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Abstract. Individuals building populations are subject to variability. This variability affects progress of
epidemic outbreaks, because individuals tend to be more or less resistant. Individuals also differ with respect
to their recovery rate. Here, properties of the SIR model in inhomogeneous populations are studied. It is
shown that a small change in model’s parameters, e.g. recovery or infection rate, can substantially change
properties of final states which is especially well-visible in distributions of the epidemic size. In addition
to the epidemic size and radii distributions, the paper explores first passage time properties of epidemic
outbreaks.

1 Introduction

The SIR (Susceptible-Infectious-Recovered) model [1–3]
is a well-known, classical example of an epidemiological
model. Originally, it has been suggested and studied in
the continuous limit [4]. The SIR model is considered as a
starting point for epidemiological modeling of many dis-
eases. Therefore, various extensions [5] to the model have
been suggested and explored. In particular, they include
modification of possible states and system topology. These
alternations are usually introduced to the discrete version
of the SIR model, which is suitable for extensions and
modifications.

Observations of epidemics progress and their spatial
patterns show that real populations are not homogeneous
but intrinsically heterogeneous. Every population consists
of individuals which share common features but are not
exactly the same. Heterogeneity of a population can be
introduced in various ways. The most common approach
is to divide populations into smaller groups, which differ
with respect to their characteristics/traits [6,7]. Another
possibility is to assume that traits. e.g. susceptibility or
infectivity, follow continuous distributions [8–13]. Some of
such heterogeneous models, by means of nonlinear trans-
formations [9], can be mapped into homogeneous models.
Population heterogeneity at the level of infection proba-
bility can be studied using percolation theory [14,15] or
agent-based modeling [16,17].

Inhomogeneity in epidemiological models not only af-
fects individuals but also connections among them [18,19].
Variable connectivity changes progress of epidemics.
Heterogeneity of connections decreases the epidemic
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threshold. This fact is especially well-visible in case of
epidemics on scale-free networks. In the thermodynamic
limit, due to the presence of highly connected hubs, there
is no infection threshold on scale-free networks [20,21].
Nevertheless, it can be reintroduced by an appropriate
vaccination strategy [22].

Epidemiological processes are inherently stochastic
due to the random nature of infection and recovery pro-
cesses. The contact between susceptible and infectious in-
dividuals is necessary for infection but does not guarantee
that an infection indeed takes place. In the case of the SIR
model in the inhomogeneous population the stochasticity
has two sources. The stochasticity of epidemiological sys-
tems is extended by the already mentioned variability of
individuals. Therefore, a general population consists of in-
dividuals which are more or less vulnerable to infections.
Similarly, some of individuals are capable of fast recovery,
while others recover slowly. The presence of such individ-
uals is a key element for creation of infection paths and
islands of isolated, uninfected individuals.

Individuals’ heterogeneity affects the average epi-
demics size and the invasion probability. If only the sus-
ceptibility is varied, less homogeneous populations are less
likely to be invaded and consequently epidemic size is
reduced [10,15,23]. Increasing heterogeneity reduces the
chances of large outbreaks due to the possibility of creat-
ing impenetrable firewalls [14]. For negatively correlated
infectivity and susceptibility the final size of epidemic is
larger than in homogeneous case [24]. Finally, using perco-
lation theory, it has been also shown that the increase of
the average transmissibility increases the invasion prob-
ability. Contrary to the average transmissibility, an in-
crease in the standard deviation of transmissibility re-
duces the invasion probability and decreases the epidemic
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size [11,12] showing again that heterogeneity can decrease
epidemic size.

Using Monte Carlo methods [25], we study the modifi-
cation of the Kermack-McKendrick model. We extend the
discrete lattice SIR model to take into account simulta-
neous variability in susceptibility and recovery rates. At
the same time the connectivity among individuals is fixed
and limited to the von Neuman neighborhood only. The
model studied here is similar to ones considered in [11,12]
and [14,15]. In contrast to [11,12], within the studied
model, the time is discrete, resulting in the replacement of
infection and recovery rates by appropriate probabilities
per time step. Moreover, within presented studies more
quantifiers characterizing epidemics are examined. Here,
along with the examination of the epidemic size distri-
bution and the invasion probability we study temporal
properties like the epidemic duration and the first time to
reach a given radius or size. Contrary to [14,15], variability
is also included in the recovery rate.

