on the frequency of the input signal,
noise parameters and other system parameters. Finally, the numerical simulations are presented to verify
the analytical results.

1 Introduction

The concept of stochastic resonance (SR) which an inter-
mediate noise intensity can lead to the maximum response
of a stochastic system was introduced by Benzi et al. in
1981 [1]. Due to its wide applications in physics, biology,
chemistry and engineering [2–7], it has attracted enor-
mous attention and has been studied extensively in recent
decades. And SR phenomenon has been found in various
systems. Gitterman used the term “stochastic resonance”
in the wide sense, meaning the nonmonotonic (resonance)
dependence of the output signal or some function of it
(moments, autocorrelation functions, power spectrum or
signal-to-noise ratio) on the characteristics of the noise
(the noise amplitude or correlation time) [8] and this phe-
nomenon is often called generalized stochastic resonance
[9].

The early researches focused on non-linear systems
with additive white noises [10,11]. However, colored noises
widely exist in various systems, especially biological sys-
tem. Recently researches show that SR can occur in linear
systems with multiplicative colored noise [12–23].

The harmonic oscillator is a simple system and widely
used in physics. A particle of mass m > 0 moving in
a parabolic potential U(x, t) = ω2x(t)/2 driven by a
periodic force can be described by following equation:

m
d2x (t)

dt2
+ γ

dx (t)

dt
+ ω2x (t) = A sinΩt, (1)

a e-mail: dk 83@126.com

where x (t) is the displacement of the particle, γ > 0 is
the friction constant and A sin Ωt is the periodic driven
force. For non-zero temperatures, the particle is collided
by the surrounding molecules, so equation (1) needs to be
supplemented by thermal noise η(t).

m
d2x (t)

dt2
+ γ

dx (t)

dt
+ ω2x (t) = A sinΩt+ η (t) . (2)

However, in many systems, the surrounding molecules
not only collide with the particle but also adhere to the
particle randomly. This phenomenon has been found in
various systems, especially biological and chemistry sys-
tems [24–30]. In these systems, the mass of particle is
random. Taking the fluctuation of mass into account, we
arrive at the following equation

(m+ ξ (t))
d2x (t)

dt2
+ γ

dx (t)

dt
+ ω2x(t) = A sinΩt+ η(t).

(3)
Gitterman considered this system and analyzed the first
moment and found the stochastic resonance phenomenon
occurred [31–33]. Particularly, an RLC electrical circuit
subject to a voltage V (t) with a fluctuation inductance L
can be regarded as a random mass system [12]

[L+ ξ(t)]
d2J

dt2
+R

dJ

dt
+

1

C
J =

dV

dt
. (4)

Considering the input periodic signal (driven force), the
signal and noise may act on each other multiplicatively.
It is introduced by Dykman et al. when they studied SR
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in an asymmetric bistable potential [34]. This noise which
is called periodically modulated noise, is not uncommon,
for example, at the output of any amplifier whose ampli-
fication factor varies periodically with time. Periodically
modulated noise exists in many practical system and the
SR in these systems have been studied [13,16,35].

Considering an RLC electrical circuit given by
equation (4), if the input signal V (t) is multiplied by a
noise, the system is a harmonic oscillator subject to a ran-
dom mass and periodically modulated noise. The previous
works on SR in harmonic oscillator subject to random
mass and periodically modulated noise only considered the
first-order moment. However, the output of the system is
a stochastic process, to study the behavior of a stochas-
tic process, only the first-order moment is not enough.
In this paper, we focus on studying the SR phenomenon
of the second-order moment in a harmonic oscillator sub-
ject to random mass, periodically modulated noise and an
additive unmodulated noise. The structure of this paper
is organized as follows. In Section 2, the model of the sys-
tem is introduced and we provide the analytic expressions
of the first-order and second-order moments. In Section 3,
the SR phenomenon for the second-order moment is dis-
cussed. In Section 4, we verify the analytical result by
numerical simulations. Finally, conclusions are drawn in
Section 5.

