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Abstract. We introduce an analytical model to study the evolution towards equilibrium in spatial games,
with ‘memory-aware’ agents, i.e., agents that accumulate their payoff over time. In particular, we focus our
attention on the spatial Prisoner’s Dilemma, as it constitutes an emblematic example of a game whose Nash
equilibrium is defection. Previous investigations showed that, under opportune conditions, it is possible
to reach, in the evolutionary Prisoner’s Dilemma, an equilibrium of cooperation. Notably, it seems that
mechanisms like motion may lead a population to become cooperative. In the proposed model, we map
agents to particles of a gas so that, on varying the system temperature, they randomly move. In doing so,
we are able to identify a relation between the temperature and the final equilibrium of the population,
explaining how it is possible to break the classical Nash equilibrium in the spatial Prisoner’s Dilemma
when considering agents able to increase their payoff over time. Moreover, we introduce a formalism to
study order-disorder phase transitions in these dynamics. As result, we highlight that the proposed model
allows to explain analytically how a population, whose interactions are based on the Prisoner’s Dilemma,
can reach an equilibrium far from the expected one; opening also the way to define a direct link between
evolutionary game theory and statistical physics.

1 Introduction

Evolutionary games [1–3] represent the attempt to study
the evolution of populations [4–6] by the framework of
game theory [7]. Notably, these games allow to analyze
simplified scenarios in different domains, spanning from
socio-economic dynamics to biological systems [1,8–17].
In general, evolutionary games consider a population of
agents whose interactions are based on games like the
Prisoner’s Dilemma (hereinafter PD) or the Hawk-Dove
game [4], where there are two possible strategies: coopera-
tion and defection. As in classical game theory, the concept
of equilibrium represents a core aspect [18]. Therefore, we
aim to evaluate if a population reaches an equilibrium
equal or different from the expected one, i.e., the Nash
equilibrium of the considered game. At each interaction,
agents gain a payoff according to the adopted strategy and
to a payoff matrix. The payoff represents a form of reward
in the considered domain (e.g., money in an economic sys-
tem or food in an ecosystem). Remarkably, as agents are
allowed to change their strategy over time, we can map
them to spins with states σ = ±1, representing coopera-
tion and defection, respectively. In doing so, we can ana-
lyze order-disorder transitions in the spatial PD. Previous
studies [19–25] have shown that, under particular condi-
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tions, it is possible that a population playing a game like
the PD, i.e., a game characterized by defection as Nash
equilibrium, can be able to reach a final state of full coop-
eration. For instance, it seems that both motion [19–22]
and competitiveness [24] can lead an agent population to
cooperate [26] and, more in general, spatial structure plays
a key role in the evolution of cooperation [27,28]. Usually,
adding properties to agents, as motion, conformity and
competitiveness, entails to increase the complexity of the
resulting model. Thus, most investigations on evolutionary
games are based on computational approaches. Therefore,
in this work we try to provide an analytical description of
the spatial PD, in order to explain how a population can
become cooperative and to strengthen the link between
evolutionary game theory [29] and statistical physics [30].
It is worth highlighting that we consider ‘memory-aware’
agents, i.e., agents that accumulate their payoff over time.
Remarkably, this last condition represents the major dif-
ference with most of the evolutionary game models studied
by computational approaches (see for instance [31,32]). On
the other hand, considering ‘memory-aware’ agents makes
the problem more tractable from an analytical perspec-
tive. The remainder of the paper is organized as follows:
Section 2 introduces the proposed model and its analyti-
cal formulation. Section 3 shows analytical results. Even-
tually, Section 4 ends the paper.
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2 Model

In the proposed model, we are interested in studying the
spatial prisoner’s dilemma by an analytical approach. Let
us start by introducing the general form of a payoff matrix

( C D

C R S
D T P

)
(1)

where the set of strategies is Σ = {C, D}: C stands for
‘Cooperator’ and D for ‘Defector’. In the matrix (1), R is
the gain obtained by two interacting cooperators, T rep-
resents the Temptation, i.e., the payoff that an agent gains
if it defects while its opponent cooperates, S the Sucker’s
payoff, i.e., the gain achieved by a cooperator while the
opponent defects, eventually P the payoff of two inter-
acting defectors. In the case of the PD, matrix elements
of (1) are: R = 1, 0 ≤ S ≤ −1, 1 ≤ T ≤ 2 and P = 0. As
stated before, during the evolution of the system agents
can change their strategy from C to D, and vice versa,
following an updating rule, as for instance the one named
‘imitation of the best’ (see [4,19]), where agents imitate
the strategy of their richest neighbor.

