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Abstract. The tunneling conductance for a junction device consisting of a normal metal and a singlet
superconductor is studied with Rashba spin orbit coupling (RSOC) being present in the metallic lead and
the interface separating the two regions via an extended Blonder-Tinkham-Klapwijk (BTK) formalism.
Interesting interplay between the RSOC and a number of parameters that have experimental significance,
and characterize either the junction or the superconducting leads, such as the barrier transparency, quasi-
particle lifetime, Fermi wavevector mismatch, an in-plane magnetic field and their effects on the tunneling
conductance are investigated in details for both a s-wave and a d-wave superconductor. In an opaque bar-
rier, in presence of a quasiparticle lifetime, a Fermi wavevector mismatch or an external in-plane magnetic
field, RSOC enhances the conductance corresponding to low biasing energies, that is, at energies lesser
than the superconducting gap, while the reverse is noted for energies exceeding the magnitude of the gap.
Further, there are exciting anomalies noted in the conductance spectrum for the d-wave gap which can be
understood by incorporating the interplay between the superconducting gap and the angle of incident of
the charge carriers.

1 Introduction

Studies of electron transport through normal metal – su-
perconductor (N-S) junctions have proved to have a great
deal of interest owing to the fundamental physics em-
bedded therein and the possibility of fabricating devices.
Tunneling spectroscopy at a N-S junction is one of the
most effective tool to investigate the nature of the super-
conducting state [1,2]. The fundamental physics includes
probing of the electronic states in the normal metal and
thereby acquiring information on the interparticle interac-
tion and the nature of the superconducting gap. The low
energy transmission characteristics are dominated by the
Andreev reflection (AR) [3–5] caused by the conversion
of current in the normal region to a supercurrent in the
superconductor at the N-S junction. The ramifications of
AR is in the enhancement of conductance of a N-S junc-
tion device beyond its normal state value in the sub-gap
region. The Blonder-Tinkham-Klapwijk (BTK) theory [6]
provides a simple description of the AR by modeling the
N-S interface via a δ- function potential (or an insulat-
ing barrier of arbitrary strength) where the quasiparticle
propagation in the superconducting sample is described by
the Bogoliubov-de Gennes (BdG) equations [7] and the
wavefunctions are matched with the normal state wave-
functions at the interface.
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With the advent of spintronics in the recent past,
the ability to manipulate the spin degree of freedom
with precision, just like the charge degree of freedom has
gained prominence. The phenomenon of spin-orbit cou-
pling (SOC) is central to the process of this emerging
field. In low dimensions, particularly, in the context of two
dimensional electron gases (2DEG), a system where the
surface inversion symmetry is lost, such as InAs etc. [8], a
special type of SOC, that is, Rashba spin-orbit coupling [9]
becomes important and hence can not be neglected. The
possibility of being able to tune the strength of Rashba
SOC (RSOC) using an external field [10] provides addi-
tional impetus. A few studies have been carried out to
understand the effect of RSOC in N-S interface [11–13].

Motivated by the above, we employ a BTK formalism
to perform an extensive investigation of the conductance
characteristics of a normal metal-singlet superconductor
(both s-wave and d-wave) junction in the presence of
RSOC with the Rashba term being present in the metal-
lic lead and the interface. We are particularly interested in
examining an interplay of RSOC with a number of useful
parameters that are indispensable in a N-S junction de-
vice. These parameters include transparency of the N-S in-
terface, finite quasiparticle lifetime, Fermi wavevector mis-
match between the carriers in the metallic region with that
of the quasiparticles in the superconductor and an in-plane
magnetic field present in the system. We shall mention the
experimental relevance and hence the importance of these

http://www.epj.org
https://doi.org/10.1140/epjb/e2017-70705-8


Page 2 of 10 Eur. Phys. J. B (2017) 90: 33

parameters as we go along discussing the key results of
our paper.

A holistic view towards the work at hand reveals that
the conductance properties of a N-S junction device can be
manipulated by the RSOC present in the metallic lead and
the boundary separating the normal and the supercon-
ducting region. Further the interplay between the RSOC
and a few of the physical quantities, that are essentially
properties of the interface or the superconducting leads,
renormalize the features of the low energy conductance
spectrum.