2 Analytic solution

2.1 Model

We consider a harmonic oscillator subject to random
mass, periodically modulated noise and an additive
unmodulated noise as follows:

(m+ ξ(t))
d2x

dt2
+γ

dx

dt
+ω2x = A cosΩt ·ψ(t) +η(t), (5)

where A = 0 and Ω = 0 are the amplitude and frequency
of the periodic signal, m > 0 is the mass of the oscilla-
tor, γ > 0 is the friction constant. ξ(t), ψ(t), η(t) are
noises and they are independent. In this paper, all noises
are modeled as asymmetric dichotomous noise (random
telegraph noise) which is Markov processes and can be
reduced to Gaussian white noise and white shot noise [36].
ξ(t) is the fluctuation of the mass and takes two values
A1 > 0 and −B1 < 0. To make sure the particle mass
is positive, we assume m > B1. p1 is the transition rate
from A1 to −B1 and q1 is the transition rate from −B1 to
A1. ψ(t) is the periodically modulated noise which jumps
between two values A2 > 0 and −B2 < 0. p2 is the tran-
sition rate from A2 to −B2 and q2 is the transition rate
from −B2 to A2. η(t) is the additive noise which takes two
value A3 > 0 and −B3 < 0. The transition rate from A3

to −B3 is p3 and the reverse rate is q3. We denote

D1 = A1B1, λ1 = p1 + q1, ∆1 = A1 −B1

D2 = A2B2, λ2 = p2 + q2, ∆2 = A2 −B2

D3 = A3B3, λ3 = p3 + q3, ∆3 = A3 −B3,

the statistical properties of the noises are

〈ξ(t)〉 = 0, 〈ψ(t)〉 = 0, 〈η(t)〉 = 0,

〈ξ(t)ξ (s)〉 = D1 exp (−λ1 |t− s|)
〈ψ(t)ψ (s)〉 = D2 exp (−λ2 |t− s|)
〈η(t)η (s)〉 = D3 exp (−λ3 |t− s|) .

To make 〈ξ(t)〉=0, 〈ψ(t)〉=0, 〈η(t)〉=0, the parameters of
noise satisfy the following equation

Aiqi = Bipi, i = 1, 2, 3.

Noticing that ξ(t), ψ(t), η(t) are independent, we have

〈ξ(t)ψ(t)ξ (s)ψ (s)〉 = D1D2 exp (−λ12 |t− s|)
〈ξ(t)η(t)ξ (s) η (s)〉 = D1D3 exp (−λ13 |t− s|)

λ12 = λ1 + λ2;λ13 = λ1 + λ3.

2.2 First-order moment

First, we introduce two properties of dichotomous noises:

– (Shapiro-Loginov formula) [37]. Assume ξ(t) and
x (t) are two stochastic processes. ξ(t) is a stochastic
process which satisfies

〈ξ(t)〉 = 0; 〈ξ(t)ξ (s)〉 = Dξ exp (−λ |t− s|),

and x (t) is some function of ξ(t), then we have the
following Shapiro-Loginov formula

〈
ξ(t)

dnx(t)

dtn

〉
=

(
d

dt
+ λ

)n
〈ξ(t)x(t)〉;

– assume ξ(t) is a asymmetric dichotomous noise
which takes two value A > 0 and −B < 0. The tran-
sition rate from A to −B is p and the inverse rate is
q. Then we have the following equation;〈

ξ2(t)x(t)
〉

= ∆ 〈ξ(t)x(t)〉+D 〈x(t)〉 ,

where

D = AB;∆ = A−B.

Now according to the properties introduced above, we
obtain the following equation by averaging over all real-
izations of the trajectory of the stochastic equation (5)
and using the Shapiro-Loginov formula

m
d2 〈x(t)〉

dt2
+

d2 〈ξ(t)x(t)〉
dt2

+ 2λ1
d 〈ξ(t)x(t)〉

dt

+λ21 〈ξ(t)x(t)〉+ γ
d 〈x(t)〉

dt
+ ω2 〈x(t)〉 = 0. (6)
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To find 〈ξ(t)x (t)〉, we multiply equation (5) by ξ(t) and
average it. Then we obtain

(m+∆1)
d2 〈ξ(t)x(t)〉

dt2

+ (2∆1λ1 + 2mλ1 + γ)
d 〈ξ(t)x(t)〉

dt

+
[
λ21 (m+∆1) + γλ1 + ω2

]
〈ξ(t)x(t)〉

+D1
d2 〈x(t)〉

dt2
= 0. (7)

Equations (6) and (7) are the homogeneous linear dif-
ferential equations of 〈x (t)〉 and 〈ξ(t)x (t)〉 with constant
coefficients. By applying results in Appendix A, we obtain
the steady-state solution of equations (6) and (7) as
follows:

〈x(t)〉st = 〈x(t)〉 |t→∞ = 0;

〈ξ(t)x(t)〉st = 〈ξ(t)x(t)〉 |t→∞ = 0;

and the characteristic equation

4∑
i=0

s1is
i = 0,

where

s14 = m2 +m∆1 −D1;

s13 = γ∆1 + 2mγ − 2D1λ1 + 2m∆1λ1 + 2m2λ1;

s12 = ω2∆1 + 2mω2 +m∆1λ
2
1 +m2λ21 + 3mγλ1 + γ2

+2γ∆1λ1 −D1λ
2
1;

s11 = γω2+2ω2∆1λ1+2ω2λ1+γ∆1λ
2
1+γmλ21 + γ2λ1;

s10 = ω2∆1λ
2
1 + ω2mλ21 + ω2γλ1 + ω4.

