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Abstract. The Rényi entropies Rp[ρ], p > 0, �= 1 of the highly-excited quantum states of the D-dimensional
isotropic harmonic oscillator are analytically determined by use of the strong asymptotics of the orthogonal
polynomials which control the wavefunctions of these states, the Laguerre polynomials. This Rydberg
energetic region is where the transition from classical to quantum correspondence takes place. We first
realize that these entropies are closely connected to the entropic moments of the quantum-mechanical
probability ρn(r) density of the Rydberg wavefunctions Ψn,l,{μ}(r); so, to the Lp-norms of the associated
Laguerre polynomials. Then, we determine the asymptotics n → ∞ of these norms by use of modern
techniques of approximation theory based on the strong Laguerre asymptotics. Finally, we determine the
dominant term of the Rényi entropies of the Rydberg states explicitly in terms of the hyperquantum
numbers (n, l), the parameter order p and the universe dimensionality D for all possible cases D ≥ 1.
We find that (a) the Rényi entropy power decreases monotonically as the order p is increasing and (b)
the disequilibrium (closely related to the second order Rényi entropy), which quantifies the separation of
the electron distribution from equiprobability, has a quasi-Gaussian behavior in terms of D.

1 Introduction

Harmonicity is one of the most frequent and useful approx-
imations to simplify and solve the Schrödinger equation
of the physical many-body systems. It often provides a
deeper quantitative insight into the physical system under
investigation, and in many cases allows for the conceptual
understanding of physics in a straightforward and intuitive
way. Moreover, the solutions of the wave equations of com-
plex physical systems within this approximation are very
valuable tools for checking and improving complicated nu-
merical methods used to study such systems.

The one-dimensional isotropic harmonic oscillator first
and then the D-dimensional (D > 1) oscillator, have
been widely used through the history of physics since
the 1926-dated seminal paper of Heisenberg [1]. Indeed
they have been used in a great diversity of fields from
fractional and quantum statistics [2,3] up to quantum
many-body physics [4–12] and black-holes thermodynam-
ics [13,14], and they have been applied to gain insight
into numerous quantum phenomena and systems rang-
ing from heat transport [15] and entanglement [16,17] to
Keppler systems [18], quantum dots [6,19,20], neural net-
works [21], cold atomic gases [22–24] and systems with on-
tological states [25]. Let us also remark that the oscillator
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wavefunctions saturate the various mathematical realiza-
tions of the quantum uncertainty principle of Heisenberg
and entropic types, which are based on the variance and its
moment generalizations (Heisenberg-like uncertainty rela-
tions) [26,27] and the Shannon entropy [28,29], Rényi en-
tropy [30,31] and the Fisher information [26,32] (entropic
uncertainty relations), respectively.

The spatial extension or spreading of the position
probability densities ρ(r) of a D-dimensional isotropic
harmonic oscillator, which control all its fundamental
properties, has been examined by means of their cen-
tral moments, particularly the second one (i.e., the vari-
ance) [27]. It can be complementarily described in the
framework of Information Theory by use of the entropic
moments of these densities and some related entropic mea-
sures [33–38], what is much more adequate because they
do not depend on any specific point of their domain of
definition, contrary to what happens with the moments
about the origin and the central moments. The entropic
moments of ρ(r) are defined as:

Wp[ρ] =
∫

RD

[ρ(r)]p dr = ‖ρ‖p
p; p ≥ 0, (1)

where the position r = (x1, . . . , xD) in hyperspheri-
cal units is given as (r, θ1, θ2, . . . , θD−1) ≡ (r, ΩD−1),

ΩD−1 ∈ SD−1, where r ≡ |r| =
√∑D

i=1 x2
i ∈ [0 ; +∞)
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and xi = r(
∏i−1

k=1 sin θk) cos θi for 1 ≤ i ≤ D and with
θi ∈ [0 ; π), i < D − 1, θd−1 ≡ φ ∈ [0 ; 2π). By conven-
tion θD = 0 and the empty product is the unity. And the
volume element is naturally

dr = rD−1drdΩD, dΩD =

⎛
⎝D−2∏

j=1

sin2αj θj

⎞
⎠ dφ,

with 2αj = D−j−1. The symbol ‖·‖p denotes the Lp norm
for functions: ‖Φ‖p =

(∫
RD |Φ(r)|pdr

)1/p. The knowledge
of the entropic moments or their closely connected quanti-
ties, the Rényi entropies Rp[ρ] (also called by information
generating functionals in other contexts [39]), completely
characterize the density ρ(r). They are defined [40] as

Rp[ρ] =
1

1 − p
ln Wp[ρ]; 0 < p < ∞, p �= 1. (2)

Note that these quantities include the Shannon entropy
(which measures the total extent of the density), S[ρ] =
limp→1 Rp[ρ], and the disequilibrium (which quantifies the
separation of the density with respect to equiprobabil-
ity), 〈ρ〉 = exp(R2[ρ]), as two important particular cases.
For a revision of their properties see [41–47] and the re-
views [48,49]. The Rényi entropies and their associated un-
certainty relations have been widely used to investigate a
great deal of quantum-mechanical properties and phenom-
ena of physical systems and processes [30,47–49], ranging
from the quantum-classical correspondence [50] and quan-
tum entanglement [51] to pattern formation and Brown
processes [52,53], fractality and chaotic systems [54,55],
quantum phase transition [56] and disordered systems [57].
Moreover, the knowledge of these quantities allows us to
reconstruct the corresponding probability density under
certain conditions [44,58].