While both s-wave and d-wave denote singlet super-
conducting pairing correlations, we emphasize that there
is a distinction in the conductance profile with regard to
the interplay between the RSOC and the various parame-
ters that are mentioned above. Thus the symmetry of the
superconducting gap plays a decisive role in the conduc-
tance properties of a N-S junction.

We provide a brief outline of the BTK formalism in
the next section for completeness of our discussion and
establishing the notations that are used throughout the
paper. The results and their corresponding discussions fol-
low afterwards. Finally we conclude with a mention of the
highlights of our work.

2 Conductance formula: BTK model

We consider a two dimensional N-S junction as shown in
Figure 1a where an interface is located at x = 0, the left of
which being a normal metal (N) with a superconducting
(S) lead in the right. The interaction potential everywhere
is described by,

Uσ(x) = Un̂ · (σ̂ × k̂)Θ(−x) + (U0 + Un̂ · (σ̂ × k̂))δx,0 (1)

where n̂ = x̂ is the unit vector along the interface normal,
U0 is the strength of spin independent potential barrier
at the interface, U is the strength of the RSOC for N
region and interfacial region (U has the dimension of en-
ergy scaled by the Fermi wavevector for the normal metal,
kFN ), σ̂ are the Pauli matrices, k̂ = −i∇ (� = 1) and Θ(x)
is the Heaviside function.

The Bogoliubov de Gennes (BdG) equations [7] are
used here to describe the quasiparticles. The quasiparticle
wave function has four components because of the extra
spin degrees of freedom due to the Rashba term. By con-
sidering a two dimensional geometry, the BdG equations
can be decoupled into two component equations, one for
each spin, σ, as follows,

HσΨ(r) = EΨ(r) (2)

where σ = ±1 denote two different spin orientations. Hσ

is written as,

Hσ =

(−∇2

2 − EFi + Uσ(x) Δ̃

Δ̃† ∇2

2 + EFi − Uσ(x)

)
(3)

Fig. 1. (a) Schematic illustration of the reflection and the
transmission process of the quasiparticle at N-S junction.
(b) Profile for s-wave superconducting gap. (c) Profile for d-
wave superconducting gap.

where the electronic mass is taken as unity. The interac-
tion term can explicitly be written as,

Uσ(x) = (U0−σUkFN sin θ1)δx,0−σUkFN sin θ1Θ(−x).
(4)

The Fermi energies in the normal region and the supercon-
ducting region are EFN and EFS respectively. The ratio of
the corresponding wave vectors is denoted by the dimen-
sionless parameter λ where λ = qFS/kFN =

√
EFS/EFN .

The off-diagonal terms of the matrix are the superconduct-
ing gap parameter, Δ̃. The superconducting order param-
eter for s-wave is given by,

Δ̃ = Δ0Θ(x) (5)

and the corresponding quantity for d-wave is

Δ̃ = Δ̃± = Δ(k±)Θ(x) = Δ0 cos(2θS1,2 ∓ 2α)Θ(x) (6)

where α is the angle between the crystalline orientation
and x axis as shown in Figure 1c, Δ+ and Δ− are the
gap functions of electron and hole-like quasiparticles. The
k dependence in the Δ̃± enters through θS1 and θS2 (see
Eq. (9)) and Δ̃ has the dimension of energy. We note that
the superconducting order parameter can be different for
electron-like and hole-like quasiparticles.

To make our discussion clear, we refer to Figure 1a.
Suppose an electron from the left metallic lead is injected
with the excitation energy E ≥ 0, spin σ, and incident
angle θ1, the incident electron will be reflected back either
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as an electron (normal reflection) or as a hole (Andreev
reflected hole). The momenta of electrons and holes in the
normal region are given by k+ and k−,

k+ = kFN +
σUkFN sin θ1 + E

vFN

k− = kFN +
σUkFN sin θ1 − E

vFN
. (7)

Further the momenta of the electron-like and hole-like
quasiparticles in superconducting region are given by q+

and q− which are,

q+ = qFS +

√
E2 − Δ̃+

2

vFS

q− = qFS −
√

E2 − Δ̃−
2

vFS
(8)

where vFN and vFS are Fermi velocities for respective
regions. Please see Appendix A for derivation. Here we
consider a simplification by setting q+ = q− = qFS . This
simplification introduces an error of the order δqFS/qFS =√

E2 − Δ̃2/EFS , which is of the order Δ̃/EFS . Since Δ̃ is
much smaller than EFS , this is a reasonable assumption.
However we retain different symbols for them for the sake
of completeness. The momentum parallel to the interface
is conserved in the tunneling process. So we can write,

k+ sin θ1 = k− sin θ2 = q+ sin θS1 = q− sin θS2 (9)

where θ2 is angle of reflection of the hole due to AR, θS1

and θS2 are the angles of refraction of electron-like and
hole-like quasiparticles respectively.