According to Routh-Hurwitz stability criterion, we obtain
the stability condition

s13s12 > s14s11; s11s12s13 > s14s
2
11 + s10s

2
13.

2.3 Second-order moment

In this part, we try to find the analytic expression of the
second-order moment of x(t). Firstly, we find the stochas-
tic differential equations of x2(t); secondly, we obtain the
ordinary differential equations of 〈x2(t)〉 by using Shapiro-
Loginov formula; finally, we obtain the analytic expression
of 〈x2(t)〉 by solving the differential equations. Noticing
that 〈x(t)〉 = 0, the second-order moment 〈x2(t)〉 is also
the variance of x(t).

Denote y1 = x2, y2 = x(dx/dt), y3 = (dx/dt)2, then dif-
ferentiate them, we can obtain the following stochastic

differential equations

dy1
dt

= 2y2

(m+ ξ)
dy2
dt

= (m+ ξ) y3 − γy2 − ω2y1

+A cosΩt · ψx+ ηx

(m+ ξ)
dy3
dt

= −2γy3 − 2ω2y2 + 2A cosΩt · ψdx

dt
+ 2η

dx

dt
.

(8)

In a similar way as Section 2.2, we average equation (8)
and equation (8) multiplied by ξ(t), then denotes

g1 = 〈y1〉 , g2 = 〈y2〉 , g3 = 〈y3〉
g4 = 〈ξy1〉 , g5 = 〈ξy2〉 , g6 = 〈ξy3〉,

the linear differential equations of g1∼ g6 can be written
as

dg1
dt
− 2g2 = 0

m
dg2
dt

+
dg5
dt

+ ω2g1 + γg2 −mg3 + λ1g5 − g6
= A cosΩt · 〈ψx〉+ 〈ηx〉

m
dg3
dt

+
dg6
dt

+ 2ω2g2 + 2γg3 + λ1g6

= 2A cosΩt ·
〈
ψ

dx

dt

〉
+ 2

〈
η

dx

dt

〉
dg4
dt

+ λ1g4 − 2g5 = 0,

D1
dg2
dt

+ (m+∆1)
dg5
dt
−D1g3 + ω2g4 + (mλ1 +∆1λ1

+γ) g5 − (m+∆1) g6 = A cosΩt · 〈ξψx〉+ 〈ξηx〉

D1
dg3
dt

+ (m+∆1)
dxg6

dt
+ 2ω2g5 + (mλ1 +∆1λ1

+2γ) g6 = 2A cosΩt ·
〈
ξψ

dx

dt

〉
+ 2

〈
ξη

dx

dt

〉
. (9)

To solve equation (9), we need to find 〈ψx〉, 〈ηx〉,
〈ψ(dx/dt)〉, 〈η(dx/dt)〉, 〈ξψx〉, 〈ξηx〉, 〈ξψ(dx/dt)〉 and
〈ξη(dx/dt)〉. In order to calculate them, we multiply
equation (5) by ψ, ξψ, η, ξη and average them. Then the
equations of 〈ψx〉,〈ξψx〉 and 〈ηx〉,〈ξηx〉 are obtained by
using properties of dichotomous noise.

m
d2 〈ψx〉

dt2
+ (2mλ2 + γ)

d 〈ψx〉
dt

+
(
mλ22 + γλ2 + ω2

)
〈ψx〉+

d2 〈ξψx〉
dt2

+ 2λ12
d 〈ξψx〉

dt

+λ212 〈ξψx〉 = AD2 cosΩt

D1
d2 〈ψx〉

dt2
+ 2D1λ2

d 〈ψx〉
dt

+D1λ
2
2 〈ψx〉+ (m+∆1)

×d2 〈ξψx〉
dt2

+ [2λ12 (m+∆1) + γ]
d 〈ξψx〉

dt

+
[
λ212 (m+∆1) + γλ12 + ω2

]
〈ξψx〉 = 0, (10)
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and

m
d2 〈ηx〉

dt2
+ (2mλ3 + γ)

d 〈ηx〉
dt

+
(
mλ23 + γλ3 + ω2

)
〈ηx〉+

d2 〈ξηx〉
dt2

+ 2λ13
d 〈ξηx〉

dt

+λ213 〈ξηx〉 = D3

D1
d2 〈ηx〉

dt2
+ 2D1λ3

d 〈ηx〉
dt

+D1λ
2
3 〈ηx〉

+ (m+∆1)
d2 〈ξηx〉

dt2
+ [2λ13 (m+∆1) + γ]

d 〈ξηx〉
dt

+
[
λ213 (m+∆1) + γλ13 + ω2

]
〈ξηx〉 = 0. (11)