Exploration of epidemic properties in heterogeneous
populations is very important because an epidemic con-
stitutes one of the processes that can significantly affect
proper functioning of societies [26,27]. It can result in sig-
nificant economic losses. Identification of the role of in-
homogeneity is crucial for understanding the dynamics of
plant [28,29], animal [30] and human epidemics [31].

The manuscript is organized in the following way: Sec-
tion 2 (Model) presents the lattice SIR model in inho-
mogeneous populations, Section 3 (Results) discusses ob-
tained results. Finally, the paper ends with Summary and
Conclusions (Sect. 4).

2 Model

We are studying the lattice SIR (Susceptible-Infectious-
Recovered) model [1] using computer simulations. The
population of N individuals is divided into three classes
of individuals: S – susceptible, I – infected and R – recov-
ered. In every time step, any susceptible individual, let say
i, can be infected with the probability PI(i) due to a con-
tact with an infectious neighbor. After becoming infected,
an infectious individual can spontaneously recover with
the probability PR(i). Recovered individuals are immune,
i.e. they cannot be re-infected. The population is inho-
mogeneous, therefore every individual is characterized by
probabilities per time step to become infected PI(i) and
to recover PR(i). The (total) probability of infecting a sus-
ceptible individual i during a single iteration (MC step),
see below, is

PS→I(i) = 1 −
∏

j∈N (i)

[1 − PI(i)]Θ(j)
, (1)

where N (i) represents the nearest neighbors of the ith
individual and Θ(j) is the indicator function showing
whether a neighbor j is infectious or not

Θ(j) =

{
0 if j is not infectious

1 if j is infectious.
(2)

Probabilities (per time step) of becoming infected PI and
spontaneous recovery PR are independent and distributed
according to the truncated normal density on [0, 1]

f(P, μ, σ) =

⎧
⎨

⎩

0 for x /∈ [0, 1]

1√
2πσ2C

exp
[
− (P−μ)2

2σ2

]
for x ∈ [0, 1]

(3)

for different values of μI , σI and μR, σR respectively,
where C is the normalization constant C = [erf(μ/

√
2σ)−

erf((μ − 1)/
√

2σ)]/2. If 0 � μI � 1 and 0 � μR � 1, μI

and μR are modal values of infection and recovery prob-
abilities (per time step) respectively. If μ < 0 (μ > 1),
the modal value is located at 0 (1). Finally, σI and σR

control distribution width, but they do not have a sim-
ple interpretation, as appropriate standard deviations are
nonlinear functions of σI (σR) sensitive to the choice of μI

(μR). Moreover, an increase of σ increases (decreases) the
mean value of the appropriate probabilities if μ is smaller
(larger) than 0.5, see below and Table 2. The infection and
recovery probabilities per time step PI(i) and PR(i) have
been generated at the system initiation.

A special type of the probability density, see equa-
tion (3), originates in the commonness of the normal dis-
tributions. The shape of the density follows a general
intuition that there are some typical (modal) values of
infection and recovery rates. Moreover, within the pop-
ulation there are individuals whose traits take larger or
smaller values than typical (most likely) value. Finally,
from the simulation point of view, alternations of param-
eters in equation (3) allow for an easy modification of the
most probable (modal) values and transition from full ho-
mogeneity (σ → 0) to full heterogeneity (σ → ∞). Thus,
the special type of the distribution (3) allows easy control
of population properties.