Mean field approach

Now, we consider a mixed population of N agents with,
at the beginning, an equal density of cooperators and de-
fectors. Under the hypothesis that all agents interact to-
gether, at each time step the payoffs gained by cooperators
and defectors are computed as follows

{
πc = (ρcN − 1) + (ρdN)S

πd = (ρcN)T
(2)

with ρc + ρd = 1, ρc density of cooperators and ρd den-
sity of defectors. We recall that defection is the dominant
strategy in the PD and, even if we set S = 0 and T = 1, it
corresponds to the final equilibrium because πd is always
greater than πc. At this point, it is important to highlight
that previous investigations [19–21] have been performed
by ‘memoryless’ agents (i.e., agents that do not accumu-
late the payoff over time) whose interactions were defined
only with their neighbors, and focusing only on one agent
(and on its neighbors) at a time. These conditions are fun-
damental. For instance, if at each time step we randomly
select one agent interacting only with its neighbors, there
exists the probability to select consecutively a number of
close cooperators; thus, in this occurrence, very rich coop-
erators may emerge and then prevail on defectors, even
without introducing mechanisms like motion. It is also
worth observing that as P = 0, a homogeneous population
of defectors does not increase its overall payoff. Instead,
according to the matrix (1), a cooperative population con-
tinuously increases its payoff over time.

Now, we consider a population divided into two groups
by a wall: a group Ga composed of cooperators, and a

mixed group Gb, i.e., composed of cooperators and defec-
tors in equal amount. Agents interact only with members
of the same group, then the group Ga never changes and,
in addition, it strongly increases its payoff over time. The
opposite occurs in the group Gb, as it converges to an
ordered phase of defection, limiting its final payoff. Re-
markably, in this scenario, we can introduce a strategy
to modify the equilibria of the two groups. In particular,
we can both change to cooperation the equilibrium of Gb,
and to defection that of Ga. In the first case, we have to
wait a while, before moving one or few cooperators to Gb,
so that defectors increase their payoff, but during the re-
vision phase they change strategy to cooperation as the
newcomers are richer than them. In the second case, if
we move after few time steps a small group of defectors
from Gb to Ga, the latter converges to a final defection
phase. These preliminary and theoretical observations let
emerge an important property of the ‘memory-aware’ PD:
considering the two different groups, cooperators may suc-
ceed when act after a long time and individually. Instead,
defectors may succeed acting fast and in group. Notably,
rich cooperators have to move individually since otherwise
many rich cooperators risk to increase too much the pay-
off of defectors that, in this case, will not change strategy.
The opposite holds for defectors that, acting in group, may
strongly reduce the payoff of a community of cooperators
(for S < 0).

Mapping agents to gas particles

We hypothesize that the spatial PD, with moving agents,
can be successfully studied by the framework of kinetic
theory [30]. Therefore, in the proposed model, we map
agents to particles of a gas. In doing so, the average speed
of particles is computed as 〈v〉 =

√
3Tskb

mp
, with Ts sys-

tem temperature, kb Boltzmann constant, and mp particle
mass. Particles are divided into two groups by a permeable
wall, so that it can be crossed by particles, but it avoids
interactions among particles belonging to different groups.
Now, it is worth emphasizing that we can provide a dual
description of our system: one in the ‘physical’ domain of
particles, the other in the ‘information’ domain of agents.
Notably, to analyze the system in the ‘information’ do-
main we will introduce, as above discussed, the mapping
of agents to a spin system (see [33]). Summarizing, we map
agents to gas particles in order to represent their ‘physi-
cal’ property of motion, and we map agents to spins for
representing their ‘information’ property (i.e., their strat-
egy). Remarkably, these two mappings can be viewed as
two different layers for studying how the agent population
evolves over time. Although the physical property (i.e.,
the motion) affects the agent strategy (i.e., its spin), the
equilibrium can be reached in both layers/domains inde-
pendently. This last observation is important since we are
interested in evaluating only the final equilibrium reached
in the ‘information’ domain. Then, as stated before, agents
interact only with those belonging to the same group, so
the evolution of the mixed group Gb can be described by
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Fig. 1. From (a) to (e): evolution of the group Gb, with N = 100 and ε = 1, on varying the temperature: (a) Ts = 0; (b)
Ts = 0.1; (c) Ts = 9; (d) Ts = 15; (e) Ts = 50. Insets show the system magnetization over time. The istant t = tc, can be
detected in plots (c)–(e) as a discontinuity of the two lines (i.e., red and black). (f) Final magnetization M , of Gb, for different
temperatures (Tc indicates the ‘critical temperature’).

following equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dρb
c(t)
dt = pb

c(t)ρb
c(t)ρb

d(t) − pb
d(t)ρ

b
d(t)ρ

b
c(t)

dρb
d(t)
dt = pb

d(t)ρ
b
d(t)ρ

b
c(t) − pb

c(t)ρb
c(t)ρb

d(t)

ρb
c(t) + ρb

d(t) = 1

(3)

with pb
c(t) probability that cooperators prevail on defec-

tors (at time t), and pb
d(t) probability that defectors pre-

vail on cooperators (at time t). These probabilities are
computed according to the payoffs obtained, at each time
step, by cooperators and defectors⎧⎨

⎩
pb

c(t) = πb
c(t)

πb
c(t)+πb

d
(t)

pb
d(t) = 1 − pb

c(t).
(4)

The system (3) can be analytically solved provided that,
at each time step, values of pb

c(t) and pb
d(t) be updated.

So, the density of cooperators reads

ρb
c(t) =

ρb
c(0)

ρb
c(0) − [(ρb

c(0) − 1)e
τt

Nb ]
(5)

with ρb
c(0) initial density of cooperators in Gb, τ = pb

d(t)−
pb

c(t), and N b number of agents in Gb. Recall that setting
Ts = 0, not allowed in a thermodynamic system, corre-
sponds to a motionless case, leading to the Nash equi-
librium in Gb. Instead, for Ts > 0 we can find more in-
teresting scenarios. Now we suppose that, at time t = 0,
particles of Ga are much closer to the wall than those of Gb

(later we will relax this constraint); for instance, let us con-
sider a particle of Ga that, during its random motion, it
is following a trajectory of length d (in the n-dimensional
physical space) towards the wall. Assuming this particle
is moving with speed equal to 〈v〉, we can compute the in-
stant of crossing tc = d

〈v〉 , i.e., the instant when it moves

from Ga to Gb. Thus, on varying the temperature Ts, we
can vary tc.

Let us consider the payoff of cooperators in the two
groups. Each cooperator in Ga gains

πa
c = (ρa

cNa − 1)t. (6)

On the other hand, the situation for cooperators in Gb

is much more different as, according to the Nash equi-
librium, their amount decreases over time. Therefore, we
can consider how changes the payoff of the last cooperator
survived in Gb

πb
c =

t∑
i=0

[(ρb
cN

b − 1) + (ρb
dN

b)S]i (7)

moreover, πb
c → 0 as ρb

c → 0. At t = tc, a new cooperator
reaches Gb, with a payoff computed with equation (6).

3 Results

The analytical solution (5) allows to analyze the evolution
of the system and to evaluate how initial conditions affects
the outcomes of the model. Let us observe that, if πa

c (tc)
is enough big, the new cooperator may modify the equi-
librium of Gb, turning defectors to cooperators. Notably,
the payoff considered to compute pb

c, after tc, corresponds
to πa

c (tc), as the newcomer is the richest cooperator in Gb.
Furthermore, we note that πa

c (tc) depends on Na, hence
we study the evolution of the system on varying the pa-
rameter ε = Na

Nb , i.e., the ratio between particles in the
two groups. Eventually, for numerical convenience, we set
kb = 1 × 10−8, mp = 1, and d = 1.

Figure 1 shows the evolution of Gb, for ε = 1 on vary-
ing Ts and, depicted in the inner insets, the variation of
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Fig. 2. Maximum values of temperature Ts that allow the
group Gb to converge to cooperation. Red values correspond
to results computed with ε = 0.5, while blue values to those
computed with ε = 1. Circles are placed in the TS diagram
indicating values of T and S, of the payoff matrix, used for
each case. Even for high values of T , and small values of S, it
is possible to achieve cooperation.

system magnetization over time (always inside Gb) com-
puted as [34]

M =
∑Nb

i=1 σi

N b
(8)

with σi strategy of the i-agent. As discussed before, in
the physical domain of particles, heating the system en-
tails the average speed of particles increases. Thus, under
the assumption that two agents play together if they stay
close (i.e., in the same group) for a long enough time,
we hypothesize that exists a maximum speed such that
for greater values interactions do not occur (in terms of
game). This hypothesis requires a critical temperature Tc,
above which no interactions, in the ‘information’ domain,
are possible. As shown in Figure 1f, for temperatures in
range 0 < Ts < Tmax the system converges to a coop-
eration phase (i.e., M = +1), for Tmax < Ts < Tc the
system follows the Nash equilibrium (i.e., M = −1), and
for T > Tc a disordered phase emerges at equilibrium. Re-
markably, results of our model suggest that it is always
possible to compute a range of temperatures to obtain an
equilibrium of full cooperation (see Fig. 2). Moreover, we
study the variation of Tmax on varying ε (see Fig. 3) show-
ing that, even for low ε, it is possible to obtain a time tc
that allows the system to converge towards cooperation.
Eventually, we investigate the relation between the maxi-
mum value of Ts that allows a population to become co-
operative and its size N (i.e., the number of agents). Re-
markably, as shown in Figure 4, the maximum Ts scales
with N following a power-law function characterized by
a scaling parameter (i.e., an exponent) γ ∼ 2. The value
of γ has been computed by considering values of Ts shown
in Figure 2 for the case ε = 2. Eventually, it is worth
to highlight that all analytical results let emerge a link