By applying the result in Appendix A, the analytic expres-
sions of the steady-state solutions of equations (10) and
(11) can be written as following

〈ψx〉st = R1 cos (Ωt+ φ1) ; 〈ξψx〉st = R2 cos (Ωt+ φ2)

〈ηx〉st =
b13b22 − b12b23
b11b22 − b12b21

; 〈ξηx〉st =
b11b23 − b13b21
b11b22 − b12b21

,

where

R1 = |Hψ1 (jΩ)| , φ1 = arg (Hψ1 (jΩ))
R2 = |Hψ2 (jΩ)| , φ2 = arg (Hψ2 (jΩ)) ,

Hψ1 (s) =
a13a22 − a12a23
a11a22 − a12a21

, Hψ2 (s) =
a11a23 − a13a21
a11a22 − a12a21

,

a11 = ms2 + (2mλ2 + γ) s+
(
mλ22 + γλ2 + ω2

)
a12 = s2 + 2λ12s+ λ212
a13 = AD2

a21 = D1s
2 + 2D1λ2s+D1λ

2
2

a22 = (m+∆1) s2 + [2λ12 (m+∆1) + γ] s

+
[
λ212 (m+∆1) + γλ12 + ω2

]
a23 = 0

b11 = mλ23 + γλ3 + ω2, b12 = λ213, b13 = D3

b21 = D1, b22 = λ213 (m+∆1) + γλ13 + ω2, b23 = 0,

and the stability condition

si3si2 > si4si1; si1si2si3 > si4s
2
i1 + si0s

2
i3; i = 2, 3,

where

si4 = m2 +m∆1 −D1;

si3 = γ∆1 + 2mγ + 2m∆1λi + 2m2λi − 2D1λ1i − 2D1λi
+2m∆1λ1i + 2m2λ1i;

si2 = (γ + 2 (∆1 +m)λ1i) (γ + 2λim)

+ (∆1 +m)
(
mλ2i + γλi + ω2

)
+m

(
(∆1 +m)λ21i + γλ1i + ω2

)
−D1λ

2
i −D1λ

2
1i − 4D1λiλ1i;

si1 = (γ + 2λ1i (∆1 +m))
(
mλ2i + γλi + ω2

)
+ (γ + 2λim)

(
(∆1 +m)λ21i + γλ1i + ω2

)
−2D1λiλ

2
1i − 2D1λ

2
iλ1i;

si0 =
(
(∆1 +m)λ21i + γλ1i + ω2

) (
mλ2i + γλi + ω2

)
−D1λ

2
iλ

2
1i.

Furthermore, by using Shapiro-Loginov formula, we
obtain 〈

ψ
dx

dt

〉
st

= R3 sin (Ωt+ φ3) ;〈
ξψ

dx

dt

〉
st

= R4 sin (Ωt+ φ4) ;〈
η

dx

dt

〉
st

= λ3
b13b22 − b12b23
b11b22 − b12b21

;〈
ξη

dx

dt

〉
st

= λ13
b11b23 − b13b21
b11b22 − b12b21

,

where

R3 = R1

√
Ω2 + λ22, R4 = R2

√
Ω2 + λ212

φ3 = φ1 + arctan
(
−λ2

Ω

)
+ π

φ4 = φ2 + arctan
(
−λ12

Ω

)
+ π.

Now all of the right of equation (9) are calculated, and
can be written asu1...

u6

 cos 2Ωt+

v1...
v6

 sin 2Ωt+

w11

...
w61

+

w12

...
w62

,
where

u1 = 0; v1 = 0;w11 = 0;w12 = 0;

u2 =
1

2
AR1 cosφ1; v2 = −1

2
AR1 sinφ1;w21 = u2;

w22 = 〈ηx〉 ;
u3 = AR3 sinφ3; v3 = AR3 cosφ3;w31 = u3;

w32 = 2

〈
η

dx

dt

〉
;

u4 = 0; v4 = 0;w41 = 0;w42 = 0;u5 =
1

2
AR2 cosφ2;

v5 = −1

2
AR2 sinφ2;

w51 = u5;w52 = 〈ξηx〉 ;
u6 = AR4 sinφ4; v6 = AR4 cosφ4;w61 = u6;

w62 = 2

〈
ξη

dx

dt

〉
.