Epidemics spread on the square lattice of size 101×101.
Every outbreak is characterized by its size s, duration T
and radius r, which is the Manhattan distance between
the first infected (patient zero) individual and the most
distant infected agent. Initially, there is only one infected
individual which is placed in the center of the lattice. Each
agent interacts locally only with its four nearest neighbors
in its von Neuman neighborhood. The model is studied
by means of Monte Carlo methods [25]. Every MC step
consists of: (i) infecting all susceptible individuals (hav-
ing infected neighbors) and (ii) spontaneous recovery of
all infected individuals according to the mechanisms de-
scribed above. The MC steps are repeated as long as there
are infectious individuals in the system. The number of
performed steps defines the epidemic duration T . Simula-
tions were repeated 104 times for each set of μI , σI , μR

and σR parameters. Furthermore, two different boundary
conditions were considered: free and periodic. The main
scope is to find how the population heterogeneity affects
dynamics of epidemics (severity, duration) and properties
of final states.
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3 Results

The epidemic dynamics depends on the four model’s pa-
rameters μI , σI , μR, σR, which control the shape of distri-
butions from which epidemics’ parameters are generated.
The mean value of the infection probability per time step
〈PI〉 (recovery probability per time step 〈PR〉) grows with
the increase of μI (μR). Moreover, for μI < 0.5 (μR < 0.5)
the mean value of 〈PI〉 (〈PR〉) is an increasing function of
σI (σR), while for μI > 0.5 (μR > 0.5) it is a decreas-
ing function of σI (σR). In the limiting case of μI = 0.5
(μR = 0.5), the modal value is equal to the mean value
〈PI〉 (〈PR〉). Standard deviations of infection and recov-
ery probabilities are weakly sensitive to the exact choice
of μI and μR, but they are increasing functions of σI and
σR. Values of these parameters determine the average epi-
demic size, see Figure 1, and the mean duration, see Fig-
ure 2. Figures 1 and 2 present results as a function of
modal values of the infection probability per time step μI

and the modal value of the recovery probability per time
step μR for fixed values of σI and σR for free boundary
conditions. One can expect that a small infection probabil-
ity and a large recovery probability can reduce the number
of infected individuals, i.e. the epidemic size. This indeed
is visible in Figure 1. Moreover, the small epidemic size is
associated with the short epidemic duration, see Figure 2.

The top panel of Figure 1 demonstrates results for
a homogeneous population (σI = σR = 0 resulting in
PI = μI and PR = μR), while the middle and bottom
panels for inhomogeneous (σI > 0 and σR > 0) cases. The
inhomogeneity of infection and recovery rates changes the
domain in which epidemic outbreaks are observed. Hetero-
geneity seriously affects the duration of epidemics, which
is significantly longer than for homogeneous populations,
compare the top, middle and bottom panels of Figure 2.
The differences in epidemic progress are due to variability
of individuals. The variability of the infection rate deter-
mines which individuals can be easily infected and which
individuals are resistant. Resistant individuals are capa-
ble of building firewalls [14], while irresistant individuals
determine paths along which epidemics can easily spread.
Figure 1 indicates that increasing σI , in line with earlier
investigations [10,23], might decrease the epidemic size,
see the top, bottom and middle panels of Figure 1.

Subsequently, Figures 3–6 display epidemic character-
istics (the distribution of epidemic size s and radius r, the
average first time 〈T (s)〉 to infect a chosen size s, the aver-
age time 〈T (r)〉 to infect a given radius r for the first time,
and the distribution of epidemic duration T ) for periodic
(full symbols) and free (empty symbols) boundary con-
ditions. Different figures correspond to various model pa-
rameters. These figures demonstrate in detail how hetero-
geneity changes epidemic dynamics. Consequently, they
are used to explain the observed phenomena.

First of all, heterogeneity changes the mean value of
probabilities 〈PI〉 and 〈PR〉 except the case when μI = 0.5
and μR = 0.5. It causes significant differences in dynamics
of epidemics between sets of parameters with very simi-
lar values of σ. For example, it can be seen for μI = 0.2,
μR = 0.1, σI = 0.1 with σR = 0.2 (Fig. 3) and σR = 0.3

Fig. 1. The average epidemic size 〈s〉 (as a percentage of the
system size) as a function of modal values of infection μI and
recovery μR probabilities per time step for σI = 0, σR = 0 (top
panel), σI = 0.5, σR = 0.3 (middle panel) and σI = 0.1, σR =
0.5 (bottom panel).

