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Abstract. We address two aspects of the dynamics of the forced Duffing oscillator which are relevant to
the technology of micromechanical devices and, at the same time, have intrinsic significance to the field of
nonlinear oscillating systems. First, we study the stability of periodic motion when the phase shift between
the external force and the oscillation is controlled – contrary to the standard case, where the control
parameter is the frequency of the force. Phase-shift control is the operational configuration under which
self-sustained oscillators – and, in particular, micromechanical oscillators – provide a frequency reference
useful for time keeping. We show that, contrary to the standard forced Duffing oscillator, under phase-
shift control oscillations are stable over the whole resonance curve, and provide analytical approximate
expressions for the time dependence of the oscillation amplitude and frequency during transients. Second,
we analyze a model for the internal resonance between the main Duffing oscillation mode and a higher-
harmonic mode of a vibrating solid bar clamped at its two ends. We focus on the stabilization of the
oscillation frequency when the resonance takes place, and present preliminary experimental results that
illustrate the phenomenon. This synchronization process has been proposed to counteract the undesirable
frequency-amplitude interdependence in nonlinear time-keeping micromechanical devices.

1 Introduction

Since the 1970s, the Duffing oscillator – first introduced
by the German engineer Georg Duffing in 1918 [1] – has
been repeatedly invoked as a paradigm for nonlinear be-
havior in classical mechanical systems [2]. The mere ad-
dition of a cubic force to a linear damped oscillator de-
ploys a plethora of complex phenomena, but still preserves
the simple mathematical form and low dimensionality that
makes the system readily amenable to computational ex-
ploration and, to a certain extent, to analytical study. Un-
der the action of an external harmonic force, the Duffing
oscillator’s response can be bistable, with two possible
oscillation amplitudes for each frequency. This property,
which is directly related to the well-known Duffing lean-
ing resonance curve [3], has been exploited as an illustra-
tion of catastrophe theory [4]. If, moreover, the sign of the
linear force is inverted, creating a double-well potential,
the dynamics can turn into non-periodic motion, with a
strange attractor that became a traditional example of
low-dimensional chaos [5,6].
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Much more recently, the Duffing oscillator acquired rel-
evance in the realm of microtechnologies [7–9]. It has since
long been known that the Duffing equation stands for the
leading nonlinear correction to the oscillations of an elas-
tic beam clamped at its two ends [10,11]. Minute vibrating
silica beams, in turn, have been proposed as pacemakers
for the design of time-keeping devices at the microscale,
where traditional quartz crystals are difficult to build and
operate [7]. To overcome the effect of thermal and elec-
tronic noise, these microscopic silica beams must vibrate
at relatively large amplitudes. Therefore, their oscillations
take place within the nonlinear regime and – in clamped-
clamped configurations [8] – the appropriate mathemati-
cal description is thus given by the Duffing equation.

In order to function as a pacemaker, a mechanical sys-
tem must be able to sustain stationary periodic motion
with an autonomously generated frequency. This can be
achieved in practice by inserting the oscillator into a feed-
back electronic circuit [12] which, first, reads the signal
generated by the oscillator’s displacement from equilib-
rium. This signal is then conditioned by shifting its phase
by a prescribed amount (or, equivalently, by inserting a
time delay) and fixing its amplitude. Once conditioned,
the signal is transformed into a mechanical force and rein-
jected to act on the oscillator. The oscillator, in turn, re-
sponds to this action as an ordinary resonator, except that
the “external” force possesses the frequency generated by
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Fig. 1. Schematic representation of the feedback process that
stirs self-sustained oscillations. The electric signal produced by
the oscillatory motion is conditioned by shifting its phase and
adjusting its amplitude, and is then reinjected as a mechanical
force acting on the oscillator itself.

the oscillator itself. The result of this feedback process,
schematized in Figure 1, is that the mechanical system
reaches self-sustained periodic motion, with the only ex-
ternal input of the power needed to condition the elec-
tric signal. The frequency of the oscillations is determined
by the mechanical properties of the oscillator itself and
the parameters of signal conditioning. From the dynamical
viewpoint, this self-sustained configuration has the inter-
est that the control parameter, to which the experimenter
has access at the conditioning stage, is the phase shift
between the oscillation and the force – instead of the fre-
quency, as in the standard case of an externally forced
oscillator.

