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Abstract. In this paper an alternative approach to statistical mechanics based on the maximum information
entropy principle (MaxEnt) is examined, specifically its close relation with the Gibbs method of ensembles.
It is shown that the MaxEnt formalism is the logical extension of the Gibbs formalism of equilibrium
statistical mechanics that is entirely independent of the frequentist interpretation of probabilities only as
factual (i.e. experimentally verifiable) properties of the real world. Furthermore, we show that, consistently
with the law of large numbers, the relative frequencies of the ensemble of systems prepared under identical
conditions (i.e. identical constraints) actually correspond to the MaxEnt probabilites in the limit of a large
number of systems in the ensemble. This result implies that the probabilities in statistical mechanics can
be interpreted, independently of the frequency interpretation, on the basis of the maximum information
entropy principle.

1 Introduction

From the point of view of predictive statistical mechan-
ics which is based on the maximum information entropy
principle, with the exception of quantum mechanical prob-
abilities, there is no reason to consider some particular
probability distribution as the true distribution describ-
ing the system [1]. Such a view is in a marked contrast to
the interpretation that defines probability only in terms of
the limit of a relative frequency of the outcome in an infi-
nite sampling sequence, where the probabilities are there-
fore factual properties of the observed system [2]. From
the law of large numbers it follows that the relative fre-
quency of success in a sequence of e.g. Bernoulli trials (in
a sequence of repeated independent trials of an experi-
ment with only two possible outcomes) converges to the
theoretical probability. For example, a fair coin toss is a
Bernoulli trial where the theoretical probability that the
outcome will be heads is equal to 1/2. According to the
law of large numbers, the proportion of heads in a large
number of fair coin tosses will converge to 1/2 as the num-
ber of tosses approaches infinity. This means convergence
in probability in the weak form of the law and convergence
with probability one in the strong form, where the strong
form of the law always implies the weak form of the law [3].
Accordingly, the relative frequency is a factual property
of the real world that can be measured by repeating a
large number of trials, or estimated from the theoretical
probability. Probability, on the other hand, is something
that we assign to individual events, or we calculate it for
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the composite events according to the rules (axioms) of
probability theory, from the previously assigned probabil-
ities of individual events.

In different applications of statistical mechanics, we
try to predict the results of, or draw inferences from, some
experiment that can be repeated indefinitely under what
appears to be identical conditions (i.e. on the ensemble
of identically prepared systems). Although traditional ex-
positions of statistical mechanics such as [4] define the
probability as the limiting relative frequency in indepen-
dent repetitions of a statistical experiment, the relation
between frequencies and probabilities, implied by the law
of large numbers, in statistical mechanics becomes very
complex, because in reality for a macroscopic system, we
do not measure the relative frequency of the occurrence of
its individual microscopic states in a sequence of infinite
or a large number of trials.

In the frequentist interpretation probabilities are al-
ways experimentaly verifiable, and consequently, one of
the foundational problems of statistical mechanics would
be to derive and to justify the probabilities of microscopic
events, in the sense of frequencies in the ensemble of inden-
tically prepared systems, from the first principles i.e. from
equations of motion. This is the main problem of ergodic
theory approach to statistical mechanics [5,6]. Jaynes pre-
sented the opposite view, that if we choose to represent
only the degree of our knowledge about the individual
system, then there can not be anything physically real in
the frequencies in the corresponding ensemble of a large
number of systems, nor there is any sense in asking which
ensemble is the only correct one [7]. In the interpreta-
tion given by Jaynes, what we call different ensembles
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corresponds in reality to different degrees of knowledge
about the individual system, or about some physical situ-
ation. In the argumentation of this viewpoint, Jaynes re-
ferred to the statement by Gibbs, according to which the
ensembles are chosen only to illustrate the probabilites of
events in the real word [7,8].

The simplest interpretation of the Gibbs method of
ensembles and the MaxEnt formalism follows from the
fact that by maximizing the information entropy, which
is also known as the uncertainty represented by a prob-
ability distribution, subject to given macroscopic con-
straints, one predicts just the macroscopic behaviour that
can happen in the greatest number of microscopic real-
izations (i.e. greatest multiplicity) compatible with those
constraints [7,9–11]. Without going deeper into the prob-
lem of interpretation of probabilites, which is even more
pronounced in the case of nonequilibrium states, it is more
important that the distributions obtained from the appli-
cation of the principle of maximum information entropy
depend only on the available information and do not de-
pend on arbitrary assumptions related to missing infor-
mation. If we refer only to predictions, from the same
viewpoint one can speak about the objectivity only in the
extent in which the incompleteness of information about
the system is taken into account. Consistent with this way
of thinking, by applying the principle of maximum infor-
mation entropy, we come to the relevant statistical distri-
butions, and this is the subject of the paper.