In this work we will investigate the Rényi entropies of
the quantum D-dimensional oscillator states of the poten-
tial VD(r) = 1

2λ2r2, which are known to be described in
position space [34,59] by the eigenfunctions

Ψn,l,{μ}(r) =

[
2n!λl+ D

2

Γ (n + l + D
2 )

] 1
2

rle−
λ r2
2 Ll+D/2−1

n (λ r2)

×Yl,{μ}(ΩD−1), (3)

and the corresponding energetic eigenvalues

En,l = λ

(
2n + l +

D

2

)
, (4)

where n = 0, 1, 2, . . . and l = 0, 1, 2, . . .. The symbol Lα
n(t)

denotes the Laguerre polynomial of paramater α and de-
gree n (see definition in Eq. (18) below), and Yl,{μ}(ΩD)
represents the hyperspherical harmonics defined by

Yl,{μ}(ΩD−1) = Nl,{μ}eimφ

×
D−2∏
j=1

C
αj+μj+1
μj−μj+1

(cos θj) (sin θj)
μj+1 (5)

with the normalization constant

N 2
l,{μ} =

1
2π

×
D−2∏
j=1

(αj + μj)(μj − μj+1)![Γ (αj + μj+1)]2

π 21−2αj−2μj+1Γ (2αj + μj + μj+1)
,

where the orbital quantum number l and the magnetic
quantum numbers {μ} are integers satisfying

l ≥ μ1 ≥ μ2 ≥ . . . ≥ |μD−1| ≡ |m|,
and the symbol Cλ

n(t) denotes the Gegenbauer polyno-
mial of degree n and parameter λ. Atomic units are used
throughout the paper.

Then, the position probability density of the
D-dimensional isotropic harmonic oscillator is given by
the the squared modulus of the position eigenfunction as
follows

ρ(r) = |Ψn,l,{μ}(r)|2

=
2n!λl+ D

2

Γ (n + l + D
2 )

r2le−λ r2
[
L(l+D/2−1)

n (λ r2)
]2

×|Yl,{μ}(ΩD−1)|2

=
2n!λ

D
2

Γ (n + l + D
2 )

x1−D
2 ωl+ D

2 −1(x)
[
L(l+D/2−1)

n (x)
]2

×|Yl,{μ}(ΩD−1)|2

= 2 λ
D
2 x1−D

2 ωl+ D
2 −1(x)[L̂(l+D/2−1)

n (x)]2

×|Yl,{μ}(ΩD−1)|2 (6)

where x = λ r2 and

ωα(x) = xαe−x, α = l +
D

2
− 1, (7)

is the weight function of the orthogonal and orthonormal
Laguerre polynomials of degree n and parameter α, here
denoted by L

(α)
n (x) and L̂

(α)
n (x), respectively. Moreover, it

is known [34] that the probability density in momentum
space (i.e., the squared modulus of the Fourier transform
of the position eigenfunction) is given by γ(p) = 1

λD ρ
(

p
λ

)
.

Then, by keeping in mind equations (1) and (2), the
main problem in this work is to calculate the quantities

Wp[ρ] =
∫

RD

[ρ(r)]p d r

=

∞∫

0

[ρn,l(r)]p rD−1dr (8)

where we have used the unity normalization of the hyper-
spherical harmonics

∫
SD−1

|Yl,{μ}(ΩD−1)|2 dΩD−1 = 1

and the radial density function ρn,l(r)

ρn,l(X) = 2 λ
D
2 x1− D

2 ωl+ D
2 −1(x)[L̂(l+D/2−1)

n (x)]2. (9)
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For the low-energy quantum oscillator states (i.e., for low
values of the principal quantum number n), the analyt-
ical expressions of the associated Laguerre polynomials
are tractable and the corresponding entropic moments
Wp[ρn,l] can be numerically calculated by various acce-
sible quadrature formulas in an effective and sufficiently
accurate way. Then, it remains the truly dificult problem:
the evaluation of the asymptotics of the quantities

∞∫

0

ρp
n,l(r) rD−1dr, n → ∞ , (10)

which represent the entropic moments of the Rydberg
(high-energy) oscillator states. This is the purpose of the
present work: to solve this problem in a fully analyti-
cal way. Thus, by looking at expressions (9) and (10),
this problem converts into an important issue, not yet
solved, of the modern Approximation Theory: to study
the asymptotics (n → ∞) of the Lp-norm of the Laguerre
polynomials

Nn,l(D, p) =

∞∫

0

([
L̂(α)

n (x)
]2

wα(x)
)p

xβ dx, p > 0 ,

(11)
where

α = l+
D

2
−1, l = 0, 1, 2, . . . , and β = (p−1)(1−D/2).

(12)
We note that (7) and (12) guarantee the convergence of
integral (11) at zero; i.e. the condition

β + pα = pl +
D

2
− 1 > −1,

is always satisfied for physically meaningfull values of the
parameters (12).

2 Asymptotics of Lp norms of Laguerre
polynomials

In this section we will determine the asymptotics (n → ∞)
of the integral functionals Nn,l(D, p) of the (orthonormal)
Laguerre polynomials L̂

(α)
n (x) defined by equation (11).

It essentially depends on the values of the parameters D
and p (i.e. α, β and p) given by equation (12).

First of all we will make some general comments about
the different regions of integration, pointing out the vari-
ous asymptotical regimes of the Laguerre polynomials and
the corresponding dominant contribution. Then, we give
the asymptotical results of Nn,l(D, p) for all the possible
pairs (D, p) in the form of three theorems. Finally we give
a detailed proof of these theorems.