In this paper, we focus on two aspects of the dynamics
of the self-sustained Duffing oscillator which, apart from
their interest from a theoretical perspective, have specific
implications in the technological applications of the sys-
tem. In both cases, we provide approximate analytical re-
sults and a numerical validation. After briefly reviewing
the mathematical model and its main properties in Sec-
tion 2, we first analyze the stability of oscillatory motion
under controlling the phase shift between the oscillations
and the self-sustaining force (Sect. 3). In contrast with the
case where the frequency is controlled, where both stable
and unstable solutions are found for a given set of parame-
ters, we find that in our case oscillations are always stable.
Additionally, we provide approximate analytical solutions
for the transient dynamics of the oscillation amplitude
and frequency. Then, in Section 4, we analyze a model
for the coupling between the main oscillation mode and a
higher-harmonic linear mode in a clamped-clamped oscil-
lator. The ensuing internal resonance, with mutual syn-
chronization of the two modes, has been invoked as a pos-
sible method to neutralize the undesirable dependence of
the frequency on the amplitude, characteristic of any non-
linear oscillating system [8]. We present an experimental
demonstration of the internal resonance under phase-shift
control, and fit the experimental results with a simple an-
alytical approximation to the model. Our conclusions are
drawn in Section 5.

2 The self-sustained Duffing oscillator
In its main oscillation mode, an elastic beam clamped at
its two ends vibrates transversally, much like a plucked
string [8]. For moderate amplitudes, the displacement
from equilibrium is well-described by a coordinate x(t)
satisfying

ẍ+Q−1ẋ+ x+ βx3 = f0 cos(φ+ φ0). (1)

This equation of motion has been normalized by the ef-
fective mass, and time units have been chosen in such a
way that the frequency of undamped (Q−1 = 0), har-
monic (β = 0), unforced (f0 = 0) oscillations is equal
to one. The quality factor Q gives the ratio between the
typical damping time and the oscillation period – or,
equivalently, between the width of the resonance curve
and the oscillation frequency – and β weights the relative
strength of the nonlinear forcing. Clamped-clamped oscil-
lators have β > 0, so that the nonlinearity hardens the
total force.

The right-hand side of equation (1) stands for the self-
sustaining force provided by the feedback circuit, as de-
scribed in the Introduction. Here, φ(t) is the phase as-
sociated to the oscillatory motion, while φ0 and f0 are
the phase shift and the amplitude fixed by signal condi-
tioning (see Sect. 1). For harmonic oscillations, the phase
is defined in terms of the coordinate, from the identity
x(t) = A cosφ(t). For other kinds of motion, the phase can
be defined in a variety of ways [13]. Elsewhere, we have dis-
cussed analytical and numerical definitions which are espe-
cially adapted to our specific problem [14]. In the present
contribution, however, we deal mainly with harmonic-like
motion.

Assuming that the self-sustained system performs os-
cillations with constant amplitude and frequency, the sim-
plest approximation to handle the nonlinear effects of
the cubic term is to disregard higher-harmonic contri-
butions to the oscillatory motion – as traditionally done
for the forced Duffing oscillator [3]. This corresponds to
the lower-order approximation in the harmonic balance
procedure [15]. We propose a harmonic solution x(t) =
A cosφ ≡ A cosΩt and neglect higher-harmonic terms by
approximating

cos3 φ =
3
4

cosφ+
1
4

cos 3φ ≈ 3
4

cosφ.

Separating terms proportional to cosφ and sinφ yields the
algebraic equations

(1 −Ω2)A+ β̃A3 = f0 cosφ0, Q−1ΩA = f0 sinφ0, (2)

with β̃ = 3
4β. These equations can be brought to a

third-degree polynomial relation between the unknowns,
and are therefore explicitly solvable. Figures 2a and 2b
show, as solid lines, the solutions for the amplitude A and
the frequency Ω as functions of the phase shift φ0, with
Q−1 = 0.1, β̃ = 0.1, and f0 = 1. In Figure 2c, the graph
of amplitude versus frequency yields the typical Duffing
resonance curve. Over this curve, φ0 ≈ 0 and π at the
leftmost and rightmost ends, respectively. At the peak,
where the oscillator’s response to the self-sustaining force
is maximal, we have φ0 = π/2. For this phase shift, in
fact, the force and the velocity ẋ oscillate in-phase.