(Fig. 4). For the lower value of σR, if a disease does not
end on the first individual, it spreads through almost 90%
of a population. In this case an epidemic either reaches a
radius smaller than 4 or equal to the maximum possible
radius (r = 100), which is the Manhattan distance from
the initially infected individual to the agent located in the
grid corner. For σR = 0.3, see Figure 4, the description
is drastically changed. The probability that an epidemic
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Fig. 2. The average epidemic duration 〈T 〉 as a function of
modal values of infection μI and recovery μR probabilities per
time step for σI = 0, σR = 0 (top panel), σI = 0.5, σR = 0.3
(middle panel) and σI = 0.1, σR = 0.5 (bottom panel).

reaches a given size decreases when the epidemic size is
growing. Most epidemics still end on the lowest or the
largest radius, but it is more likely to observe the final ra-
dius somewhere between these two limiting values. More-
over, epidemics spread faster, as measured by 〈T (s)〉 and
〈T (r)〉, when heterogeneity in PR is lower, i.e. when σR is
reduced and consequently the variance of PR is smaller.
The epidemic duration displays a different pattern because

Fig. 3. Distributions of the epidemic size s (top left panel) and
radius r (top right panel). The middle panel shows the average
time 〈T 〉 needed to infect a domain of the size s (middle left
panel) or the radius r (middle right panel) for the first time.
The bottom panel shows the distribution of epidemic dura-
tion. Full symbols correspond to periodic while empty symbols
to free boundary conditions. Simulation parameters μI = 0.2,
μR = 0.1, σI = 0.1 and σR = 0.2.

it is not only determined by the infection but also by the
recovery, see below.

Different effects are observed for μI = 0.1, μR = 0.5,
σI = 0.5 with σR = 0.2 (Fig. 5) and σR = 0.5 (Fig. 6).
For these parameters the mean value of the recovery prob-
ability is equal to μR (〈PR〉 = μR). At the same time
〈PI〉 is different than μI but it is the same in both fig-
ures. The increase of σR increases the probability that
epidemics reach at least one of the lattice corners (maxi-
mum radius). Even a greater σR increases the chances that
epidemics spread beyond the initially infected individuals
and reach large final sizes. For σR � 0.3, more outbreaks
reach a modal value of epidemic size and the modal value
increases, see Figure 6. The rate of epidemic spread is also
slightly increased, which is manifested by the decreasing
time needed to reach the same size or radius. This behav-
ior can be explained by the heterogeneity of a population,
which makes individuals with extreme recovery rates ap-
pear more often in the population. If one of the initially
infected individuals has a high recovery probability (per
time step) PR, an epidemic ends early reaching a small
size. In the opposite case, every individual with a low re-
covery probability per time step has more opportunities
to infect neighbors, thus chances of spreading a disease
through neighborhood are higher, even if neighbors are
characterized by a low infection rate. This dependence can
be found for every set of parameters when the mean value
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Fig. 4. The same as in Figure 3 for σR = 0.3.

of the recovery probability per time step is equal to the
modal value 〈PR〉 = μR = 0.5 and the mean value of
the infection probability per time step is constant. Never-
theless, for many sets of parameters for which this effect
appears, it can be hard to recognize due to influence of PI .

The situation when the mean value of the infection
probability per time step is equal to the modal value
〈PI〉 = μI = 0.5 and the mean value of the recovery proba-
bility per time step is constant can be also easily analyzed.
In this case the modal value of epidemic size is decreas-
ing with the increasing heterogeneity of the infection rate.
Moreover, the rate of epidemics’ spread is lower.