The structure of the paper is as follows. Section 2 is
a brief introduction on the Shannon’s concept of infor-
mation entropy [12], and on the principle of maximum
information entropy and MaxEnt formalism formulated
by Jaynes [13,14]. Section 3 deals with the interpretation
of MaxEnt formalism in statistical mechanics as given by
Jaynes [13] and Grandy [15,16]. Section 4 introduces the
independent interpretation of probabilities in statistical
mechanics on the basis of the principle of maximum infor-
mation entropy. We modify here and extend the analysis
given by Jaynes in reference [17] and show that it has
important consequences for the interpretation of proba-
bilities. Section 5 is the conclusion summarizing the main
results of the paper.

2 Information entropy − measure
of uncertainty − and the principle
of maximum information entropy

In Shannon’s information theory [12] the quantity of the
form

H(p1, . . . , pn) = −K

n∑

i=1

pi log pi, (1)

has a central role as a measure of information,
choice and uncertainty for different probability distribu-
tions p1, . . . , pn. Starting from the understanding that the
problem of constructing a communication device depends
on the statistical structure of the information that is to
be communicated (i.e. on the probabilities p1, p2, . . . , pn

of the symbols A1, A2, . . . , An of some alphabet) Shannon

gave until that time the most general definition of the
measure of amount of information. Sequences of sym-
bols or “letters” may form the set of “words” of certain
length, and the amount of information is measured anal-
ogously. Positive constant K in equation (1) depends on
the choice of a unit for the amount of information. In real
applications expression (1), with the logarithmic base 2
and K = 1, represents the expected number of bits per
symbol necessary to encode the random signal forming
a memoryless source. But most importantly, Shannon’s
interpretation of the function (1) is not dependent on
the specific context of information theory. He defined the
function (1) as the measure of uncertainty related to the
occurrence of possible events, or more specifically, as a
measure of uncertainty represented by the probability dis-
tribution p1, p2, . . . , pn. This is substantiated by three rea-
sonable properties that are required from such a measure
H(p1, . . . , pn) that are sufficient to uniquely determine
the form of this function: continuity, monotonic increase
with number of possibilities in case when all probabilities
are equal, and the unique and consistent composition
law for the addition of uncertainties when mutually ex-
clusive events are grouped into composite events. Shan-
non called the function (1) the entropy of the set of
probabilities p1, p2, . . . , pn.

However, we have still not answered an open question
on how to determine or to choose the appropriate prob-
ability distribution for a particular problem or a system.
The principle of maximum information entropy (MaxEnt)
was formulated by Jaynes [13,14] as a general criterion
for construction of the probability distribution when the
available information is not sufficient for the unique de-
termination of the distribution. This principle is based
on the following rationale: maximization of the informa-
tion entropy (the uncertainty) subject to given constraints
includes in the probability distribution only the informa-
tion represented by these constraints. Therefore, predic-
tions derived from such a probability distribution depend
only on the available information and do not depend on
arbitrary assumptions related to missing information.

The mathematical formulation of this principle is
known as the MaxEnt algorithm. Let us consider it on
the following example. Let the variable x takes n values
{x1, . . . , xn} with probabilities {p1, . . . , pn} and the only
data available are given by the expectation values of the
functions fk(x):

Fk = 〈fk(x)〉 =
n∑

i=1

pifk(xi), k = 1, 2, . . . , m < n. (2)

Probability distribution must also satisfy the normaliza-
tion condition

n∑

i=1

pi = 1, (pi ≥ 0, i = 1, 2, . . . , n). (3)

In most cases the available information given by the set of
equations (2) is far less then sufficient for the unique deter-
mination of the set of probabilities {p1, . . . , pn}, i.e. m �
n − 1. In such cases, probability distribution {p1, . . . , pn}
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is determined by applying the MaxEnt principle. Proba-
bility distribution {p1, . . . , pn} for which the information
entropy (1) is maximum subject to the constraints (2)
is found by the method of Lagrange multipliers, i.e. by
maximizing the function