It is important to realize that the functional interde-
pendence between A, Ω, and φ0, given by equations (2),
is exactly the same whether the oscillator is subject to
the self-sustaining force that fixes the phase shift φ0, or
whether it moves under the action of an external force of
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Fig. 2. Interdependence of amplitude, frequency, and phase
shift for periodic motion of a forced Duffing oscillator, with
Q−1 = 0.1, β̃ = 0.1, and f0 = 1. Solid lines: solutions to equa-
tions (2); dashed lines: stationary solutions to equations (9);
open dots: long-time numerical solutions to the equation of mo-
tion of the self-sustained oscillator, equation (1), for numerous
values of the phase shift φ0.

given frequency Ω. In particular, the resonance curve in
Figure 2c is the same irrespectively of the control param-
eter being the phase shift or the frequency. In the latter
case, it is well known that, within the frequency range
where three solutions for the amplitude exist, the two
outermost solutions are stable, while the inner solution
is unstable [3,16]. On the other hand, the frequency and
amplitude plots in Figures 2a and 2b suggest that, as the
phase shift is varied, no bifurcations take place, so that
stability should not change. In the next section, we show
that – in contrast with the standard forced Duffing oscilla-
tor – periodic motion under the action of a self-sustaining
force with phase-shift control is in fact stable over the
whole resonance curve.

3 Stability under phase-shift control

Whether the steady oscillations described by equations (2)
are stable, and represent the asymptotic motion of the
Duffing oscillator, can be decided by a variety of perturba-
tion techniques which, as a byproduct, provide an approxi-
mate solution to equation (1) beyond stationary harmonic
oscillations. In our case, a convenient approach is provided
by the method of multiple time scales [16]. This method
discerns between a scale typical of the oscillatory motion,
with period of order unity, and a longer time scale char-
acteristic of slow changes in amplitude and frequency. In
its usual formulation, the method requires that all forces
acting on the oscillator, apart from the linear elastic in-
teraction, are treated as perturbations. Here, we partly
relax this requirement by allowing the cubic force to be of
the same order as the linear force. Specifically, we rewrite
equation (1) as:

ẍ+ x+ βx3 = ε
[−Q−1ẋ+ f0 cos(φ+ φ0)

]
, (3)

with ε the perturbation parameter. In connection with
the applications referred to in the Introduction, this ap-
proximation is consistent with the fact that clamped-
clamped microoscillators usually have a large quality fac-
tor (Q ∼ 104 to 105; see also Sect. 4), which implies a
small damping force [8,9]. The self-sustaining force, which
compensates the energy lost by damping, is also small.
On the other hand, due to the large oscillation amplitude
needed to overcome the effect of noise, the nonlinear and
the elastic forces are generally comparable to each other.

The method of multiple scales assumes that the so-
lution to equation (3), x(t; ε), depends on time through
two auxiliary variables, τ0 ≡ t and τ1 ≡ εt, respectively
representing the fast and slow scales, and that it can be
expanded as:

x(t; ε) = x0(τ0, τ1) + εx1(τ0, τ1) + . . .

Inserting this ansatz, and taking into account that d
dt =

∂0 + ε∂1, where ∂i indicates partial differentiation with
respect to τi (i = 0, 1), terms of order ε0 yield

∂2
0x0 + x0 + βx3

0 = 0. (4)

As a solution to this equation, we propose an oscillation
with slowly varying amplitude A, frequency Ω0, and an
additional phase α:

x0(τ0, τ1) = A(τ1) cos[Ω0(τ1)τ0 + α(τ1)]. (5)

Note that the actual frequency of this oscillation is not Ω0

but rather the time derivative of the total phase,

Ω ≡ d

dt
(Ω0τ0 + α) = Ω0 + ε(Ω′

0τ0 + α′), (6)

where primes denote ordinary differentiation with respect
to τ1. The oscillation frequency thus differs from Ω0 by a
quantity of order ε. Approximating the nonlinear term as
explained in Section 2, equation (4) requires that A(τ1)
and Ω0(τ1) are related as1