In fact, to make the (0,∞)-integration in (11) for the
different values (12) of the parameters we have various
regions where the Laguerre polynomials have a precise

asymptotical representation. First, in the neighborhood
of zero (i.e. the left end point of the interval of orthog-
onality) the Laguerre polynomials can asymptotically be
represented by means of Bessel functions as it is pointed
out below. Then, to the right, in the bulk region of zeros lo-
cation, the oscillatory behavior of the polynomials is mod-
elled asymptotically by means of the trigonometric func-
tions; and at the neighborhood of the extreme right zeros,
asymptotics of the polynomials is given by Airy functions.
Finally in the neighborhood of the infinity point, the poly-
nomials has growing asymptotics. Moreover there are re-
gions where these asymptotics match each other. Namely,
asymptotics of the Bessel functions for large arguments
match the trigonometric function, as well as asymptotics
of the Airy functions do the same. Altogether there are
five asymptotical regimes which can give (depending on D
and p) the dominant contribution in the asymptotics of
Nn,l(D, p). Three of them exhibit the growth of Nn,l(D, p)
with n by following a power law with an exponent which
depends on D and p. We call these regimes as Bessel,
Airy and cosine (or oscillatory) regimes. Associated to
each of these regimes, there is a characteristic constant
whose value (as shown below) is

CB(α, β, p) := 2

∞∫

0

t2β+1|Jα(2t)|2p dt, (13)

for the Bessel regime,

CA(p) :=
∫ +∞

−∞

[
2π
3
√

2
Ai2

(
− t 3

√
2

2

)]p

dt, (14)

for the Airy regime, and

C(β, p) :=
2β+1

πp+1/2

Γ (β+1−p/2)Γ (1−p/2)Γ (p+1/2)
Γ (β + 2 − p)Γ (1 + p)

,

(15)
for the cosine regime. The symbols Jα(z) and Ai(−z) de-
note the known Bessel and Airy functions [60], respec-
tively, defined below; see equations (20), (25) and (26).

In addition, there are two asymptotical regimes cor-
responding to the transition regions, cosine-Bessel and
cosine-Airy. If these regimes dominate in integral (11),
then the asymptotics of Nn(D, p) has a factor lnn be-
sides the power law in n. It is also curious to mention that
if these regimes dominate then gamma factors in constant
C(β, p) in (15) for the oscillatory cosine regime explode.
For the cosine-Bessel regime it happens for β+1−p/2 = 0,
and for the cosine-Airy regime it happens for 1− p/2 = 0.

2.1 Asymptotics of the Laguerre polynomials

Let us now give the asymptotical representation for the
Laguerre polynomials L

(α)
n (x) defined by

L(α)
n (x) =

n∑
ν=0

(
n+α
n−ν

) (−x)ν

ν!
(16)
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with the norm

‖L(α)
n ‖2 = Γ (α + 1) (n+α

n ) . (17)

For the distinct scales of the variable x with respect to
n the Laguerre polynomials have different asymptotics as
indicated above.

For the Bessel regime (i.e. when x is small with respect
to n) there is Hilb asymptotics (see [61], Eq. (8.22.4)):

e−
x
2 xα/2L(α)

n (x)=
(n+α)!

n!
(N x)−α/2Jα(2

√
Nx)+ε(x, n),

(18)
where

N = n +
α + 1

2
,

ε(x, n) =

⎧⎨
⎩

xα/2+2 O(nα), 0 < x < c
n

x5/4 O(nα/2−3/4), c
n < x < C,

(19)

and the Bessel function is defined by

Jα(z) =
∞∑

ν=0

(−1)ν

ν! Γ (ν + α + 1)

(z

2

)α+2ν

. (20)

For the transition region between Bessel regime and os-
cillatory regime we use the asymptotics of the Bessel
function [60]:

Jα(z) =

√
2
πz

cos
(
z − απ

2
− π

4

)
+ e|Im z|O

(
1
z

)
,

| arg z| < π. (21)

The regimes of oscillatory, growing and Airy types are
described by the Plancherel-Rotach asymptotics [61–63]:

– for x = (4n + 2α + 2) cos2 ϕ, ε � ϕ � π

2
− εn−1/2

e−x/2 L(α)
n (x) = (−1)n (π sinϕ)−1/2 x−α/2−1/4

× nα/2−1/4

{
sin

[(
n+

α+1
2

)
(sin 2ϕ−2ϕ)+

3π

4

]

+ (nx)−1/2 O(1)

}
(22)

– for x = (4n + 2α + 2) ch2ϕ, ε � ϕ � ω

e−x/2 L(α)
n (x) =

1
2
(−1)n (π sinhϕ)−1/2 x−α/2−1/4

× nα/2−1/4 exp
[(

n +
α + 1

2

)
(2ϕ − sinh2ϕ)

]

× [1 + O(n−1)] (23)

– and for x = 4n + 2α + 2 − 2
(

2n
3

)1/3
t , |t| < const.

e−x/2 L(α)
n (x) = (−1)n π−1 2−α−1/3 31/3

×n−1/3{A(t) + O(n−2/3)} (24)

where the Airy function A(t)

A(t) =
π

3

(
t

3

)1/2
[
J−1/3

(
2
(

t

3

) 3
2
)

+J1/3

(
2
(

t

3

) 3
2
)]

(25)

is the solution of the equation

d2

dt2
y +

1
3

t y = 0,

bounded when t → ∞. In (14) we use normalization
for the Airy function as

A(t) =
π
3
√

3
Ai

(
−t/3

√
3
)

. (26)

During the last two decades there was an essential progress
in proving global asymptotical representations for or-
thogonal polynomials (see Deift et al. [64–66], Wong
and coworkers [67,68] and others [63,69]). In practice it
means that classical asymptotics formulas (like Hilb and
Plancherel-Rotach) hold true in wider domains providing
matching of the asymptotics in the transition zones (for
example, see in reference [63] for Hermite polynomials).
In our paper we assume that matching of the classical
asymptotics holds true for Laguerre polynomials as well.

2.2 Main results

Now we are going to state our main asymptotics results.
We split them in three theorems.