I = −
n∑

i=1

pi log pi − (λ0 − 1)

(
n∑

i=1

pi − 1

)

−
m∑

k=1

λk

(
n∑

i=1

pifk(xi) − Fk

)
, (4)

where λ0 − 1, λk, k = 1, 2, . . . , m, are the Lagrange mul-
tipliers. In this way we obtain the MaxEnt probability
distribution

pi =
1
Z

exp

{
−

m∑

k=1

λkfk(xi)

}
, i = 1, 2, . . . , n. (5)

The normalization factor Z = eλ0 which is also known as
the partition function is given by:

Z ≡ Z(λ1, . . . , λm) =
n∑

i=1

exp

{
−

m∑

k=1

λkfk(xi)

}
. (6)

The expectation values of the functions 〈fk(x)〉 = Fk, k =
1, 2, . . . , m, given by the conditions (2), are equivalently
given also by:

Fk = 〈fk(x)〉 = −∂ log Z(λ1, . . . , λm)
∂λk

,

k = 1, 2, . . . , m. (7)

Let us assume that set of m + 1 equations consisting of m
equations (2) and (3) is consistent and that these equa-
tions are linearly independent. Then, using (5) and solv-
ing this set of equations, one can determine the Lagrange
multipliers λk, k = 1, 2, . . . , m, as single-valued functions
λk(F ) of the expected values F = (F1, . . . , Fm). The proof
is given in reference [18]. Then, by introducing the MaxEnt
probability distribution (5) in the expression (1) for in-
formation entropy, the maximum of information entropy
subject to the conditions (2) and (3) is obtained as the
function of the expected values F = (F1, . . . , Fm):

(SI)max = log Z(λ1, . . . , λm) +
m∑

k=1

λkFk

= S(F1, . . . , Fm). (8)

Assuming that the functions λk(F ), k = 1, 2, . . . , m, are
continuously differentiable (or at least piecewise smooth),
from equations (7) and (8) it follows that

λk =
∂S(F1, . . . , Fm)

∂Fk
, k = 1, 2, . . . , m. (9)

From equations (7), (8) and (9) it is obvious that the func-
tions log Z(λ1, . . . , λm) and S(F1, . . . , Fm) are mutually

related by a Legendre transformation. Functions related in
this way contain the same information but it is expressed
through different variables.

Furthermore, functions log Z(λ1, . . . , λm) and
S(F1, . . . , Fm) give, in a simple way, the variances
and covariances of the functions fk(x), k = 1, 2, . . . , m.
Using (5), (6) and (7) one obtains

∂2 log Z(λ1, . . . , λm)
∂λl∂λk

= −∂Fk

∂λl
= − ∂Fl

∂λk

= 〈fk(x)fl(x)〉 − 〈fk(x)〉〈fl(x)〉
= −Akl, k, l = 1, 2, . . . , m, (10)

where A is a symmetric matrix, Akl = Alk. In a similar
way, using (9) one obtains

∂2S(F1, . . . , Fm)
∂Fl∂Fk

=
∂λk

∂Fl
=

∂λl

∂Fk

= Bkl, k, l = 1, 2, . . . , m, (11)

where B is also a symmetric matrix, Bkl = Blk. Then,
from equations (10) and (11) and the chain rule for
derivatives, it follows that

∂λj

∂λl
=

m∑

k=1

∂λj

∂Fk

∂Fk

∂λl
= BjkAkl = δjl, j, l = 1, 2, . . . , m,

(12)
and similarly,

∂Fj

∂Fl
=

m∑

k=1

∂Fj

∂λk

∂λk

∂Fl
= AjkBkl = δjl, j, l = 1, 2, . . . , m.

(13)
Therefore, the matrices given by equations (10) and (11)
are inverses, A−1 = B.