The solutions of equation (2) in normal metal and su-
perconducting regions are found to be,

ΨN (x) =

(
1

0

)
eik+ cos θ1x + aσ

(
0

1

)
eik− cos θ2x

+ bσ

(
1

0

)
e−ik+ cos θ1x (10)

and

ΨS(x) = cσ

(
u+eiφ+

v+

)
eiq+ cos θS1x

+ dσ

(
v−eiφ−

u−

)
e−iq− cos θS2x (11)

respectively. Here aσ and bσ denote the amplitudes of
Andreev reflection (AR) and normal reflection (NR) re-
spectively. Also cσ and dσ correspond to coefficients of
transmission to the superconductor leads as electron-like
quasiparticles and as hole-like quasiparticles whose ampli-
tudes are given by,

u± =
1√
2

√
1 +

Ω±
E

v± =
1√
2

√
1 − Ω±

E
(12)

where
Ω± =

√
E2 − Δ̃2±. (13)

The wave functions must satisfy the boundary conditions,

ΨS(x = 0+) = ΨN (x = 0−)
dΨS

dx
(x = 0+) − dΨN

dx
(x = 0−)

= 2(U0 − σUkFN sin θ1)ΨN (x = 0−) (14)

All the reflection and transmission amplitudes can be
found from the boundary conditions.

In particular, for the reflection amplitudes we obtain,

aσ(E, θ1) =
Qω−(P1 − P2)

P2P3ω+ω−eiφ+ − P1P4eiφ−
(15)

and

bσ(E, θ1) = −Qω+ω−
P2e

iφ+

P2P3ω+ω−eiφ+ − P1P4eiφ−

+
QP1e

iφ−

P2P3ω+ω−eiφ+ − P1P4eiφ−
− 1 (16)

where,

Q = 2ik+ cos θ1

ω± =
u±
v±

eiφ± = Δ̃±/|Δ̃±|. (17)

The Pi’s appearing above are denoted by,

P1 = 2U0 − 2σUkFN sin θ1 + ik− cos θ2 − iq+ cos θS1

P2 = 2U0 − 2σUkFN sin θ1 + ik− cos θ2 + iq− cos θS2

P3 = 2U0 − 2σUkFN sin θ1 − ik+ cos θ1 − iq+ cos θS1

P4 = 2U0 − 2σUkFN sin θ1 − ik+ cos θ1 + iq− cos θS2.
(18)

Using the BTK formalism, the normalized differential tun-
neling conductance at zero temperature is given by,

G(E) =
GS(E)

GN
(19)

where we have

GS(E) =
∑

σ

∫ π/2

−π/2

dθ1 cos θ1Gσ(E, θ1) (20)

with the angle and spin resolved conductance Gσ(E, θ1)
is given by,

Gσ(E, θ1) = 1 + |aσ(E, θ1)|2 k−

k+
− |bσ(E, θ1)|2 (21)

and

GN =
∑

σ

∫ π/2

−π/2

dθ1 cos θ1
4

4 + Z2
0/ cos θ2

1

(22)
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is the conductance for a normal metal-normal metal junc-
tion with a scaled interface potential, U0, where Z0 =
2U0/kFN . The consideration of different Fermi energies
corresponding to two different regions imposes a further
constraint on the effective range of angle contributing to
the integral appearing in equation (20). As qFS is made
larger, the range of the angle θ1 decreases as is evident
from equation (9).

3 Rashba spin orbit coupling (RSOC)

In all our results presented below, we plot G as appears in
equation (19) as a function of biasing energy, E scaled by
the magnitude of the gap amplitude, Δ0. It can be noted
that the magnitude of the barrier strength at the interface
will decide whether RSOC will enhance or decrease the
value of the low energy conductance [14].

In Figure 2a, G is shown as function of E/Δ0 for a
s-wave superconductor as the strength of RSOC is varied
corresponding to a transparent barrier, that is, Z0 = 0. A
dip in the AR peak is noted as RSOC is increased from
U = 1 to U = 2. The Rashba free case (U = 0) is in-
cluded for comparison. Apart from the decrease in peak
conductance, a significant suppression of the low energy
conductance is also noted.