The top panels of Figures 3 and 4 show spatial prop-
erties of final states. The top left panels demonstrate epi-
demic size distributions P (s), while the top right pan-
els epidemic radii distributions P (r) i.e. the Manhattan
distance between the initially infected individual and the
most distant infected agent. The maximal possible dis-
tance is obtained when the outbreak reaches corners of
the grid, i.e. r = 100 for the lattice 101× 101. Depending
on parameters’ values, epidemic outbreaks can be char-
acterized by a typical size and radius. In the epidemic
size distribution and epidemic radii distribution there are
peaks corresponding to small sizes and small radii. These
peaks are due to epidemics which end at a very small size
due to the immediate recovery. Moreover, if the recovery
rate is large enough and the infection rate is small enough,
epidemics die out rapidly giving rise to a fast decay of the
epidemic size distribution. Nevertheless, there are situa-
tions when despite a significant probability that epidemics
end immediately there are many outbreaks (realizations)
infecting the majority of the population, see Figure 3. Sur-
prisingly, this behavior can be significantly changed by a
small change in σR, see Figure 4. In Figure 4, all parame-

Fig. 5. Distributions of the epidemic size s (top left panel) and
radius r (top right panel). The middle panel shows the average
time 〈T 〉 needed to infect a domain of the size s (middle left
panel) or the radius r (middle right panel) for the first time.
The bottom panel shows the distribution of epidemic dura-
tion. Full symbols correspond to periodic while empty symbols
to free boundary conditions. Simulation parameters μI = 0.1,
μR = 0.5, σI = 0.5 and σR = 0.2.

ters except σR, are the same as in Figure 3, which is set to
σR = 0.3. Therefore, it is slightly larger than in Figure 3
where σR = 0.2. The increase in σR results in the increase
of 〈PR〉 which determines the recovery rate. Consequently,
the recovery rate is large enough to completely diminish
the pronounced peak visible in Figure 3 around s ≈ 8000.
This also implies that epidemics reach mainly small radii.
In Figures 5 and 6, the average infection and recovery
probabilities per time step are larger than in Figures 3
and 4, although, on average, epidemics are less severe be-
cause larger chances of infection are compensated by a
faster recovery. Only in Figure 6 a local maximum of P (s)
is well-visible especially for periodic boundary conditions.
Otherwise, P (s) is a decreasing function of the epidemic
size s.

In general, the distance distribution is not only a func-
tion of the model’s parameters but also of a system size.
In order to very the sensitivity of obtained results to the
system size some of simulations have been performed for
the two times larger system. When epidemics infect large
fraction of individuals, like in Figures 3 and 6, there are
only minor quantitative differences. Otherwise, in situa-
tions when epidemic outbreaks are limited, like in Fig-
ures 4 and 5, despite quantitative differences qualitative
behavior is the same.

The middle panels of Figures 3–6 demonstrate tem-
poral properties of epidemic spread. The middle left pan-
els present the average first time 〈T (s)〉 to infect a given
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Fig. 6. The same as in Figure 5 for σR = 0.5.

size s, while the middle right panels the average first time,
〈T (r)〉, to reach a given radius r. The mean first time
〈T (r)〉 needed to infect a cluster of the radius r scales al-
most linearly with r. This can be intuitively explained by
the fact that in every time step the radius can increase by
1 at most giving rise to the linear growth of r. In practical
situations the slope is larger than 1 because the (average)
infection probability is smaller than 1. Moreover, the re-
covery process further slows down the growth rate of the
infected region. An increase in the average recovery prob-
ability per time step 〈PR〉 leads to a slower growth of the
〈T (r)〉, compare Figures 3 and 4. Analogously, the rate of
the epidemic spread is larger in Figures 5 and 6 than in
Figures 3 and 4 due to the increase in the average infec-
tion probability per time step 〈PI〉 which facilitates the
epidemic spread, see the middle panels of Figures 3–6 and
Table 1.

The growth of the mean first time to reach a given size
s is limited by topological properties of the system. The
type of the neighborhood restricts the maximal possible
growth rate of the epidemic size which is further reduced
by the recovery process and finite (smaller than 1) infec-
tion probability. Initially, 〈T (s)〉 grows like s1/2, because
the epidemic size grows with the distance r to the initially
infected individual as r2 and the radius grows (approxi-
mately) linearly in time, i.e. r ∝ t. Here, analogously, like
for 〈T (r)〉, the increase in the mean infection probability
per time step 〈PI〉 increases the growth rate, see for ex-
ample Figures 4 and 5. The increase in 〈PR〉 reduces the
growth rate, see Figures 3 and 4.