Elements of the matrix A are the second partial deriva-
tives of the functions log Z(λ1, . . . , λm) and represent the
measure of the expected dispersion and mutual correla-
tion of the functions fk(x), k = 1, 2, . . . , m. Diagonal
elements of the matrix A give as the notion about the
deviation of the variables fk(x) from their expectation val-
ues 〈fk(x)〉. Furthermore, from (5), (6) and (7), it follows
that the covariance of some other function g(x) with the
function fk(x) is obtained as:

−∂〈g(x)〉
∂λk

= 〈g(x)fk(x)〉 − 〈g(x)〉〈fk(x)〉,
k = 1, 2, . . . , m. (14)

3 Interpretation of MaxEnt formalism
in statistical mechanics

It is clear that the MaxEnt probability distribution (5)
has the same form as Gibbs ensemble probability dis-
tributions from equilibrium statistical mechanics. This is
not surprising since the rationale of the Gibbs method
of constructing ensembles was to assign that probabil-
ity distribution which, while agreeing with what is known
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(i.e. the data given by constraints), gives the least value of
the average index (logarithm) of probability of phase i.e.∑n

i=1 pi log pi [7,8]. This procedure has lead Gibbs to the
canonical ensemble for closed systems in thermal equilib-
rium with the environment, the grand canonical ensemble
for open systems, and an ensemble for a system rotating at
a fixed angular velocity. However, MaxEnt formalism rep-
resents a general method of statistical inference which is
applicable, in principle, to all problems where only incom-
plete and partial information about the problem is avail-
able. Equations from the last section represent the generic
form of the MaxEnt formalism. To give them a physical
interpretation they should be put in the context of some
specific physical situation. Since the Lagrange multipli-
ers λ = (λ1, . . . , λm), under certain conditions, are single-
valued functions of the expected values F = (F1, . . . , Fm),
and at the same time the only parameters in the MaxEnt
probability distribution, physical interpretation of these
quantities is of special pertinence in that sense.

It will now be shown that the physical interpretation
of the Lagrange multipliers follows from the relation de-
scribing the changes of the expected values. Values of the
functions fk(xi), k = 1, 2, . . . , m, associated with the val-
ues xi of the variable x, i = 1, 2, . . . , n, can represent the
eigenvalues of some specific physical quantities, for exam-
ple energy eigenvalues Ei, or eigenvalues of the quanti-
ties from the set of compatible quantities. Let us assume
that the small change in the expectation values 〈fk(x)〉 is
done by the small change of the functions fk(xi) and the
probabilities pi,

δ〈fk(x)〉 =
n∑

i=1

piδfk(xi) +
n∑

i=1

fk(xi)δpi, k = 1, 2, . . . , m.

(15)
Here, δ〈fk(x)〉 is the change of the expectation value
〈fk(x)〉 and 〈δfk(x)〉 =

∑
i piδfk(xi) is the expectation

value of the change of fk(x). Their difference depends on
the changes in the probabilities δpi,

δ〈fk(x)〉 − 〈δfk(x)〉 =
n∑

i=1

fk(xi)δpi, k = 1, 2, . . . , m.

(16)
The change of information entropy SI is equal to

δSI = −
n∑

i=1

δpi log pi. (17)

Introducing the MaxEnt probabilities (5) for {pi} in equa-
tion (17) and using equations (3) and (16), one obtains

δS =
m∑

k=1

n∑

i=1

λkfk(xi)δpi

=
m∑

k=1

λk (δ〈fk(x)〉 − 〈δfk(x)〉) . (18)

Assuming that {pi+δpi} is also a MaxEnt probability dis-
tribution, equation (18) then gives the change of the maxi-
mum of information entropy due to the change in expected

values (i.e. the constraints). The meaning of equation (18)
is simple to understand, if we introduce

δQk =
n∑

i=1

fk(xi)δpi = δ〈fk(x)〉 − 〈δfk(x)〉,

k = 1, 2, . . . , m, (19)

and then using this write δS in the form

δS =
m∑

k=1

λkδQk. (20)

Equation (19) suggests the interpretation that was given
by Jaynes [13] and Grandy [15,16]. The expectation value
〈δfk(x)〉 of the change δfk(x) is the corresponding gener-
alized work. The remaining part of the change δ〈fk(x)〉 of
the expectation value 〈fk(x)〉 comes from the change in
the probability distribution {pi} and represents the gen-
eralized heat δQk for the quantity fk(x). If the function
fk(x) is such that fk(xi) = Ei for all i, then δQk is the
heat in the usual sense. Grandy [15,16] interpreted equa-
tions (19) as the general rule in the probability theory,
whose special case is the first law of thermodynamics. In-
deed, for a macroscopic system, if fk(xi) = Ei for all i,
then the corresponding equation (19) has the form of the
first law of thermodynamics