Now solve equation (9) by applying the method given in
Appendix A, we obtain the analytic steady-state expres-
sion of the second-order moment of x.〈

x2
〉
st

=
〈
x2
〉
|t→∞ = R sin (2Ωt+ θ) + α3, (12)
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where

R =
√

(α2 cosβ2 − α1 sinβ1)2 + (α1 cosβ1 + α2 sinβ2)2

θ =

arctan
(
(α1 cos β1+α2 sin β2)
(α2 cos β2−α1 sin β1)

)
α2 cosβ2 − α1 sinβ1 ≥ 0

arctan
(
(α1 cos β1+α2 sin β2)
(α2 cos β2−α1 sin β1)

)
+π α2 cosβ2 − α1 sinβ1 < 0

α1 = |Hx1 (2jΩ)| ;β1 = arg (Hx1 (2jΩ))
α2 = |Hx2 (2jΩ)| ;β2 = arg (Hx2 (2jΩ))
α3 = det (D1w) /det (D),

Hx1 (s) = det (C1u) /det (C)
Hx2 (s) = det (C1v) /det (C),

where Ciz and Diz, z = u, v are the matrix formed by
replacing the ith column of C and D by the column vector
z. And matrix C and D are

c11 = s; c12 = −2; c13 = c14 = c15 = c16 = 0;

c21 = ω2; c22 = ms+ γ; c23 = −m; c24 = 0;

c25 = λ1 + s; c26 = −1;

c31 = 0; c32 = 2ω2; c33 = ms+ 2γ; c34 = c35 = 0;

c36 = s+ λ1;

c41 = c42 = c43 = 0; c44 = s+ λ1; c45 = −2; c46 = 0;

c51 = 0; c52 = D1s; c53 = −D1; c54 = ω2;

c55 = ms+∆1s+mλ1 +∆1λ1 + γ;

c56 = − (m+∆1) ;

c61 = c62 = 0; c63 = D1s; c64 = 0; c65 = 2ω2;

c66 = ms+∆1s+mλ1 +∆1λ1 + 2γ;

and

d11 = 0; d12 = −2; d13 = d14 = d15 = d16 = 0;

d21 = ω2; d22 = γ; d23 = −m; d24 = 0;

d25 = λ1; d26 = −1;

d31 = 0; d32 = 2ω2; d33 = 2γ; d34 = d35 = 0; d36 = λ1;

d41 = d42 = d43 = 0; d44 = λ1; d45 = −2; d46 = 0;

d51 = d52 = 0; d53 = −D1; d54 = ω2;

d55 = mλ1 +∆1λ1 + γ; d56 = −m−∆1;

d61 = d62 = d63 = d64 = 0; d65 = 2ω2;

d66 = mλ1 +∆1λ1 + 2γ.

We have known that the average of the output is zero
in Section 2.2, therefore the second-order moment is the
variance of the response. Equation (12) shows that the
variance of x varies periodically with time. It repeats in
a sinusoidal fashion with amplitude R, frequency 2Ω and
phase θ. It indicates that although the mean of oscillator
displacement is zero at any time, but the mean of the dis-
tance between the harmonic oscillator and its equilibrium
position varies periodically with time. And the frequency
is twice than the input signal. The amplitude R is deter-
mined by m, γ, ω, Ω, A, λ1, D1, ∆1, λ2, D2 and average
α3 is determined by m, γ, ω, Ω, A, λ1, D1, ∆1, λ2, D2,
λ3, D3.

Because first-order moment is always zero, the second-
order at time t is the variance of the displacement of
oscillator at time t. The analytic solution indicates that
the variance of the displacement is a sinusoid with two
parameters α3 and R. α3 is the average of the variance
within a period which means the uncertainty of the hole
trajectory.

3 Stochastic resonance results

According to the results in Section 2, we find this system is
different from the harmonic oscillator subject to only one
multiplicative noise. The average of first-order moment of
this system is always zeros but the system with only one
multiplicative noise is a sinusoid and the amplitude has
SR phenomenon. By multiplying driven force by a colored
noise with zero mean, the mean of driven force becomes
zero at any time. It leads to the first-order is not periodic
and the SR disappear. By further studying, we find the
second-order moment of this system is a sinusoid. This
indicates that although the average of oscillator displace-
ment is zero at any time but the average of |x| hold the
periodicity by adding a new independent multiplicative
noise.

In this section, we will discuss the SR phenomena in
this system. Because the average of first-order moment
is zero, we focus on the SR of second-order moment. For
the convenience of analysis, we divide the huge number of
parameters into three classes, driven force parameters Ω,
A; noise parameters λ1, D1, ∆1, λ2, D2, λ3, D3; system
parameters m, γ, ω.