Finally, the bottom panels of Figures 3–6 show distri-
bution of the epidemic duration P (T ). The exact shape
of P (T )s depends on the model parameters, which also
determine the size and the rate of epidemic spread and

Table 1. Average values of parameters and characteristic
quantifiers for Figures 3–6: the average infection probability
per time step 〈PI〉, the average recovery probability per time
step 〈PR〉, the average transmissibility 〈Ψ〉, the average epi-
demic size 〈s〉, the average epidemic duration 〈T 〉 and the (lin-
ear) slope α in the average time to reach a given radius r, i.e.
〈T (r)〉 = αr + β.

Figure 3 Figure 4 Figure 5 Figure 6
μI 0.2 0.2 0.1 0.1
σI 0.1 0.1 0.5 0.5
μR 0.1 0.1 0.5 0.5
σR 0.2 0.3 0.2 0.5
〈PI〉 0.21 ± 0.09 0.21 ± 0.09 0.38 ± 0.25 0.38 ± 0.25
〈PR〉 0.20 ± 0.13 0.27 ± 0.19 0.5 ± 0.19 0.5 ± 0.26
〈Ψ〉 0.58 ± 0.22 0.52 ± 0.23 0.52 ± 0.27 0.54 ± 0.28
〈s〉 6152 ± 34 808 ± 11 935 ± 11 2139 ± 19
〈T 〉 1405.8 ± 8.8 561.3 ± 6.1 196.0 ± 2.4 638.0 ± 5.7
α 2.71 3.57 1.88 1.85

in turn the epidemic duration T . The general shape of
P (T ) curves follow predictions of [32]. If epidemics do
not finish immediately at small sizes, they are likely to
last long. The duration of epidemics is determined by two
main factors. The first factor is the moment when the
last infection takes place, which is the epidemic first time
to reach its final size. The last infection is followed by
the recovery of infected individuals only. After reaching
the maximal size (maximal value of R + I), the remain-
ing duration time depends on the recovery of infected
individuals only. For non-homogeneous populations, the
rate of the recovery process is determined by individuals
with extremely low recovery probabilities per time step,
which significantly contribute to the epidemic duration be-
cause the average time that an individual needs to recover
is ∝1/PR. Such individuals always exist in inhomogeneous
populations. Moreover, the growth in the distribution of
PR width increases the chances of observing individuals
with the very low recovery rates. This relation is visible
in Figures 3–6 and Table 1, namely in situations when
an outbreak is large. Then its duration is likely to be
extended.

The probabilities (per time step) of becoming infected
PI and recovery PR have been adjusted at the beginning
of simulations. Consequently, the same set of parameters
has been used for all realizations. Nevertheless, we have
checked whether the model properties change when PI and
PR vary among realizations. We have not observed any dif-
ferences between these two ways of assigning probabilities
(results not shown).

In order to verify the role of boundary conditions, sim-
ulations with free and periodic boundary conditions have
been performed. Boundary conditions have an observable
influence when epidemics reach edges of the lattice. In
this case, the epidemic size is characterized by a larger
modal value for periodic boundary conditions than for
free boundary conditions. Also for the periodic boundary
conditions the modal value is reached by more outbreaks
but fewer epidemics end at an intermediate size between
0 and the mode. This difference is related to the number
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of trajectories connecting individuals on the edge of the
lattice with any other individual. Otherwise, quantitative
differences between results for free and periodic boundary
conditions are not significant, compare filled and empty
points in Figures 3–6.