Theorem 1. Let D ∈ (2,∞). The weigthed Lp-norms of
Laguerre polynomials Nn,l(D, p), given by (11), have the
following asymptotical (n → ∞) values:

Nn,l(D, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C(β, p) (2n)(1−p) D/2 (1 + ¯̄o(1)),
p ∈ (0, p∗)

2
πp+1/2np/2

Γ (p + 1/2)
Γ (p + 1)

(lnn + O(1)),

p = p∗

CB(α, β, p)n(p−1)D/2−p (1 + ¯̄o(1)),
p > p∗,

(27)
where p∗ := D

D−1 , the constants C and CB are defined
in (15), (13) respectively, and the parameters α ≡ α(l, D)
and β ≡ β(p, D) are given by (12).

Comments : Let us note that

β(p∗, D) − p∗

2
= (p∗ − 1)

(
1 − D

2

)
− p∗

2

=
1

D − 1

(
1 − D

2
− D

2

)
= −1,

so that from (15) we have C(β, p) = ∞. Thus, when
D > 2 we have: for p ∈ (0, p∗) the region of R+ where

http://www.epj.org
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the Laguerre polynomials exhibit the cosine asymptotics
contributes with the dominant part in the integral (11).
For p = p∗ the transition cosine-Bessel regime determines
the asymptotics of Nn,l(D, p∗), and for p > p∗ the Bessel
regime plays the main role.

Let us also highlight that the Lp-norm is constant (i.e.,
independent of n) and equal to CB(α, β, p), only when
(p−1)D/2−p = 0. This means that the constancy occurs
either when D = 2p

p−1 or p = D
D−2 .

The next result is

Theorem 2. Let D = 2. The weigthed Lp-norms of
Laguerre polynomials Nn,l(D, p), given by (11), have the
following asymptotical (n → ∞) values:

Nn,l(D, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C(0, p) (2n)(1−p) (1 + ¯̄o(1)), p ∈ (0, 2)

ln n + O(1)
π2n

, p = 2

CB(α, 0, p)
n

(1 + ¯̄o(1)), p > 2,

(28)
where the constants C and CB are defined in (15), (13) re-
spectively, and the parameter α ≡ α(l, D) is given by (12).

Comments : A peculiarity of the case D = 2 is the follow-
ing. We have from Theorems 1 and 2

lim
D→2+

Nn(D, p) = Nn(2, p), p ∈ (0, 2) ∪ (2,∞).

However, from Theorem 1 we have

lim
D→2+

Nn(D, 2) =
3(lnn + O(1))

4π2n
. (29)

On the other hand, Theorem 2 states:

Nn(2, 2) =
ln n + O(1)

π2n
.

Indeed, as we shall prove it below, the magnitude of in-
tegral Nn(2, 2) is performed mainly by two regions of R+

(with the same order of contribution). The first one is
at the origin (Bessel-cosine regime), and the second one
is around the right-extreme zeros of the Laguerre poly-
nomials (Airy-cosine regime). The first region gives the
contribution in Nn(2, 2) as in (29). The second one gives
the rest of the contribution

ln n + O(1)
4π2n

. (30)

Thus for D = 2 and p = 2 we have the competition of
two transition regimes, namely the Bessel-cosine and Airy-
cosine regimes.

Let us also highlight that the Lp-norm is constant
when p = 1, being its value C(0, p) = 1.

The third, final, result on asymptotics of Nn(D, p) (we
recall β is defined in (12)) is the following.

Theorem 3. Let D ∈ [0, 2). The weigthed Lp-norms of
Laguerre polynomials Nn,l(D, p), given by (11), have the
following asymptotical (n → ∞) values:
– for p ∈ (0, 2],

Nn(D, p) =

⎧⎪⎪⎨
⎪⎪⎩

C(β, p) (2n)(1−p) D
2 (1 + ¯̄o(1)), p ∈ (0, 2)

ln n + O(1)
π2(4n)1−β

, p = 2.

(31)
– for p > 2 and 4/3 < D < 2,

Nn,l(D, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CA(p)
πp

(4n)(
1−2p

3 +β)(1 + ¯̄o(1)),
p ∈ (2, p̃)(

CA(p)
πp

4( 1−2p
3 +β)+CB(α, β, p)

)
n−β−1,

p = p̃
CB(α, β, p)n−β−1,

p ∈ (p̃,∞),
(32)

where p̃ :=
−2 + 3D

−4 + 3D
, and

– for p > 2 and D � 4/3,

Nn(D, p) =
CA(p)

πp
(4n)(

1−2p
3 +β)(1 + ¯̄o(1)), p ∈ (2,∞)

(33)
where the constants C, CA and CB are defined
in (15), (14) and (13) respectively, and the parameters
α ≡ α(l, D) and β ≡ β(p, D) are given by (12).

Comment : Here we see, that the oscillatory regime in (31)
for p ∈ (0, 2) matches the same regime in (27) and (28) for
p < p∗. But for p = 2 the Airy-cosine regime wins versus
Bessel-cosine regime and we have only contribution of (28)
in Nn(D, p). For p ≥ 2 we get a new phenomena: the role
of the oscillatory regime disappears and for the first time
the Airy and Bessel regimes becomes competitive.

Here, the limits as n → ∞ of the Lp-norm is constant
when p = 1, β = − 1−2p

3 (i.e. when p = 1 + 2
2−3D or

D = 2
3

p−2
p−1 ), and β = −1 (i.e. when p = D

D−2 or D = 2p
p−1 ).