1 −Ω2
0 + β̃A2 = 0 (7)

for each value of the slow time variable τ1.
To the first order in ε, our formulation yields

∂2
0x1 + x1 + 3βx2

0x1 = −2∂0∂1x0 −Q−1∂0x0

+ f0 cos(Ωτ0 + α+ φ0). (8)

Within the same approximation used above to deal with
the nonlinear forces, the general solution to this equation
contains terms which grow indefinitely as time elapses.
These secular contributions, which arise from the reso-
nance between the autonomous oscillations of x1 and the
“external” forcing proportional to the derivatives of x0,
disappear if the following conditions are required to hold:

2 (A′Ω0 +AΩ′
0) +Q−1AΩ0 = f0 sinφ0,

2AΩ0 (Ω′
0τ0 + α′) = −f0 cosφ0. (9)

1 This functional relation between amplitude and frequency
coincides with the backbone approximation of the resonance
curve, which we exploit in Section 4.2.
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The first of these equations is immediately solved for the
product U = AΩ0, as:

U(τ1) = Qf0 sinφ0 + [U(0) −Qf0 sinφ0] e−τ1/2Q. (10)

Both A and Ω0 can then be found using equation (7):

A2 =

√
1 + 4β̃U2 − 1

2β̃
, Ω2

0 =

√
1 + 4β̃U2 + 1

2
. (11)

As for the second of equations (9), comparing with equa-
tion (6) we note that, except for a factor ε, the paren-
thesis in the left-hand side is nothing but the differ-
ence between Ω0 and the actual oscillation frequency Ω.
Calling δΩ = Ω − Ω0 and using the result for U(τ1),
we have

δΩ(τ1) = − εf0 cosφ0

2Qf0 sinφ0 + 2 [U(0) −Qf0 sinφ0] e−τ1/2Q
.

(12)
The solutions given in equations (10) and (12) readily
show that the stationary values

U∞ = Qf0 sinφ0, δΩ∞ = − εQ
−1

2
cotφ0, (13)

are in fact reached in the long-time limit from any ini-
tial condition and for any parameter set, which proves
their global stability. The corresponding stationary val-
ues for A and Ω coincide with those of equations (2)
up to terms of order ε. They are plotted in Figure 2
as dashed lines. The coincidence with the solutions to
equations (2) is excellent except for small amplitudes,
where the assumption that damping and self-sustaining
are much weaker than the cubic force is not well-founded
anymore.

The validity of the stability analysis based on equa-
tions (9) is in principle limited to the perturbative limit,
ε → 0. To decide whether the self-sustained Duffing sys-
tem exhibits stable oscillations for any value of the phase
shift beyond that limit, we implemented a numerical inte-
gration of the equation of motion (1). While the equation
can be solved by standard techniques – in our case, the
second-order Runge-Kutta algorithm – the numerical def-
inition of the phase φ in the self-sustaining force requires
extending the notion of phase to non-oscillatory behavior.
In fact, during the numerical computation of x(t) it cannot
be assumed that the motion is always a harmonic oscilla-
tion. In a previous publication [14], we have given details
on a suitable method to assign an instantaneous phase φ(t)
to any form of x(t), by locally fitting a trigonometric func-
tion. Dots in Figure 2 show long-time numerical measure-
ments of amplitude and frequency for Q−1 = 0.1, β̃ = 0.1,
f0 = 1, and numerous values of φ0, ranging from φ0 ≈ 0
to π at intervals of 0.01 π. As in the perturbative limit,
the solutions over the resonance curve are stable for all φ0.
Moreover, the numerical results show that the solution to
equations (2) (solid line) gives a very satisfactory descrip-
tion of stationary oscillations, except for the immediate
vicinity of the peak. This difference can be ascribed to

the effect of disregarding higher-harmonic components in
the analytical formulation, whose contribution is expected
to become more important as the oscillation amplitude
grows.

4 Internal resonance in a clamped-clamped
oscillator

As any other elastic body, the clamped-clamped beam
has essentially an infinite number of oscillation modes.
Nonlinear effects can couple these modes with each other,
establishing an interaction in the form of mutual reso-
nant excitation between different forms of oscillatory mo-
tion. Specifically, cubic nonlinearities make it possible that
oscillations in the main mode synchronize with higher-
harmonic modes whose frequency is three (or a multiple
of three) times the fundamental frequency.