For an opaque barrier (Z0 = 2), a reverse trend is
observed. The low bias conductance increases, although
the enhance enhancement is small, but noticeable, and a
sharp peak is noted at E ∼ Δ0 as shown in Figure 2b.

In equation (21), for a transparent barrier, with in-
creasing RSOC, the contribution of the amplitude of AR
(the term coming from aσ) decreases and the amplitude
of NR (the term coming from bσ) increases. But for an
opaque barrier, for the biasing energies, E < Δ0, the re-
verse happens, that is the amplitude of NR decreases and
the amplitude of AR increases. Thus a scrutiny of Figure 2
yields that RSOC augments the conductance spectrum for
E < Δ0 for a finite opacity (Z0 �= 0), however the Rashba
free case dominates for E > Δ0, while the latter is always
large at all energies for a transparent barrier (Z0 = 0).

Hence we show the variation of the maximum conduc-
tance, that is the magnitude of the Andreev peak, Gmax

as a function of Rashba strength, U in Figure 3. It shows
the suppression of conductance peak with the increasing
strength of RSOC for both the transparent and opaque
barriers and the decrease is nearly linear.

Hence we study the conductance characteristics for a
d-wave superconductor with α = 0 and α = π/4 (for def-
inition of α, see Fig. 1c). Figures 4a and 4b show the
conductance characteristics with Z0 = 0 and Z0 = 2 for
α = 0. In Figure 4c and 4d we consider α = π/4 case.

For a d-wave superconductor it is noticed that the
conductance decreases with increasing strength of RSOC
for transparent barriers (Z0 = 0) for both α = 0 and
α = π/4. However for an opaque barrier, we find that for
α = 0, the low bias conductance increases with RSOC,
while for α = π/4, the same quantity decreases with in-
creasing RSOC. The only exception is observed for the

Fig. 2. Black line with circle denotes conductance for U = 0.0,
the blue line with square denotes conductance for U = 1.0 and
the red line with triangle denotes conductance for U = 2.0. The
variation of the conductance, G for a s-wave superconductor
as a function of E/Δ0 for different strengths of RSOC with
(a)Z0 = 0, (b) Z0 = 2.

d-wave superconductor with α = π/4. This is one of the
central results of our paper.

For a s-wave superconductor, the crossover between
the U = 0 and and U �= 0 for opaque barrier case occurs
at energies close to Δ0, while for d-wave the same occurs
at E/Δ0 ≈ 0.4.

All of these results have a natural explanation from
the behaviour of the AR and NR amplitudes, aσ and bσ

respectively, which are functions of energy, RSOC, barrier
transparency, the asymmetry angle of the d-wave param-
eter and various other parameters that are going to be
discussed in the subsequent sections. Apart from the ratio
k−/k+ in equation (21), a larger aσ enhances Gσ, while a
larger bσ decreases it. As we have emphasized earlier, there
is no a priori intuition how the interplay of these factors
with RSOC in deciding the behaviour of conductance at
E ∼ 0 (that is much less than Δ0) and E ∼ Δ0.

One may notice an interesting fact that s and d-wave
superconductors show dissimilarities in their conductance
profile though both have singlet Cooper pairing. For
a s-wave superconductor, the electrons with different
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Fig. 3. The variation of the conductance peak, Gmax for a
s-wave superconductor as a function of RSOC strength with
(a) Z0 = 0, (b) Z0 = 2.

incident angles are subjected to an isotropic gap in the
superconducting region. We find that for all incident an-
gles, the contribution of the AR is maximum with the
contribution of the NR being minimum at E ∼ Δ0. So
when we integrate the conductance for all incident an-
gles, we get a large value of peak at E ∼ Δ0. But in the
case of a d-wave superconductor, the electrons with differ-
ent incident angles experience different superconducting
gaps (see Eq. (6)). So the electrons with different incident
angles show maximum contributions at different biasing
energies. Therefore the contribution to the conductance
coming from different incident angles yield a reduced value
for the AR peak at E = Δ0. Hence the s-wave supercon-
ductor has a sharp peak at E ∼ Δ0 while the d-wave shows
a moderate peak. The situation is further different for the
d-wave superconductor corresponding to α = π/4. Here
we obtain a maximum value at E = 0 owing to the fact
that the contribution of the AR is maximum at E = Δ0.