δQ = δ〈E〉 − 〈δE〉 = δU − δW, (21)

where 〈E〉 = U is the internal energy of the system and
δW = 〈δE〉 is the work done on the system. According
to references [15,16], the heat δQ is the energy trans-
fered through the degrees of freedom over which we don’t
have control, while the work δW is the energy trans-
fered through the degrees of freedom which we do con-
trol. In such an interpretation, the generalized δQk is
the part of the change of the corresponding expectation
value δ〈fk(x)〉 related to the change in the probability
distribution by equation (19). Equations (19) and (20)
explictily show that the change in the maximum of in-
formation entropy comes from the change in the proba-
bility distribution related to δQk. Furthermore, Grandy
has brought generalized terms δQk into connection with
the change of the macroscopic constraints brought by
means of the external influences on the system. Based
on that, Grandy [15,16,19,20] has developed a general-
ized approach which, along with the generalization of the
Liouville-von Neumann equation for the density matrix
through the application of the MaxEnt formalism, leads
to the derivation of the macroscopic equations of motion.

Let us consider now the quasistatic change of the en-
ergy of macroscopic system, for which we specify only that
it is a closed system (i.e. the system that can exchange en-
ergy, in the form of work or heat, with the environment,
but not particles). From equations (20) and (21) then it
follows that

δS = λδQ, (22)

and
δU − δW = δQ =

1
λ

δS. (23)

http://www.epj.org


Eur. Phys. J. B (2016) 89: 124 Page 5 of 7

If we write the first law of thermodynamics in the form in
which the thermodynamic entropy Se explicitly appears,

dU − δW = δQ = TdSe, (24)

then the Lagrange multiplier λ in the analogous equa-
tion (23) can be identified as:

λ =
1

kT
. (25)

The change δS in the maximum of information entropy
given by (22) is thus related to the total differential of
thermodynamic entropy dSe by:

kdS = dSe =
δQ

T
, (26)

where T is the temperature, and 1/T is the integrating
factor for heat δQ. The choice of the unit for temperature
(Kelvin), and respectively for entropy (Joule Kelvin−1) is
reflected in the appearance of the Boltzmann constant k
in the previous expressions.

The confirmation that the identification given by equa-
tion (25) is correct comes by introducing the value of the
Lagrange multiplier λ = (kT )−1 in the MaxEnt probabil-
ity distribution corresponding to the case considered here.
In this way we obtain

pi =
1
Z

exp
(
− Ei

kT

)
, (27)

which is known in statistical mechanics as the Gibbs
canonical distribution, describing the closed system of
known temperature in equilibrium with the environment.
The normalization factor of the canonical distribution, the
partition function Z, is equal to

Z =
n∑

i=1

exp (−λEi) =
n∑

i=1

exp
(
− Ei

kT

)
. (28)

By considering the open system (i.e. the system that can
exchange energy and particles with the environment) in
analogous way it is shown that the MaxEnt probability
distribution, in the case when along with the expected
value of energy, the expected value of the number of par-
ticles is known, corresponds to the Gibbs grand canonical
distribution [13,15]. Furthermore, it is important that the
generic MaxEnt relations from the previous and this sec-
tion become, in the special cases considered here, the well
known equations of equilibrium statistical mechanics.

However, recent work [21] on the Crooks fluctuation
theorem [22] and Jarzynski equality [23] indicates further
insights. When these important relations of nonequilib-
rium statistical mechanics are extended to quantum sys-
tems strongly coupled with their environments, the ther-
modynamic entropy of the system of interest in such cases
is related to the maximum of the information entropy of
the total system (including the system of interest and
its environment) minus the information entropy of the
environment:

Se of the system = k
(
SI of the total system

− SI of the environment

)
max

, (29)

where k is the Boltzmann constant. The reason for this is
that, unlike in the cases considered in this paper, for sys-
tems strongly interacting with their environments the cor-
relation between the system and the environment degrees
of freedom can not be neglected.