In a recent experiment [8], a silica clamped-clamped
self-sustained microoscillator, about 500 μm long, 3 μm
width, and 10 μm thick, was shown to perform oscilla-
tions which, at very small amplitudes, had a frequency
of approximately 66 kHz. As the amplitude of the self-
sustaining force was gradually increased by the experi-
menter, the amplitude of the oscillations increased as well,
and – due to the hardening nonlinearity of the system – so
did their frequency. When the frequency attained 68 kHz,
however, it was observed that both the amplitude and the
frequency ceased to grow, and both quantities reached a
wide plateau where they remained practically constant.
The self-sustaining force had to reach more than twice its
amplitude at the beginning of the plateau for the oscilla-
tion amplitude and frequency to regain their growth.

The stabilization of the oscillation amplitude and fre-
quency in the experiment was attributed to the resonant
coupling between the main oscillation mode, sustained
by the feedback circuit, and a higher-harmonic mode. In
fact, finite-element numerical simulations of the clamped-
clamped beam showed the existence of a torsional oscil-
lation mode with a natural frequency slightly larger than
three times the natural frequency of the main mode. As
advanced in the Introduction, the technological interest
of this phenomenon resides in the fact that an oscillator
functioning in the resonant regime would maintain a very
stable frequency, insensible to amplitude fluctuations in
the self-sustaining force, thus providing a more reliable
frequency reference [17]. From a more fundamental per-
spective, an interesting aspect of this internal resonance
is that nonlinearities play a twofold role in its origin. First,
they induce the oscillation frequency to vary with the am-
plitude and, as a consequence, to reach the value where
resonance is possible. Second, they are the source of the
coupling between the main oscillation mode and higher
harmonics.

In the experiment, the internal resonance was brought
about by changing the amplitude f0 of the self-sustained
force. The phase shift in the feedback circuit, on the other
hand, was kept constant at φ0 ≈ π/2, i.e. close to the
peak of the resonance curve, where the oscillator response
to self-sustaining was maximal. Here, we show that the in-
ternal resonance can also be induced by varying the phase
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shift with fixed f0. To this end, we implement a varia-
tion of the theoretical model used to explain the above
described experimental results [8].

4.1 Theoretical model

In our description, following Sections 2 and 3, the main
oscillation mode is represented by a coordinate x1(t) satis-
fying the self-sustained Duffing equation (1). For the sake
of simplicity, the higher-harmonic mode is represented by
a coordinate x2(t) satisfying a linear unforced oscillator
equation. The two equations are coupled to each other
through linear interactions. Thus, for the main mode we
have

ẍ1 +Q−1
1 ẋ1 + x1 + βx3

1 = f0 cos(φ+ φ0) + J1x2, (14)

while for the higher harmonic we have

ω−2
2 ẍ2 + ω−1

2 Q−1
2 ẋ2 + x2 = J2x1, (15)

where J1,2 are the coupling intensities, and ω2 is the
higher-harmonic frequency (measured in units of the
fundamental frequency; see Eq. (1)).

In order to focus on the phenomenon of frequency sta-
bilization, we disregard the tripling of the frequency in-
duced by the cubic nonlinearity, and concentrate on the
synchronization of the two modes, assuming that their fre-
quencies are similar. In other words, we take ω2 � 1. We
thus look for solutions to equations (14) and (15) where
the two modes oscillate with the same frequency and
their phases are locked to each other: x1(t) = A1 cosΩt,
x2(t) = A2 cos(Ωt+ψ2). Proceeding as with equation (1),
we find the following algebraic equations for the ampli-
tudes A1,2, the frequency Ω and the phase difference ψ2

between the higher-harmonic oscillation and the main
mode:

(1 −Ω2)A1 + β̃A3
1 = f0 cosφ0 + J1A2 cosψ2,

Q−1
1 ΩA1 = f0 sinφ0 + J1A2 sinψ2,

(ω2
2 −Ω2)A2 cosψ2 − ω2Q

−1
2 ΩA2 sinψ2 = ω2

2J2A1,

(ω2
2 −Ω2)A2 sinψ2 + ω2Q

−1
2 ΩA2 cosψ2 = 0. (16)

As in the case of equations (2), these equations are equiv-
alent to third-degree polynomial relations between the
unknowns, and thus can be exactly solved.