3.1 The bona fide stochastic resonance

In this part, we discuss the relationship between second-
order moment and driven force parameters. Obviously, the
second-order moment is multiplied by A, therefore we only
discuss the parameter Ω.

In Figures 1a and 1b, we plot the curves of the depen-
dence of the amplitude R and average α3 of the variance
on the Ω which is the frequency of the modulated noise
under different system frequency ω. The other parame-
ters are m = 5, γ = 1, A = 5, λ1 = 1, D1 = 3, ∆1 = 1.5,
λ2 = 1, D2 = 3, λ3 = 1 and D3 = 8.

As shown in Figures 1a and 1b, all the curves of the
amplitude and average have a non-monotonic behavior by
increasing the modulated noise frequency Ω. The bona
fide stochastic resonance [38] appears. The SR phenom-
ena of average shown in Figure 1a is one-peak SR, the
value of the resonant peak decrease and the position of
the resonant peak turn to right as increasing the system
frequency ω. The SR phenomena of amplitude shown in
Figure 1b is one-valley and one-peak SR. By increasing the
ω, the value of both peak and valley decrease, meanwhile
the position of both peak and valley turn to right.

3.2 The conventional stochastic resonance

In this part, we discuss the relationship between second-
order moment and noise intensity. Intensity of η(t) will not

https://epjb.epj.org/
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Fig. 1. The amplitude R and average α3 versus the modulated noise frequency Ω with various system frequency ω.

Fig. 2. The amplitude R and average α3 versus the noise intensity D1 and D2.
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Fig. 3. The amplitude R and average α3 versus the mass of harmonic oscillator with different λ1. The other parameters is
ω = π, γ = 1, A = 5, Ω = π/2, D1 = 3, D1 = 1.5, λ2 = 3, D2 = 3, λ3 = 2, D3 = 8.

Fig. 4. The amplitude R and average α3 versus the ω with various λ1. The other parameters is m = 5, γ = 1, A = 5, Ω = π/2,
D1 = 3, D1 = 1.5, λ2 = 3, D2 = 3, λ3 = 2, D3 = 8.

lead to SR phenomenon because it is an additive noise in
a linear system. We focus on the noise intensity of the two
multiplicative noises ξ(t) and ψ(t).

In Figure 2, we plot the curves of the dependence of
the amplitude R and average of variance α3 on the mass
fluctuation noise intensity D1 and modulated noise inten-
sity D2. The other parameters are m = 5, γ = 1, ω = π,
Ω = π/2, A = 5, λ1 = 1, D1 = 1.5, λ2 = 1, λ3 = 1,
D3 = 8.

In Figure 2 the average α3 of the variance is always
monotonically increasing at the noise intensities. But the
amplitude R have a non-monotonic behavior by increasing
the mass fluctuation noise intensity. Conventional stochas-
tic resonance occurs. But by increasing the modulated
noise intensity, R is monotonically increasing.

It indicates that in this system, the mass fluctuation is
still the main causation of conventional stochastic reso-
nance. By adding the modulated noise, the driven force
can choose two values at a fixed time, and the mean is
zero. Therefore, different from the system only has one
multiplicative noise, the average of first-order is zero in
this system. But we can find the periodicity of trajectories
by calculating second-order moment and the conventional
SR still occurs.

3.3 The generalized stochastic resonance

Gitterman used the term “stochastic resonance” in the
wide sense, meaning the nonmonotonic (resonance) depen-
dence of the output signal or some function of it

https://epjb.epj.org/
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Fig. 5. The amplitude R and average α3 versus λ1 and λ1. The other parameters are m = 5, γ = 1, A = 5, Ω = π/2, ω = π,
D1 = 3, D1 = 1.5, λ2 = 3, D2 = 3, D3 = 8.

Fig. 6. The amplitude R and average α3 versus λ3 with various
D3. The other parameters are m = 5, γ = 1, A = 5, Ω = π/2,
ω = π, λ1 = 1, D1 = 3, D1 = 3, λ2 = 3, D2 = 3.

(moments, autocorrelation functions, power spectrum or
signal-to-noise ratio) on the characteristics of the noise
(the noise amplitude or correlation time) [8] and this
phenomenon is often called generalized stochastic reso-
nance [9]. In this part, we discuss the relationship between
second-order moment and other parameters including
system parameters and correlation rate of noises.

Figure 3 which shows the dependence of the ampli-
tude and average on the mass of oscillator confirms the
existence of SR phenomenon. Figure 3a, when λ1 = 1,
λ1 = 10, the average has no SR phenomenon, and when
λ1 = 1.5, λ1 = 2, λ1 = 5, the SR phenomenon occurs. The
SR phenomena of average appears and then disappears by
increasing λ1. The SR phenomenon of amplitude always

exists with different λ1, and the resonant peak increases
by increasing λ1.