3.1 Finite quasiparticle lifetime

Quasiparticle lifetime, that is the rate at which the quasi-
particles decay, especially in disordered superconductors,
is an important quantity that characterizes the nature
of superconducting state [15]. Recently it was shown the
conductivity data of disordered MoC superconducting

Fig. 4. Black line with circle denotes conductance for U = 0.0,
the blue line with square denotes conductance for U = 1.0 and
the red line with triangle denotes conductance for U = 2.0. The
variation of the conductance, G for a d-wave superconductor
as a function of E/Δ0 for different strengths of RSOC with
(a)Z0 = 0 and α = 0, (b) Z0 = 2 and α = 0, (c) Z0 = 0 and
α = π/4, (d) Z0 = 2 and α = π/4.
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Fig. 5. Black line with circle denotes conductance for U = 0.0,
the blue line with square denotes conductance for U = 1.0 and
the red line with triangle denotes conductance for U = 2.0. The
variation of the conductance, G for a s-wave superconductor
as a function of E/Δ0 for the value of Γ/Δ = 0.1.

films [16] can only be satisfactorily explained by invoking
a finite quasiparticle lifetime, τQP denoted by a parame-
ter Γ and defined as,

Γ ∼ 1
τQP

(23)

which renormalizes the quasiparticle energies, E by E ±
iΓ [17,18]. Without any loss of generality, we have consid-
ered only the positive sign in our work.

It should not be a priori evident how an inclusion of
Γ (or τQP ) can interfere with the RSOC present in the
metallic lead and hence help or hinder the low energy
conductance features of a N-S junction. It is nevertheless
predictable that a finite Γ would broaden the AR peak
and bring down the peak conductance. With the insertion
of finite quasiparticle lifetime, all the expressions contain-
ing energy, E are renormalized and subsequently they can
be plugged to compute the conductance. In Figure 5 we
show the variation of G for an opaque barrier (Z0 = 2)
for a representative value of Γ/Δ = 0.1 for a s-wave
superconductor. This value of Γ/Δ0 is comparable with
the value quoted in reference [19] for CeCoIn5 which is a
heavy fermion superconductor with a d-wave parameter.
In fact various parameters are shown to be, Δ0 = 600 μeV,
Γ = 95 μeV and Zeff (related to our Z0 )= 0.28. The
transparent case is an idealized version and hence left out
of discussion. A comparison with Figure 2 indicates that
finite quasiparticle lifetime affects the conductance peak
which broadens and the peak value diminishes.

Hence we study the lifetime effect on tunneling con-
ductance for d-wave superconductor with α = 0 and π/4.
Again a finite lifetime broadens and suppresses the con-
ductance profile as noted in Figure 6. The same explana-
tion as detailed earlier at the end of previous subsection
holds and not repeated for brevity.

Fig. 6. Black line with circle denotes conductance for U = 0.0,
the blue line with square denotes conductance for U = 1.0 and
the red line with triangle denotes conductance for U = 2.0. The
variation of the conductance, G for a d-wave superconductor as
a function of E/Δ0 for the value of Γ/Δ = 0.1 with (a) α = 0,
(b) α = π/4.

3.2 Fermi wavevector mismatch

Usually in Andreev reflection across N-S junction experi-
ments, the properties of the Fermi surfaces in both sides
of the contact are distinct. Particularly, the Fermi energy
in a normal metal depends on the density of the charge
carriers present, while the Fermi level dependence enters
through the density of states (DOS) at the Fermi energy
(N(EF ) in the expression of the transition temperature in
conventional superconductors (recalling the BCS expres-
sion, Tc ∼ �ωDe−1/N(EF )V , ωD being the Debye frequency
and V is the interparticle interaction). Thus the Fermi
wavevectors appearing in the BTK expression of conduc-
tance should naturally be different [20]. However whether
and how that affects the conductance characteristics and
competes with the RSOC is a topic that needs to be under-
stood. Thus in our work we have considered a parameter λ
which denotes the ratio of the Fermi wavevectors in either
side of the contact (qFS/kFN ) and addressed the interplay
of λ and the RSOC on the tunneling studies.