Fig. 3. Maximum value of system temperature that allows
to achieve cooperation at equilibrium versus ε (i.e., the ra-
tio between particles in the two groups). Different colors iden-
tify different trends, fitted by power-law functions. After the
final green plateau, temperatures are too high to play the
spatial PD.

Fig. 4. Maximum value of Ts to achieve full cooperation at
equilibrium in function of N , i.e., the size of the population.
The fitting function (dotted line) is a power-law characterized
by a scaling parameter equal to 2.

between the system temperature and its final equilibrium.
Recalling that we are not considering the equilibrium of
the gas, i.e., it does not thermalize in the proposed model,
we emphasize that the equilibrium is considered only in
the information domain.

Phase transitions in the spatial PD

As discussed before, in the information domain we can
study the system by mapping agents to spins, whose value
represents their strategy. In addition, we can map the dif-
ference between winning probabilities, of cooperators and
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Fig. 5. Order-disorder phase transitions in the population. For Ts < Tc, the population is in a ferromagnetic phase: (a)
applying an external negative field, the system converges to the Nash equilibrium, corresponding to m = −1 (as σ = −1
represents defection); (b) applying an external positive field, the population converges to cooperation (σ = +1), corresponding
to m = +1. (c) For temperatures higher than Tc, a disordered paramagnetic phase emerges.

defectors, to an external magnetic field: h = pb
c − pb

d. In
doing so, by the Landau theory [30], we can analytically
identify an order-disorder phase transition. Notably, we
analyze the free energy F of the spin system on varying
the control parameter m [35] (corresponding to the mag-
netization M)

F (m) = −hm ± m2

2
+

m4

4
(9)

where the sign of the second term depends on the temper-
ature, i.e., positive for Ts > Tc and negative for Ts < Tc;
recalling that Tc represents the temperature beyond which
it is not possible to play the PD due to the high particles
speed (according to the condition before discussed). For
the sake of clarity, we want to emphasize that the free en-
ergy is introduced in order to evaluate the nature of the
final equilibrium achieved by the system. In particular,
looking for the minima of F allows to investigate if our
population reaches the Nash equilibrium, or different con-
figurations (e.g., full cooperation). Figure 5 shows a pic-
torial representation of the phase transitions that occur in
our system, on varying Ts and the external field h. Finally,
the constraints related to the average speed of particles,
and to the distance between each group and the perme-
able wall, can in principle be relaxed as we can imagine
to extend this description to a wider system with several

groups (as done in previous investigations, e.g. [20]), where
agents are uniformly spread in the whole space. It is worth
to highlight that our results are completely in agreement
with those achieved by authors who studied the role of
motion in the PD (as [19,20]), explaining why clusters
of cooperators emerge in their simulations [20]. We also
recall that, in the proposed model, we are using memory-
aware agents, while in previous computational investiga-
tions agents reset their payoff at each step, i.e., before to
start new interactions.

4 Conclusions

To conclude, in this work we provide an analytical de-
scription of the spatial Prisoner’s Dilemma, by using the
framework of statistical physics, studying the particular
case of agents provided with memory of their payoff (de-
fined memory-aware agents). This condition entails that
their payoff is not reset at each time step, so that they can
increase it over time. In particular, we propose a model
based on the kinetic theory of gases, showing how motion
may lead a population towards an equilibrium far from the
expected one (i.e., the Nash equilibrium). Remarkably, the
final equilibrium depends on the system temperature, so
that we have been able to identify a range of tempera-
tures that triggers cooperation for all values of the payoff
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matrix (related to the PD). In addition, we found an in-
teresting relation between the maximum temperature that
fosters cooperation and the size of the system. Notably, a
scaling parameter in that relation has been computed by
investigating different orders of magnitude of the size of
the system. Furthermore, the dynamics of the resulting
model have been also described in terms of order-disorder
phase transitions. Finally, we deem that our results open
the way to define a direct link between evolutionary game
theory and statistical physics.
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