2.3 Proofs

For all three theorems we use the unified approach. We
split the domain of integration R+ of (11) into nine
intervals as

Nn,l(D, p) =

∞∫
0

((L(α)
n (x))2 w(x))p xβ dx

‖L(α)
n ‖2p

= n−pα

⎛
⎝ 9∑

j=1

Ij

⎞
⎠ , (34)

where
Ij :=

∫

�j

(
L(α)

n (x)
)2

w(x)p xβ dx, (35)

http://www.epj.org
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and

Δ1 = [0, M/n]; Δ2 = [M/n, 1]; Δ3 = [1, (4 − ε)n];

Δ4 = [(4 − ε)n, 4n − n
1
3+θ];

Δ5 = [4n − n
1
3+θ, 4n − Mn

1
3 ];

Δ6 = [4n − Mn
1
3 , 4n]; Δ7 = [4n, 4n + Mn

1
3 ];

Δ8 = [4n + Mn
1
3 , 4n + n

1
3+θ]; Δ9 = [4n + n

1
3+θ,∞],

(36)

for some big M > 0, small ε > 0 and θ > 0. Then we
replace L

(α)
n w in (35) by their asymptotics. For j = 1

we use Hilb asymptotics (18), (19); for j = 2 we use
Hilb asymptotics (18), (19) and Bessel function asymp-
totics (21); for j = 3, 4 we use oscillatory asymptotics
of Plancherel-Rotach (22); for j = 5, 6, 7, 8 we use Airy
asymptotics of Plancherel-Rotach (24); and for j = 9 we
use growing asymptotics of Plancherel-Rotach (23).

Eventually we estimate the contribution of each inte-
gral from {Ij}9

j=1 finding the dominating terms.

2.4 Proof of Theorem 1

Here we have D > 2 and p∗ = D
D−1 .

Let us start with the case p > p∗. Then in the represen-
tation (35) and (36) for Nn,l(D, p) by the sum of integrals
9∑

j=1

Ij , the main contribution for this case is given by I1.

We have

I1 =

M/n∫

0

(w1/2(x) L̂(α)
n (x))2p xβ dx

=

M/n∫

0

[(
(n + α)!

n!

)2

(Nx)−αJ2
α(2

√
Nx)

+ O
(
xα/2+2nα

)]p

xp α+β dx. (37)

Making the change of the variable t :=
√

Nx, we continue

I1 � n2p α · N−p α−β−1

√
MN

n∫

0

2t2p α+2β+1t−2p α|J2p
α | (2t) dt

� np α−β−1

√
M∫

0

2t2β+1|J2p
α | (2t) dt. (38)

The last integral converges at zero. Indeed, the integrand
has there the order of singularity 2p α + 2β + 1 > −1 due
to (12). The order of singularity of the integrand at infinity
is 2β+1−p < −1 due to p > p∗. Since the parameter M is
arbitrary in our partition of R+ in (36)), we take M → ∞

and obtain

n−p αI1 � n−β−1

∞∫

0

2t2β+1|Jα|2p(2t) dt. (39)

In fact, the contribution in Nn,l of the remaining integrals
Ij , j = 2, . . . , 9 for D > 2, p > p∗ is less (we will see it
latter). Thus, due to (12) and (13), asymptotics (39) is
the same as in (27) for p > p∗.

Now, let us consider the case p = p∗. Then, the domi-
nant behavior is coming from the two integrals I2 and I3.
Indeed, we have from (38) that

n−p αI1 = O

(
Mp α+β+1

nβ+1

)
+ δn, δn =

Mp α+β+3

nβ+3
. (40)

We note that from (12) we have

β − p∗

2
= (p∗ − 1)

(
1 − D

2

)
− p∗

2
= −1. (41)

Taking into account the asymptotics of the Bessel func-
tion (21), we have the following estimation or I2:

n−p αI2 =

1∫

M/n

J2p
α (2

√
Nx)xβ dx + δ̃n

=

1∫

M/n

1
πp(Nx)p/2

{
cos

(
2
√

Nx − (2α + 1)
π

4

)

+ O

(
1√
N

)}2p

xβ dx + δ̃n. (42)

Using ([70], Lem. 2.1) we can continue for n → ∞ as

n−p αI2 =
1
π

π∫

0

| cos θ|2p dθ

1∫

M/n

x−p/2+β dx

πp Np/2
(1 + ¯̄o(1)).

The first integral is
π∫

0

| cos θ|2p dθ =
√

π Γ (p + 1/2)
Γ (p + 1)

.

Computing the second integral for p = p∗ (see (41)), we
obtain

n−p∗αI2 =
Γ (p∗ + 1/2) (lnn + O(1))
πp∗+1/2 Γ (p∗ + 1)Np/2

. (43)

The Plancherel-Rotach asymptotics (22) for ϕ =
arccos

√
x

4N can be transformed to

xα

nα

(
ex/2Lα

n(x)
)2

=

2 sin2
[

1
2

√
x(4N − x)−2N arccos

√
x

4N + 3π
4

]
+O

(
1√
nx

)

π
√

x(4N − x)
.

(44)
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Substituting it in I3 and using ([70], Lem. 2.1) we have
for I3, as n → ∞

n−p∗αI3 =

(4−ε)n∫

1

xαp∗

nαp∗

(
ex/2L(α)

n (x)
)2p∗

xβdx

=
(

2
π
√

4n

)p∗
1
π

π∫

0

| sin θ|2p∗
dθ ·

(4−ε)n∫

1

xβ−p∗/2dx.

Thus, I3 gives the same contribution in Nn,l(D, p∗ as I2

in (43)

n−p∗αI3 =
Γ (p∗ + 1/2) (lnn + O(1))
πp∗+1/2 Γ (p∗ + 1)Np/2

. (45)

We see from (40) that for p = p∗ the contribution from I1

in Nn,l(D, p∗) is less than that from I2 and I3. The same
can be shown for the contribution of other integrals. Thus,
summing up (43) and (45) we arrive at (27) for p = p∗.