The condition when the epidemic outbreak is observed
can be deducted from transmissibility [11,12]. The trans-
missibility Ψ(PI , PR) is a probability that an epidemic is
transmitted from an infected individual to a susceptible
one, i.e. it is a probability of transmission along the link
connecting these two agents. It plays a similar role to the
bond or site opening probability in the percolation the-
ory [33,34]. The transmissibility takes into account the
infection and the recovery processes, as well as inhomo-
geneity of the population. If PI is the infection probabil-
ity (per time step) and PR is the recovery probability (per
time step), the transmissibility Ψ(PI , PR) is

Ψ(PI , PR) =
∞∑

k=1

(1 − PR)k−1PR ×
[
1 − (1 − PI)k

]

=
PI(PR − 1)

(1 − PR)(PIPR − PI − PR)
. (4)

In equation (4), (1 − PR)k−1PR is a probability that an
infected individual stays infectious for k iterations and
1 − (1 − PI)k is the probability of infecting a susceptible
individual during these k consecutive iterations. An in-
homogeneous system can be characterized by the average
transmissibility

〈Ψ〉 =
∫ 1

0

∫ 1

0

Ψ(PI , PR)f(PI , μI , σI)

× f(PR, μR, σR)dPIdPR, (5)

where f(x, μ, σ) is the PI and PR distribution given by
equation (3). The average transmissibility is calculated nu-
merically. Figure 7 presents a percolation-like analysis cor-
responding to the results depicted in Figures 1 and 2. The
figure shows two characteristics used in order to detect the
percolation: the average epidemic size 〈s〉 and the proba-
bility that epidemics reaches a given radius, i.e. r = 50.
Due to the fact that epidemics start from a single infected
site, the average epidemic size is equivalent to the proba-
bility that a given site belongs do the largest (dominating)
cluster, which is used as a standard percolation quanti-
fier [34]. Figure 7 suggests that epidemic start to be ob-
served for the average transmissibility located somewhere
between the bond (0.5) and the site percolation (0.592)
thresholds, which is in accordance with earlier theoreti-
cal and experimental considerations [11,12]. Mean values
of the model parameters along with selected properties of
final states are included in Table 1.

Complementary to the previous analysis based on in-
fection and recovery rates, the average transmissibility can
be used to explain phenomena depicted in Figures 3–6.
The average transmissibility 〈Ψ〉 in the subsequent figures
is equal to 0.58, 0.52, 0.52, 0.54, see Table 1. The change
in σR from σR = 0.2 to σR = 0.3, see Figures 3 and 4,
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Fig. 7. The probability that a given site belongs to the largest
cluster (‘�’) and the probability that an epidemic leaves a circle
with r = 50 (‘•’) for σI = 0, σR = 0 (top panel), σI = 0.5, σR =
0.3 (middle panel) and σI = 0.1, σR = 0.5 (bottom panel) as
a function of the average transmissibility 〈Ψ〉. Straight solid
lines represent the bond (0.5) and the site (0.592) percolation
thresholds. Free boundary conditions are assumed.

decreases the 〈Ψ〉 from 0.58 (a value close to the site per-
colation) to 0.52 (a value close to the bond percolation)
explaining changes in epidemic severity as measured by
the epidemic size distribution P (s). In Figures 5 and 6, the
increase in σR resulted in the increase of the average trans-
missibility. This in turn is responsible for higher chances
of observing outbreaks characterized by larger radii and
sizes.

The studied model displays non-trivial sensitivity to its
parameters. Sometimes general conclusions can be difficult
to draw because changes in heterogeneity usually also af-
fect the mean values of parameters. Therefore, as indicated
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Table 2. The dependence of the average transmissibility 〈Ψ〉
on σI and σR as a function of μI and μR.

0 < μI < 0.5 0.5 � μI < 1

0 < μR < 0.5 σI ↑: 〈PI〉 ↑, 〈Ψ〉 ↑ σI ↑: 〈PI〉 ↓, 〈Ψ〉 ↓
σR ↑: 〈PR〉 ↓, 〈Ψ〉 ↑ σR ↑: 〈PR〉 ↓, 〈Ψ〉 ↑

0.5 � μR < 1 σI ↑: 〈PI〉 ↑, 〈Ψ〉 ↑ σI ↑: 〈PI〉 ↓, 〈Ψ〉 ↓
σR ↑: 〈PR〉 ↑, 〈Ψ〉 ↓ σR ↑: 〈PR〉 ↑, 〈Ψ〉 ↓

in the manuscript, it can be difficult to distinguish
whether an observable effect can be attributed to changes
in average values of parameters or to their standard
deviations.