Indeed, we can multiply equation (5) by 1/m to nor-
malize the mass. The variety of mass can convert to noise
intensity, system frequency and friction constant. Further-
more, the SR of mass can convert to the SR of noise
intensity and system frequency which has been discussed
in Sections 3.1 and 3.2.

As Figure 4 shows, only curves of amplitude versus
ω have non-monotonic behavior and the peak increases
with the increase of λ1. The curves of average monotoni-
cally decrease at ω. Indeed, system frequency ω represents
as the restoring force, the displacement and uncertainty
of the oscillator should decrease by increasing ω with
fixed noise intensity and driven force. But according to
Section 3.1, there is a resonance between oscillator inter-
nal frequency and driving, so there is a resonant peak for
a fixed driven frequency. When ω→∞, both R and α3

decrease to zero, it is obviously that oscillator displaces
from its equilibrium position hardly with the increase of
restoring force.

In Figure 5, we plot the curves of the dependence
of α3 and R on the noise correlation rates λ1 and λ2.
The average and amplitude attain a minimum value by
increasing λ1. It means that reverse-resonance takes place.
Furthermore, the value of valley decreases by increasing
the correlation rate of modulated noise λ2. By increasing
λ2, both α3 and R decrease. Specifically, the periodically
modulated noise approaching white noise when λ2→∞,
the periodicity of driven force will disappear and lead to
R decrease to zero which means that periodicity of output
disappears.

According to the analytic expression, we have known
that the properties of η(t) does not influence R, we only
plot the curves of average α3 as a function λ3 in Figure 6
It is shown that average of 〈x2〉 presents a resonance struc-
ture with the increasing of λ3. And the increasing of D3

enhances the SR phenomenon.
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Fig. 7. The error of analytic solutions and average numerical solutions with simulation times N. The error in (a) and (c) is
defined by equation (13); the error in (b) and (d) is defined by equation (14). The parameters of (a) and (b) are m = 5, γ = 1,
A = 5, Ω = π/2, ω = π, λ1 = 1, D1 = 3, D1 = 1.5, λ2 = 1, D2 = 3, λ3 = 1, D3 = 8; the parameters of (c) and (d) are m = 5,
γ = 1, A = 5, Ω = π/5, ω = π, λ1 = 1, D1 = 3, D1 = 1.5, λ2 = 3, D2 = 30, λ3 = 2, D3 = 8.

The discussion in this part indicates that the proper-
ties of this system are like the system which has only mass
fluctuation. By multiplying driven force by a colored noise
with zero mean, the periodic first-order moment becomes
zero and does not exhibit these properties. But through
calculating the second-order moment, we can find the
periodicity of |x| and the SR phenomena in this system.

4 Numerical simulations

In this section, we chosen two groups of parameters to ver-
ify the analytical results by using numerical simulations.
The parameters are

– m = 5, γ = 1, A = 5, Ω = π/2, ω = π, λ1 = 1, D1 =
3, D1 = 1.5, λ2 = 1, D2 = 3, λ3 = 1, D3 = 8;

– m = 5, γ = 1, A = 5, Ω = π/5, ω = π, λ1 = 1, D1 =
3, D1 = 1.5, λ2 = 3, D2 = 30, λ3 = 2, D3 = 8.

We use Runge-Kutta 4th order method to calculate the
numerical solutions of equation (5) and we take the time
T = 100, time step Ts = 0.01, number of simulations N =
10 000.

In Figure 7, we plot the error of analytic solutions and
average numerical solutions with simulation times N. We
only consider the output at T > 50 to provide the numeri-
cal solution approach the steady-state solution. The error
of first-order and second-order are

iT∑
i=i0

(sxi −e xi)
2
, (13)
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Page 10 of 12 Eur. Phys. J. B (2018) 91: 26

Fig. 8. The curves are analytical results and the circles are the numerical results. The other parameters are m = 5, γ = 1,
A = 5, λ1 = 1, D1 = 3, D1 = 1.5, λ2 = 1, D2 = 3, λ3 = 1, D3 = 8 in (a) and m = 5, γ = 1, A = 5, Ω = π/2, ω = π, λ1 = 1,
D1 = 3, D1 = 3, λ2 = 3, D2 = 3 in (b).

iT∑
i=i0

(
sx

2
i −e x2i

)2
, (14)

where sxi is the averaged numerical solutions, exi is
the analytic solutions, sx

2
i is the averaged of square of

numerical solutions and ex
2
i is the square of analytic

solutions.
According to the results, in Figure 8, we add the numer-

ical results to Figures 1a and 6 withN = 2500 to verify the
SR phenomena by presenting agreement of the simulation
and analytics. As shown in Figure 8, the numerical results
present SR phenomena and agree well with the analytical
results.