4 MaxEnt and the interpretation
of probabilities

In this section we modify and extend the analysis given
by Jaynes in reference [17] and show how this leads to the
independent interpretation of probabilities which is based
on the maximum information entropy principle. Let us
consider a proposition A(n1, . . . , nm) which is a function
of the sample numbers ni, i = 1, 2, . . . , m. In the context of
statistical mechanics, the sample numbers can represent,
for example, the distribution {n1, . . . , nm} of the number
of systems from the ensemble of n =

∑m
i=1 ni identical

systems found in m different microscopic states comprising
the discrete sample space. The proposition A(n1, . . . , nm)
can represent, for example, the expected value of energy of
the individual system, or the expected values of some set of
compatible quantities. Relative frequencies are then given
by fi = ni/n, i = 1, 2, . . . , m. The number of outcomes for
which the proposition A is true is given by the sum over
different distributions of sample numbers {n1, . . . , nm},

M(n, A) =
∑

{ni}∈R

W (n1, . . . , nm), (30)

where R is the region of the sample space for which the
proposition A is true and W is the multinomial coefficient

W (n1, . . . , nm) =
n!

n1! · · ·nm!
. (31)

The greatest term (multiplicity) in the sum (30) over the
region R is

Wmax = MaxRW (n1, . . . , nm). (32)

If T (n, m) is the number of terms in the sum (30), then it
is true that

Wmax ≤ M(n, A) ≤ WmaxT (n, m), (33)

and

1
n

log Wmax ≤ 1
n

log M(n, A)

≤ 1
n

log Wmax +
1
n

log T (n, m). (34)

From combinatorial arguments it follows that

T (n, m) =
(

n + m − 1
n

)
=

(n + m − 1)!
n!(m − 1)!

. (35)

Then as n → ∞

T (n, m) ∼ nm−1

(m − 1)!
. (36)
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Therefore, as n → ∞, log T (n, m) grows less rapidly
than n,

1
n

log T (n, m) → 0, (37)

and from equations (34) and (37) it follows that

1
n

log M(n, A) → 1
n

log Wmax, (38)

as n → ∞. The multinomial coefficient W grows so
rapidly with n that the maximum term Wmax dominates,
in the sense given by equation (38), the total multiplicity
M(n, A) given by the sum (30).

However, the limit we really want is the one in which
the sample frequencies ni/n tend to certain (but not yet
specified) constant values fi as n → ∞. Therefore, we
want the limit of

1
n

log W =
1
n

log
[

n!
(nf1)! · · · (nfm)!

]
, (39)

as n → ∞. Using the Stirling asymptotic approximation

log n! ∼ n logn − n + log
√

2πn + O

(
1
n

)
, (40)

we find as n → ∞ that in this limit we have

1
n

log W → H ≡ −
m∑

i=1

fi log fi, (41)

and this gives the information entropy of the relative fre-
quency distribution {f1, . . . , fm}. So, from equations (38)
and (41), it follows that in a such limit we also have that

1
n

log M(n, A) → 1
n

log Wmax = Hmax. (42)

Therefore, for very large n, the maximum multiplicity
Wmax is the one that dominates the total multiplic-
ity M(n, A) and maximizes the information entropy H
subject to the constraints that define the region of the
sample space for which the proposition A is true. Fur-
thermore, it is straightforward to show that the prob-
ability of obtaining the relative frequency distribution
{f1, . . . , fm} which corresponds to the maximum multi-
plicity Wmax approaches 1 in the limit of large n, because
from equation (38) in this limit we have

Wmax

M(n, A)
∼ 1. (43)

Therefore, in the limit of large n, without any other ad-
ditional constraints except that the proposition A is true,
we can assume with certainty that the relative frequencies
to be used are the ones that maximize the multiplicity
W and, because of equations (41) and (42), maximize the
information entropy H . Therefore, according to the weak
law of large numbers, the relative frequencies in the limit
of a large number of trials (n → ∞) should correspond to
the MaxEnt probabilities.

So, in this context, can we now examine the frequency
interpretation of probabilities as factual properties of the
real world, if, as in this example, the corresponding prob-
abilites (obtained in the limit of a large number of trials)
actually follow from the principle of maximum information
entropy, and therefore, depending only on the available in-
formation (i.e. on the proposition A), depend on our state
of knowledge? This question comes naturally as the above
result implies that under constraints representing the in-
formation that is available, the relative frequencies in the
limit of a large number of trials tend with certainty to the
corresponding MaxEnt probabilities.

5 Conclusion

We have shown how the probabilities in statistical me-
chanics can not be simply interpreted in the frequentist
context. Probabilities, at least in the Gibbs formalism of
statistical mechanics, are not simply relative frequencies
in the ensemble of a large number of identical systems.
Actually they depend on the available information about
the individual system and therefore are the description of
a degree our knowledge about it. The ensembles of identi-
cally prepared systems are chosen in the Gibbs formalism
only to illustrate that the information we have about the
individual system is incomplete, which means that it is not
sufficiently detailed to specify the exact microscopic state
of a macroscopic system, nor its exact evolution in time.