It remains to consider the case p ∈ (0, p∗). The domi-
nant contribution here is given by I3. Substituting asymp-
totics (44) in I3, making the change of variable t :=

√
x
4n

and using ([70], Lem. 2.1) we arrive to

N−p αI3 =
(

2
π4n

)p

(2
√

n)2β+2 1
π

π∫

0

| sin θ|2pdθ

×
1∫

0

t2β+1 dt

tp(1 − t2)p/2
(1 + ¯̄o(1)).

The last integral can be evaluated explicitly as:

1∫

0

t2β+1 dt

tp(1 − t2)p/2
=

1
2

Γ (β + 1 − p/2)Γ (1 − p/2)
Γ (β + 2 − p)

.

Thus, we obtain

n−p∗αI3 =
2β+1

πp+1

Γ (β + 1 − p/2)Γ (1 − p/2)Γ (1 + p/2)
Γ (β + 2 − p)Γ (1 + p)

× (2n)1−p+β (1 + ¯̄o(1)). (46)

It is clear that the contributions of I1 and I2 are less
than I3. The same can be shown for the contribution of
other integrals. Theorem is proved.

2.5 Proof of Theorem 2

Here we have D = 2. Then, β ≡ 0 and p∗ = 2.
Let us start with the case p > 2. As for the case (D > 2,

p > p∗), according to (35) and (36) we can see that the
dominant contribution in Nn,l(D, p) is given by I1. Indeed,

we have

M/n∫

0

(
w1/2(x) L̂(α)

n (x)
)2p

dx =

M/n∫

0

[
n!

(n+α)!

(
(n+α)!

n!

)2

× (Nx)−αJ2
α(2

√
Nx) + xα+4O(nα)

]p

xp α dx

=
1
n

⎛
⎜⎝

√
M∫

0

2t |Jα|2p(2t) dt + ¯̄o(1)

⎞
⎟⎠ .

Since M is an arbitrary constant, we let M → ∞. At
the same time, we see that the sum J6 + J7 also gives a
perceptible contribution

4N+Mn1/3∫

4N−Mn1/3

(
w1/2(x) L̂(α)

n (x)
)2p

dx =

M∫

−M

[
(2n)−2/3A2

i

(
− t

24/3

)]p

n1/3 dt (1 + ¯̄o(1). (47)

However, for p > 2

1/3 − p 2/3 < −1. (48)

Thus the only contribution of I1 plays the role, and we
obtain (28) for p > 2.

Let us now consider the case p = 2. In comparison
with the case (D > 2, p = p∗), not only the transition
zone for the Bessel-cosine regimes (i.e. integrals I2 and I3)
plays the role, but the transition zone for the cosine-Airy
regimes (i.e. integrals I4 and I5) plays the role too.

For I2 and I3, substituting p∗ = 2 in (43) and (45), we
get

n−2α(I2 + I3) =
3 lnn + O(1)

4π2n
. (49)

The second transition zone is
[
(4 − ε)n, 4n− n1/3+θ

]
∪
[
4n− n1/3+θ, 4n − M · n1/3

]
.

For the oscillatory Plancherel-Rotach asymptotics (22) we
have

See equation (50) next page.

For I5 using (24) and asymptotics for the Airy function
(see in Ref. [66])

A4
i

(
− t

24/3

)
� (1 + sin(t3/2/3))2

4π2(t/24/3)
, t → ∞ ,
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4N−n1/3+θ∫

(4−ε)N

⎡
⎣2 sin2

(
1
2

√
x(4N−x) − 2N arccos

√
x

4N
+ 3π

4

)
+O

(
1√
Nx

)

π
√

x(4N−x)

⎤
⎦

2

dx =

1

π

π∫

0

sin4 ϕ dϕ ×
4N−n1/3+θ∫

4N

4 dx

πx(4N − x)
=

3

8π2n

((
2

3
− θ

)
ln n + O(1)

)
. (50)

we obtain

4n−Mn1/3∫

4N−n(1/3+θ)

(w1/2(x)L̂(α)
n (x))2dx �

nθ∫

M

[
(2n)−2/3A2

i

(
− t

24/3

)]2

n1/3dt � 1
4π2n

π∫

0

(1+sinϕ)2

×dϕ

nθ∫

M

dt

t
=

3(θ ln n + O(1))
8π2n

.

(51)

Summing (50), (51) and (49), we obtain (28) for p = 2.
The remaining case is p < 2. Here we proceed in the

same manner as for the case (D > 2, p < p∗), and we
obtain (46) for β = 0. Theorem is proved.

2.6 Proof of Theorem 3

Here we have D ∈ [0, 2), β > 0 for p > 1; therefore p∗ = 2,
as in the previous case.

Let us start with the case p > 2. Now the competition
between I1 and I6 + I7 becomes crucial. We already know
for I1 from (39) that

n−p αI1 = CBn−β−1.

To obtain the asymptotics for n−p α(I6 +I7) we substitute
xβ in the left-hand side of (47)

4n+Mn1/3∫

4n−Mn1/3

(w1/2(x)L̂(α)
n (x))2pxβdx � 22βn

1−2p
3 +βCA.

Now, instead of inequality (48) we have for D > 4/3 the
solution p = p̃ of the equation (where β is from (12))

−β − 1 = 1 − 2p

3
+ β ⇒ p̃ =

−2 + 3D

−4 + 3D
.

Thus, we have obtained (33) and (32).
Now let us consider that p = 2. In comparison with

the previous cases, we have that the only contribution
which plays a role is coming from the transition zone for
the cosine-Airy regimes. Substituting xβ in the left-hand
sides of (50) and (51) we arrive at (31), p = 2.