In our work we have kept kFN constant and varied
qFS . Thus a competition between two different (namely,
RSOC and λ) parameters in the two regions is studied
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Fig. 7. Black line with circle denotes conductance for U = 0.0,
the blue line with square denotes conductance for U = 1.0 and
the red line with triangle denotes conductance for U = 2.0. The
variation of the conductance, G for a s-wave superconductor
as a function of E/Δ0 for the value of (a) λ = 0.8, (b) λ = 1.2.

on the tunneling properties of a junction. We note that
the difference between the Fermi wavevectors imposes a
constraint on the effective range of angle contributing to
the integral in equation (20). For a better understanding,
see the discussion at the end of this subsection.

We discuss the case for λ �= 1 on the tunneling
conductance, in two cases namely, λ = 0.8, 1.2 for an
opaque barrier. Figure 7 shows the variation of G(E) ver-
sus E/Δ0 for a s-wave superconductor. Subsequently the
d-wave case is plotted in Figure 8. So considering dif-
ferent wavevector for the carriers in the metallic region
and in the superconducting region, we get a similar na-
ture of conductance profile as earlier obtained. The fig-
ures for both s and d-wave superconductor reveal that
the tunneling conductance enhances with increasing λ for
which the effective range of angle contributing to the in-
tegral in equation (20) increases causing an enhancement
of conductance. For qFS < kFN and for some values of θ1,
the ratio k+

q+ makes sin θS1 > 1 which is unphysical. Thus
for the above condition, there will not be any transmission
to the superconducting region and will not contribute to
the conductance. Hence the ratio of the Fermi wavevectors

Fig. 8. Black line with circle denotes conductance for U = 0.0,
the blue line with square denotes conductance for U = 1.0 and
the red line with triangle denotes conductance for U = 2.0. The
variation of the conductance, G for a d-wave superconductor
as a function of E/Δ0 for the value of (a) λ = 0.8 with α = 0,
(b) λ = 1.2 with α = 0, (c) λ = 0.8 with α = π/4, (d) λ = 1.2
with α = π/4.
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affects the conductance in the following way, for λ > 1,
conductance increases and it diminishes for λ < 1.

3.3 In-plane magnetic field

The importance of an in-plane magnetic field in the con-
text of a junction device is obvious with the itinerant elec-
trons that exhibit superconductivity below n ∼ 200 mk
at the LaAlO3/SrTiO3 interface [21,22] is found to have
a coexistence with an in-plane polarization of the elec-
tronic spins (in-plane magnetization) [23,24]. In fact a
large RSOC present at the interface creates an effective
spin triplet pairing from singlet superconducting corre-
lations and is also responsible for pairs with finite cen-
ter of mass momentum, that is the Fulde-Ferrell-Larkin
Ovchinnikov (FFLO) state [25]. Emergence of this effec-
tive topological superconductivity, starting from a con-
ventional s-wave superconductor raises the possibility of
realizing the exotic Majorana physics. Prediction of such
a Majorana bound state is done via the presence of a zero
mode bound state at the center of the superconducting
gap [26].

In our work, to study the effect of an in-plane magneti-
zation on the transmission properties of the N-S junction
and the interplay of RSOC therein, we include a parallel
magnetic field in the superconducting region. However our
study has to be distinguished from the preceding discus-
sion in the following sense. We have not included RSOC in
the superconducting leads, and thus there is no relevance
to the topological superconductivity that appears above
and hence presence of any zero mode state that is pro-
tected topologically by the bulk excitation gap is not to be
expected. Nevertheless, presence of an in-plane magnetic
field (or a magnetization) is still interesting in the context
of the junction conductance of a N-S device, if the super-
conductor is placed in close proximity of a ferromagnet as
is done in ferromagnet -superconductor hybrids [27].

In the presence of an in-plane magnetic field, the
Hamiltonian in equation (3) gets modified as,

Hσ =

(
H0 + μB Δ̃

Δ̃† −H0 − μB

)
(24)

where H0 = −∇2

2 − EFi + Uσ(x) and B is strength of
in-plane magnetic field (μ = 1 is assumed afterwards).
Equation (24) is derived in Appendix B.