Furthermore, in the case of nonequilibrium systems
and processes that are irreversible on the macroscopic
level, justification of nonequilibrium ensembles in the fre-
quentist sense as a physical fact, using only first princi-
ples, via equations of motion and ergodic theorems, be-
comes permeated with technical and, more importantly,
conceptual difficulties [24]. For example, the applications
of ergodic theorems for that purpose would require an
infinite or large time intervals, and this is not in gen-
eral always available for nonequilibrium systems that are
continuously evolving and changing its macroscopic state
with time. This is well exemplified in the work of Zubarev
and his coworkers, who introduce a hierarchy of time
scales, with different sets of quantities that are relevant
for the description of a nonequilibrium system on differ-
ent time scales [25,26]. More important than ergodicity
is the concept of a mixing system, originally introduced
by Gibbs [8]. Mixing implies ergodicity, and hopefully can
provide a mechanical foundation of both nonequilibrium
and equilibrium statistical mechanics, if we can prove it for
realistic systems [6]. However, there are differing opinions
about its importance since transport coefficients and dissi-
pativity, an essential property of macroscopic systems, can
not be derived only from mixing [27]. On the other hand,
as we have shown here, MaxEnt formalism is an indepen-
dent logical extension of the Gibbs method, and leads to
statistical distributions which depend only on the avail-
able information. If that information is relevant for the
description of a system at a macroscopic level, then ac-
cordingly, the obtained statistical distributions should be
relevant for describing its macroscopic state, its properties
and time evolution [7,10,13–16,18–20,25,26,28–30].

http://www.epj.org


Eur. Phys. J. B (2016) 89: 124 Page 7 of 7

References

1. E.T. Jaynes, Predictive statistical mechanics, in Frontiers
of Nonequilibrium Statistical Physics, edited by G.T.
Moore, M.O. Scully (Plenum Press, New York, 1986),
pp. 33−56.

2. W. Feller, An Introduction to Probability Theory and Its
Applications (John Wiley and Sons, New York, 1961)

3. Law of large numbers, in Encyclopedia of Mathematics.
http://www.encyclopediaofmath.org/

4. O. Penrose, Foundations of Statistical Mechanics
(Pergamon Press, Oxford, 1970)

5. I. Farquhar, Ergodic Theory in Statistical Mechanics
(Wiley, New York, 1964)

6. J.R. Dorfman, An Introduction to Chaos in Nonequilibrium
Statistical Mechanics (Cambridge University Press,
Cambridge, 1999)

7. E.T. Jaynes, Where do we stand on maximum entropy? In
The Maximum Entropy Formalism, edited by R.D. Levine,
M. Tribus (MIT Press, Cambridge, 1979), pp. 15−118

8. J.W. Gibbs, Elementary Principles in Statistical
Mechanics (Yale University Press, New Haven, 1902)

9. E.T. Jaynes, Am. J. Phys. 33, 391 (1965)
10. E.T. Jaynes, Macroscopic prediction, in Complex Systems

Operational Approaches in Neurobiology, Physics, and
Computers, edited by H. Haken (Springer, Berlin, 1985),
pp. 254−269.

11. E.T. Jaynes, The second law as physical fact and as human
inference, Unpublished manuscript (1990), http://bayes.
wustl.edu/etj/node2.html

12. C.E. Shannon, Bell Syst. Tech. J. 27, 379, 623 (1948).
Reprinted in The Mathematical Theory of Communication,
edited by C.E. Shannon, W. Weaver (University of Illinois
Press, Urbana, 1949)

13. E.T. Jaynes, Phys. Rev. 106, 620 (1957)
14. E.T. Jaynes, Phys. Rev. 108, 171 (1957)
15. W.T. Grandy, Entropy and the Time Evolution of

Macroscopic Systems (Oxford University Press, Oxford,
2008)

16. W.T. Grandy, Found. Phys. 34, 1 (2004)
17. E.T. Jaynes, in Probability Theory: The Logic of Science,

edited by G.L. Bretthorst (Cambridge University Press,
Cambridge, 2003)
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