Finally for p ∈ (0, 2), we have

1 + β − p > −β − 1,

and
1 + β − p >

1 − 2p

3
+ β.

Thus, only the oscillatory integral I3 gives the contribu-
tion to the asymptotics of Nn,l(D, p), and from (46) we
complete proof of (31).

Theorem is proved.

3 Rényi entropy powers for Rydberg
D-dimensional oscillator states

In this section the asymptotical results obtained in the
previous section are applied to obtain the Rényi entropies
(or better, the Rényi entropy powers, which have posi-
tion physical units) of the Rydberg states of the multidi-
mensional harmonic oscillator. The Rényi entropy powers,
Np[ρ], of the density ρ is given by:

Np[ρ] := eRp[ρ] =
(∫

ρ(x)p dx

) 1
1−p

. (52)

Taking into account equations (2), (8), (9) and (11), we
obtain the following expressions

Rp[ρ] =
1

1 − p
ln
[
2p−1λ

D
2 (p−1)Nn,l(D, p)

]
,

Np[ρ] =
1
2
λ− D

2 [Nn,l(D, p)]
1

1−p (53)

for the Rényi entropies and the Rényi entropy pow-
ers, respectively, of an arbitrary quantum state of the
D-dimensional isotropic harmonic oscillator in terms of
the Lp-norms Nn,l(D, p) of the orthonormal Laguerrre
polynomials associated to the state wavefunction given
by the three previous theorems. The involved parameters
within the norms, α ≡ α(l, D) = l + D

2 − 1 (l = 0, 1, 2, . . .)
and β ≡ β(p, D) = (p−1)(1−D/2), are taking from (12).
Note that these information-theoretic quantities depend
on the spatial dimension D as well as on the order param-
eter p for each pair (n, l). In the numerical calculations
performed heretoforth we will assume that λ = 1 without
any loose of generality. Atomic units are used everywhere
as already pointed out.

Let us now discuss these two Rényi-type quantities
with D ≥ 2 and q �= 1 from equations (53) in various

http://www.epj.org
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Fig. 1. Variation of the Rényi entropy power, Np[ρ], with re-
spect to p for the Rydberg oscillator state (n = 50, l = 0)
of the D-dimensional harmonic oscillator with D = 2(�) and
D = 4(

⊙
).

ways. The Rényi entropies for the Rydberg states of the
one-dimensional isotropic harmonic oscillator have been
recently studied [71] in a monographic way, because the
polynomials involved in this case are of Hermite type.
The limiting case p → 1 (Shannon entropy) will be an-
alyzed separately elsewhere for any D-dimensional oscil-
lator system.

First, in Figure 1 we study the variation of the Rényi
entropy power, Np[ρ], with respect to the order p for the
Rydberg oscillator state (n = 50, l = 0) with D = 2(�)
and D = 4(

⊙
). We observe that in both cases, the Rényi

entropy power decreases monotonically as the order p is
increasing; in fact, this behavior holds for any dimension-
ality D > 1. Moreover it is very fast, indicating that the
quantities with lowest orders (particularly the case p = 2,
closely related with the disequilibrium) are most signifi-
cant for the quantification of the spreading of the electron
distribution of the system.

Second, we explore the dependence of the pth-order
Rényi quantities of the Rydberg-state region in terms of
the principal hyperquantum number n when (l, p, D) are
fixed. To exemplify it, we will examine the case p = 2
for the Rydberg (n, l = 0) ≡ (ns)-states of the three-
dimensional oscillator. From (8), (9), (11), (53) and The-
orem 1, one has that for p = 2 and D = 3, the second-
order Rényi entropy and the disequilibrium (the inverse of

the Rényi entropy power) of the Rydberg state (n, l) are
given by

R2[ρ] = − ln
[
2λ

3
2 CB

(
l +

1
2
,−1

2
, 2
)

n− 1
2

]
(1 + ¯̄o(1)),

D[ρ] = W2[ρ] = N2[ρ]−1

=
[
2λ

3
2 CB

(
l +

1
2
,−1

2
, 2
)

n− 1
2

]
(1 + ¯̄o(1)) (54)

since the disequilibrium (or average density of the dis-
tribution ρ) is defined as D[ρ] :=

∫
ρ(x)2 dx. Moreover,

for the (ns)-states the CB-constant given in (13) can be
explicitly calculated, so that the second-order Rényi en-
tropy and the disequilibrium of the Rydberg (ns)-states
of the three-dimensional harmonic oscillator has the fol-
lowing behavior

R2[ρ] =

[
− ln

(
2λ

3
2

π

)
+

1
2

ln n

]
(1 + ¯̄o(1)),

D[ρ] =

[
2λ

3
2

π
n− 1

2

]
(1 + ¯̄o(1)), (55)

respectively. The case (l = 0, p = 2, D = 2) as well as the
case (l = 0, p = 2, D = 6) are plotted in Figures 2 and 3,
which gives the variation of the disequilibrium, D[ρ], with
respect to n for the Rydberg oscillator (ns)-states of the
two- and six-dimensional harmonic oscillator, respectively.
We observe that the behavior with respect to n for the
disequilibrium of these states has a decreasing (increas-
ing) character in the two (six)-dimensional oscillator. On
the other hand, one can realize from (53) and Theorem 1
(see the last lines of the comments to this theorem) that
the disequilibrium for the case (l = 0, p = 2, D = 4) has
the constant value 0.4053. So that, most interesting, we
find the following phenomenon: the disequilibrium of the
Rydberg (ns)-states of D-dimensional oscillator decreases
(increases) as a function of the principal hyperquantum
number n when the dimensionlity D is less (bigger) than 4,
and it becomes constant when D = 4. In fact we should
not be surprised that the disequilibrium as a function of n
changes when the spatial dimensionality is varying. This
also happens for all physical properties of a quantum sys-
tem at different spatial dimensionalities, since the physi-
cal solutions of their corresponding wave equations (e.g.,
Schrödinger) are so different (see e.g., [59]). The novelty
is that the character of the disequilibrium behavior as a
function of n changes so much, pointing out the existence
of a critical dimensionality at which it is constant.