With the inclusion of in-plane magnetic field, the mo-
menta of electrons and holes in superconducting region
will be modified and are given as,

q+ = qFS +

√
E2 − Δ̃+

2 − B

vFS

q− = qFS −
√

E2 − Δ̃−
2

+ B

vFS
. (25)

Here we study the variation of conductance, G as the func-
tion of E/Δ0 for a representative value of B, that is B = 1

0 0.25 0.5 0.75 1 1.25
E/ Δ0

0

1

2

3

4

G
(E

)

U=0.0
U=1.0
U=2.0

 Β=1.0
Z

0
=2.0

Fig. 9. Black line with circle denotes conductance for U = 0.0,
the blue line with square denotes conductance for U = 1.0 and
the red line with triangle denotes conductance for U = 2.0. The
variation of the conductance, G for a s-wave superconductor
as a function of E/Δ0 for the value of B = 1.

for a s-wave superconductor in Figure 9. The understand-
ing is that the pair breaking effects owing to the inclu-
sion of magnetic field is vanishingly small and thus the
superconducting state remains intact in presence of the
magnetic field.

Figure 9 shows the suppression of the conductance
with the inclusion of the magnetic field where the ampli-
tude of NR (bσ) is enhanced and the amplitude of AR (aσ)
is found to decrease for B �= 0. Thus from equation (21) it
is evident that the presence of an in-plane magnetic field
in the superconducting region decreases the tunneling con-
ductance. Apart form this, the magnetic field reduces the
effective range of angle contributing to the integral ap-
pearing in equation (20) due to the modification of the
momenta of electron-like and hole-like quasiparticles as
seen from equation (25) (also see Eq. (9)).

Hence we study the magnetic field effect for a d-wave
superconductor. Figure 10 contains the variation of con-
ductance, G as the function of E/Δ0 for an opaque barrier
with α = 0 and π/4. Figure 10 also shows the suppression
of the tunneling conductance for all values of RSOC.

Probably an in-plane magnetic field is going to have
effects on a junction consisting of a normal metal and
a superconductor with pairs having finite center of mass
momenta.

4 Conclusions

We shall now highlight the key results obtained by us.
It is clear that the tunneling conductance is sensitive to
the strength of RSOC. For a transparent barrier, RSOC
diminishes the conductance for all energies, E in units
of Δ0 for both s and d-wave superconductors. But in the
case of a finite opacity, the RSOC enhances the conduc-
tance value for biasing energies, E < Δ0 and suppresses
the conductance for E > Δ0 for a s-wave superconductor.
In the d-wave case for finite opacity, this crossover hap-
pens for lower value of E compared to the case of s-wave.
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Fig. 10. Black line with circle denotes conductance for U =
0.0, the blue line with square denotes conductance for U = 1.0
and the red line with triangle denotes conductance for U = 2.0.
The variation of the conductance, G for a d-wave superconduc-
tor as a function of E/Δ0 for the value of B = 1 with (a) α = 0,
(b) α = π/4.

Here both α = 0 and π/4 show distinct characters. We find
that the the tunneling conductance depends on the quasi-
particle lifetime. It broadens the conductance peak and
diminishes its value. Further we obtain that the tunnel-
ing conductance is getting enhanced with increasing ratio
of the Fermi wavevectors (λ). Besides, the inclusion of an
in-plane magnetic field shows a significant suppression of
tunneling conductance.

We thank SERB, India for financial support under the grant
F. No: EMR/2015/001039. Both the authors have contributed
equally on the contents of the paper.

Appendix A: Derivation of wavevectors
in both sides of the barrier

Here we derive the relationship between the wavevectors
in either side of the junction. The Bogoliubov-de Gennes
equations are given by,

H0u(r) + Δ̃v(r) = Eu(r)

−H0v(r) + Δ̃†u(r) = Ev(r). (A.1)

When both superconducting gap and potential have slow
variation, the Bogoliubov coherence factors can be sepa-
rated into a rapidly varying part eik·r with |k̂| = kF and
a slowly varying part. So we can write,

u(r) = f(r)eikF n̂·r v(r) = g(r)eikF n̂·r (A.2)

where n̂ is unit vector. Putting equation (A.2) in equa-
tion (A.1), and using the facts, μ = EF = v2

F /2, f(r)
and g(r) are slowly varying on the scale of 1/kF (∇2f 	
ikF n̂ · ∇f), we get two coupled equations of the form,

−i�vf n̂ · ∇̂f(r) + Uσ(x)f(r) + Δ̃g(r) = f(r)E

i�vf n̂ · ∇̂g(r) − Uσ(x)g(r) + Δ̃†f(r) = g(r)E. (A.3)