Changes in the average transmissibility responsible for
differences among Figures 3–6 are due to changes in the
average values of the infection 〈PI〉 and recovery 〈PR〉
probabilities per time step. These changes can be intro-
duced by modifications of parameters of the probability
density (3). Table 2 indicates how the average transmissi-
bility 〈Ψ〉 changes with changes in σI and σR depending
on the modal values μI and μR. The dependence of the
average transmissibility on μI and μR is simpler: it is an
increasing function of μI and a decreasing function of μR.

Within the model it is assumed that the probability
per time step of infecting a susceptible individual is as-
signed to this particular susceptible individual. Therefore,
we have considered the modified version of the model in
which probabilities (per time step) to infect a susceptible
agent are assigned to its infectious neighbors. In such a
case the probability of infecting a susceptible individual i
during a single iteration is not given by equation (1) but
by the following formula

PS→I(i) = 1 −
∏

j∈N (i)

[1 − PI(j)]Θ(j)
, (6)

where the interpretation of the parameters is the same as
in equation (1). As it can be seen in Figure 8, the modified
model leads to qualitatively the same results as the basic
model, see equation (1) and Figure 5. On the one hand,
the epidemic radius distribution P (r) and the mean first
passage time to reach a given radius 〈T (r)〉 are practically
the same. On the other hand, the size distribution P (s)
and the first passage time T (s) to infect the domain of
the size s are enlarged due to the increase in the epidemic
size. This can be explained by the fact that the modi-
fied model results in a larger average infection probability
per time step 〈PS→I〉. If a susceptible individual i has n
(n > 1) infected neighbors, 〈PS→I〉 = 1 − (1 − 〈PI〉)n

for the modified model is larger than for the basic model
〈PS→I〉 = 1 − 〈(1 − PI)n〉. At the same time the average
transmissibilities, see equation (5), stay the same.

4 Summary and conclusions

The SIR model [2] is an archetypal epidemiological model,
which is almost a hundred years old. Despite its simplicity

Fig. 8. The same as in Figure 5 for the modified model, see
equation (6). Full symbols correspond to periodic while empty
symbols to free boundary conditions. Simulation parameters
μI = 0.1, μR = 0.5, σI = 0.5 and σR = 0.2.

the Kermack-McKendrick model can be used to de-
scribe complex and complicated situations even in realis-
tic realms. Within the current manuscript, excessive com-
puter simulations have been used to investigate how the
heterogeneity of a population affects temporal and spatial
properties of epidemics on lattices.

Variable infection and recovery rates result in non-
trivial system properties. On the one hand, individuals
which can be easily infected create paths along which
epidemics can propagate. On the other hand, resistant
individuals make impenetrable firewalls responsible for
the creation of islands (patches) of uninfected individu-
als. Therefore, the system is sensitive to exact values of
the mean infection probabilities per time step and (mean)
transmissibilities. A minimal change in one of the system
parameters can significantly modify mean values of pa-
rameters. Consequently, as it was demonstrated in Sec-
tion 3, epidemic spread can be facilitated or reduced.

The distribution of epidemic radii has two maxima cor-
responding to epidemics which die out fast (small r) and
those that propagate to peripheral parts of the system
(large r). The mean first time that an epidemic needs to
reach a given radius grows almost linearly with r. The
epidemic size distribution always has a maximum corre-
sponding to small outbreaks, but it can also have another
local maximum corresponding to large epidemics.

Within the model epidemics end spontaneously, be-
cause there are no mechanisms of disease eradication. Fur-
ther extensions of the model could introduce such mech-
anisms in order to provide answers to questions such as
what the optimal control strategy is and how eradication
strategies are affected by heterogeneity of individuals.

Computer simulations have been performed at the Academic
Computer Center Cyfronet, Akademia Górniczo-Hutnicza
(Kraków, Poland). Suggestions from Adam Kleczkowski are
greatly acknowledged.
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