In Figure 4, we illustrate the variation of the disequi-
librium, D[ρ], as a function of l for the Rydberg states
(n = 50, l) of the four-dimensional harmonic oscillator.
We observe that its behavior is monotonically decreasing
when l is increasing. In fact this property holds for D ≥ 2.
Then, it is interesting to point out that the electron distri-
bution of the D-dimensional oscillator, within the region
of the Rydberg s-states, becomes closer to equiprobability
when l is increasing, approaching what one would expect
classically. Moreover, this trend is slightly moderated for
Rydberg states other than s-states.
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Fig. 2. Variation of the disequilibrium D[ρ] with respect to
n for the Rydberg oscillator (ns)-states of a two-dimensional
harmonic oscillator. So, this is the case (l = 0, p = 2, D = 2).
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Fig. 3. Variation of disequilibrium D[ρ] with respect to n for
the Rydberg oscillator (ns)-states of a six-dimensional har-
monic oscillator. So, this is the case (p = 2, l = 0, D = 6).
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Fig. 4. Variation of the disequilibrium D[ρ] with respect to
l for the Rydberg oscillator state with n = 50 of the four-
dimensional harmonic oscillator. So, this is the case (p = 2,
n = 50, D = 4).

Third, finally, let us illustrate the behavior of the Rényi
entropy power, Np[ρ], of the Rydberg oscillator states as
a function of the dimensionality D. We do that in Fig-
ure 5 for the disequilibrium D[ρ] = N2[ρ]−1 of the Rydberg
state (l = 0, p = 2, n = 50) of the oscillator with various
integer values of the dimensionality D. We observe that
the disequilibrium has a quasi-Gaussian form when D is

 0

 10
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 0  10  20  30

D[ρ]

D

Fig. 5. Variation of the disequilibrium D[ρ] with respect to
the dimensionality D for the Rydberg oscillator state (n = 50,
l = 0) of the D-dimensional harmonic oscillator. So, this is the
case (p = 2, n = 50, l = 0).

increasing, so that finally it vanishes for a given, suffi-
ciently large value of D. Most interesting is that the max-
imum of the Rényi entropy power is located at D = 12,
which surprisingly corresponds to the universe dimension-
ality predicted by certain string theories [72]. Neverthe-
less, we should point out that for higher Rydberg states
the maximum of the disequilibrium is located at larger
dimensionalities. This indicates that the nearer the clas-
sical limit is, the larger is the dimensionality required for
the disequilibrium (i.e., separation from equiprobability)
to reach its maximum.

4 Conclusions

The macroscopic properties of a quantum many-particle
system essentially depend on the spreading of its
quantum-mechanical Born one-particle distribution ρ(r),
as proved by the functional-density theory. This spread-
ing can be completetely described by the knowledge
of the moments Wp[ρ] of ρ(r) or by some closely re-
lated information-theoretic quantities, the Rényi entropies
Rp[ρ], which often describe some fundamental proper-
ties of the system and/or are experimentally observable.
These quantities, however, cannot be analytically acces-
sible, even not for the simplest harmonic systems unless
we consider the ground state and the first few lowest-lying
excited states. In 2012 the Shannon entropy, which corre-
sponds to the limiting case p → 1 of the Rényi entropy,
was determined for the highest-lying (Rydberg) states of
the one-dimensional harmonic oscillator [71] whose wave-
functions are controlled by Hermite polynomials.

In this paper we extend this result in a two-fold way:
we determine in an analytical way the Rényi entropies
of all orders for the Rydberg states of a D-dimensional
harmonic oscillator, whose wavefunctions are known to be
controlled by Laguerre polynomials. To do that we first
realize that the Rényi entropies can be explicitly expressed
in terms of the Lp-norms of the Laguerre polynomials, and
then we develop a method to analytically calculate the
leading term of the asymptotics of these norms when the
polynomial degree is very high.
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Later, a number of physical results are found. First, for
a given Rydberg state the Rényi entropy has a very fast
decreasing behavior as the parameter order is increasing,
indicating that the Rényi entropies with lowest orders are
most significant. Then, for illustration, we study in detail
the second-order Rényi entropy (i.e., the disequilibrium) of
the system, which quantifies the separation of the electron
distribution from equiprobability. It is found that it has a
bell-like quasi-Gaussian behavior in terms of D, its maxi-
mum being located at D = 12 which is the universe dimen-
sionality predicted by certain string theories [72]. Let us
here comment that geometrical quantities associated with
D-dimensional hyperspheres (such as surface area) also
exhibit this kind of behavior (with the corresponding
bell-like function centered around a different D-value).
This suggests that the behavior of the disequilibrium
may have a geometrical origin in terms of basic proper-
ties of hyperspheres. Moreover, the disequilibrium of the
Rydberg (ns)-states of D-dimensional oscillator decreases
(increases) as a function of the principal hyperquantum
number n when the dimensionlity D is less (bigger) than
4, and it becomes constant when D = 4. Needless to say
that much more efforts have to be done before making
exotic statements.

Finally, these results are potentially useful in the study
of entropic uncertainty relations. Moreover, they might
also be relevant in connection with quantitative entangle-
ment indicators. Rényi entropies have been recently used
for this purpose (see e.g., [73]). We believe that the analyt-
ical technology here developed could be useful in relation
to entanglement-like studies in quantum information.
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