Using the following ansatz f(r) = f0e
ik̃n̂·r, g(r) =

g0e
ik̃n̂·r, equation (A.3) reduces to,

�vf k̃f0 − Uσ(x)f0 + Δ̃g0 = f0E

−�vf k̃g0 + Uσ(x)g0 + Δ̃†f0 = g0E. (A.4)

From equation (A.4) we find,

k̃± =
σUkF sin θ1 ±

√
E2 − Δ̃2

vF
. (A.5)

The ± signs refer to the wavevectors for particles and
holes. So the momenta expressions for electrons and holes
in the normal metal region are,

k+ = kFN + k̃+

k− = kFN + k̃− (A.6)

where kF is replaced by kFN , vF is replaced by vFN and
Δ̃ is taken to be zero.

Similarly, the momenta expressions for the electron-
like quasiparticles and hole-like quasiparticles in the su-
perconducting region are,

q+ = qFS + k̃+

q− = qFS + k̃− (A.7)

where kF is replaced by qFS , vF is replaced by vFS and
U is taken as zero (no RSOC is present in the supercon-
ducting region).

Appendix B: Derivation of Bogoliubov
equations in the presence of in-plane
magnetic field

In this appendix we derive the BdG equations in the pres-
ence of an in-plane magnetic field. The BCS Hamiltonian
is written as,

H ′ =
∑
iσ

c†iσH0ciσ +
∑

i

Δ̃ic
†
i↑c

†
i↓

+
∑

i

Δ̃†
i ci↑ci↓ +

∑
iσσ′

B(σx)σσ′c†iσciσ′ (B.1)
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where c†iσ is the creation operator and ciσ is the anni-
hilation operator of an electron at the i-th lattice site
with spin σ. Considering only first three terms of above
equation, the Bogoliubov Valatin transformation gives the
BdG equations which can be written in matrix form (see
Eq. (3)) in the basis of un and vn.

The transformation can be written as,

ci↑ =
∑

n

[γn↑un(i) − γ†
n↓v

∗
n(i)]

ci↓ =
∑

n

[γn↓un(i) + γ†
n↑v

∗
n(i)] (B.2)

where γnσ and γ†
nσ are quasiparticles operators. Those op-

erators must obey the fermion anti-commutation relations,

{γmσ, γ†
nσ′} = δmnδσσ′

{γmσ, γnσ′} = {γ†
mσ, γ†

nσ′} = 0. (B.3)

We wish to make a transformation to a basis such that the
Hamiltonian H ′ is diagonal which will allow us to write,

H ′ =
∑
nσ

εnγ†
nσγnσ (B.4)

where εn is the energy of a quasiparticle excitation for
state n. Therefore in the basis in which H ′ is diagonal we
have,

[H ′, γ†
nσ] = εnγ†

nσ [H ′, γnσ] = −εnγnσ. (B.5)

Thus by computing the commutators [H ′, cm↑] and
[H ′, cm↓] explicitly and comparing coefficients we arrive
at the modified BdG equations. Since we know the con-
tribution of first three terms of equation (A.7) in BdG
equation, we are now interested only on the last term.
The quantities of interest are the commutators,

[HB, cm↑] = −Bcm↓

= −B
∑

n

[γn↓un(m) + γ†
n↑v

∗
n(m)]

[HB, cm↓] = −Bcm↑

= −B
∑

n

[γn↑un(m) − γ†
n↓v

∗
n(m)] (B.6)

where HB =
∑

iσσ′ B(σx)σσ′c†iσciσ′ . Finally,

[H ′, cm↑] =
∑

n

{[H ′, γn↑]un(m) − [H ′, γ†
n↓]v

∗
n(m)}

= −
∑

n

εnγn↑un(m) −
∑

n

εnγ†
n↓v

∗
n(m)

[H ′, cm↓] =
∑

n

{[H ′, γn↓]un(m) + [H ′, γ†
n↑]v

∗
n(m)}

= −
∑

n

εnγn↓un(m) +
∑

n

εnγ†
n↑v

∗
n(m). (B.7)

Comparison of the coefficients of γn↑ and γ†
n↓ leads to the

following BdG equations,

(H0 + B)un + Δ̃vn = εnun

Δ̃†un + (−H0 − B)vn = εnvn. (B.8)

These equations are used in Subsection 3.3.
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