5 Conclusions

In this paper, we study a harmonic oscillator subject to
random mass and periodically modulated noise. Many
practical systems can be modeled as this harmonic oscil-
lator, for example, an RLC electrical circuit subject to
a voltage V (t) multiplied by a noise with a fluctuation
inductance L. We obtain the analytic expression of the
first-order and second-order moments. In this system, the
second-order moment equal to the variance. According to
the analytic expressions, we found different results from
the other driven harmonic oscillator investigated. By mul-
tiplying driven force by a colored noise with zero mean, the
mean of driven force becomes zero at any time. It leads
to the first-order is not periodic and the SR disappear.
The second-order moment of this system is a sinusoid and
the frequency is twice than the input signal frequency. It
indicates that although the average of oscillator displace-
ment is always zero, the distance between oscillator and
its equilibrium position varies periodically. The average
and amplitude are determined by the parameters of the

system and noise. Furthermore, we found various SR phe-
nomenon occurs in this system: (1) bona fide SR with
period of the modulated noise; (2) conventional SR with
intensity of the mass fluctuation noise; and (3) generalized
SR with other system parameters and correlation rate of
the noise.

This work was supported by the National Natural Science
Foundation of China (grant number 11301361).
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Appendix A

Here we give some results of second-order nonhomoge-
neous linear differential equations with constant coeffi-
cients used in this paper. For any n-order differential
equations, we can denote new variables y1 = x, yi =
di−1x
dti−1 , i = 2, . . . , n, then the n-order equations can be
replaced by a one-order equation. Therefore, without loss
of generality, we consider the following equations

A1


dx1

dt
...

dxn

dt

+A2

x1...
xn

 = f,x(0) = x0. (A.1)

If f =
∑M
m=1 fm, the solutions of equation (A.1) is the

sum of the solutions of following equations

A1


dx1

dt
...

dxn

dt

+A2

x1...
xn

 = 0,x(0) = x0−
M∑
m=1

x0m, (A.2)
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and

A1


dx1

dt
...

dxn

dt

+A2

x1...
xn

 = fm,x(0) = x0m,m = 1, . . . ,M.

(A.3)
The characteristic equation of equations (A.1)–(A.3) is

det(sA1 +A2) = 0.

According to the theory of linear differential equations, if
all roots of the characteristic equation of equation (A.1)
have negative real part, then for all x(0) the solutions of
equation (A.2) satisfies

lim
t→∞

x(t) = 0.

Furthermore, let t→ +∞, the influence of the initial con-
ditions will vanish. Instead of solving the characteristic
equation, we can obtain that equation (A.1) is stability or
not by using Routh-Hurwitz stability criterion.

In this paper, fm is either constant or sinusoid, we will
give the solution of equation (A.3) in the following when
fm is constant or sinusoid.

Firstly, we solve the equation (A.3) when fm is con-

stant. Assume fm = (c1, . . . , cn)
T

and xi = ci1t+ ci0, i =
1, . . . , n, and insert into equation (A.3), we have

(
A2 0
A1 A2

)


c11
...
cn1
c10
...
cn0


=



0
...
0
c1
...
cn


. (A.4)

We can obtain the solution of equation (A.3) by solv-
ing the linear algebraic equation (A.4), particularly if
det (A2) 6= 0, we have

x = A−12

c1...
cn

,
with initial condition

x(0) = A−12

c1...
cn

.
Secondly, consider fm = C sinΩt, where C is a column
vector. By using Laplace transformation and denoting
x0 = 0, we obtain

A

X1

...
Xn

 = C
Ω

s2 +Ω2
, (A.5)

where A = (sA1 +A2) and Xi is the Laplace transforma-
tion of xi. Solve equation (A.5), we have

Xi (s) = Hi (s)
Ω

s2 +Ω2
=

det (Aic)

det (A)

Ω

s2 +Ω2
,

where Aic is the matrix A formed by replacing the ith
column of A by the column vector C. Use inverse Laplace
transformation, the solution for equation (A.3) can be
written as the following

xi =

∫ t

0

hi (t− τ) sin (Ωt) dτ, (A.6)

where hi(t) is the inverse Laplace transformation. From
the points of signal and system, xi can be regarded as the
response of system Hi (s) to the sine signal input. Thus,
we can calculate (A.6) without using inverse Laplace
transformation, xi can be written as

xi = R sin (Ωt+ φ) ,

where

R = |Hi (jΩ)| ;φ = arg(Hi(jΩ)).
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