Curves in the three panels of Figure 3 illustrate the
interdependence between the amplitude A1, the synchro-
nization frequency Ω, and the phase shift φ0, as de-
termined by equations (16), for β = 0.005, f0 = 1,
ω2 = 1.3, Q−1

1 = 0.03, ω−1
2 Q−1

2 = 0.003, J1 = 10−4,
and J2 = 1. Comparison with Figure 2 makes it clear that
the overall outline of the curves is the same as for the
self-sustained Duffing oscillator considered in Section 3.
However, a crucial feature shows up for synchronization
frequencies around the higher-harmonic frequency ω2. In
the close-ups of Figure 3c, we see that the resonance

Fig. 3. Interdependence of the amplitude A1 of the main os-
cillation mode, the synchronization frequency Ω, and the self-
sustaining phase shift φ0, for a forced Duffing oscillator cou-
pled to a linear oscillator representing a higher-harmonic mode.
Lines: solutions to equations (16), with β = 0.005, f0 = 1,
ω2 = 1.3, Q−1

1 = 0.03, ω−1
2 Q−1

2 = 0.003, J1 = 10−4, and
J2 = 1. Solid and dotted sections represent stable and unsta-
ble oscillations, respectively. Open dots: long-time numerical
solutions to equations (14) and (15) for the same set of pa-
rameters, and numerous values of the phase shift φ0. The in-
sets show close-ups of the zones pointed to by the arrows. For
clarity, numerical results are not shown in the insets.

curve develops a gap across the direction of the frequency
axis, so that the peak is cut off from the rest of the
curve in a kind of elongated “island.” For frequencies
within the gap, the only possible solution lies on the low-
amplitude branch, where the curve acquires in turn an
up-down peak whose center and width coincide with those
of the gap.

In terms of the variation of the control parameter φ0,
in Figure 3a, we see that only one solution exists for small
phase shifts, with a rapidly increasing frequency. As φ0

grows further and the frequency approaches that of the
higher-harmonic mode, however, the growth of the fre-
quency flattens abruptly and, at the same time, two new
solutions appear. Of these two new solutions, the one with
the lower frequency remains close to the preexisting solu-
tion, with which it determines the frequency gap referred
to in the preceding paragraph. Eventually, well beyond
the central part of the curves, the two additional solu-
tions disappear and the frequency of the preexisting so-
lution decreases. Note the sizable interval of phase shifts
(0.6 � φ0 � 2.6 for the parameters of Fig. 3) along which
the preexisting solution maintains its frequency at a prac-
tically constant level. For all these values of our control
parameter, the main-mode frequency is thus strongly sta-
bilized by the internal resonance. A small additional in-
terval with three solutions, where the frequency is again
stabilized, is found for larger values of the phase shift
(2.7 � φ0 � 3) in correspondence with the up-down peak
of the resonance curve.
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From the third and fourth of equations (16) it can
be immediately seen that the amplitude of the higher-
harmonic mode is:

A2 =
ω2

2J2A1√
(ω2

2 −Ω2)2 + ω2
2Q

−2
2 Ω2

. (17)

As expected for a linear oscillator, this amplitude is pro-
portional to the forcing amplitude J2A1, but is also mod-
ulated by a frequency-dependent Lorentzian factor. This
modulation implies that A2 attains significant values only
when the synchronization frequency Ω reaches the vicin-
ity of the higher-harmonic frequency ω2, i.e. around the
frequency gap. Equation (17) also shows that the width
of this zone is ΔΩ ∼ ω2Q

−1
2 , and is therefore inversely

proportional to the quality factor of the higher-harmonic
mode. It is within this zone that the coupling between the
two modes is most effective, and resonant energy transfer
takes place from the self-sustained main mode.

Taking into account the results presented in Section 3,
the stability of the periodic solutions given by equa-
tions (16) can be inferred from a standard analysis of
the plot in Figure 3a, which we interpret as a bifurca-
tion diagram for the frequency as a function of the phase
shift φ0. Assuming that the solution branches present in
both Figures 2 and 3 have the same stability properties,
we expect that the only solution found in Figure 3a for
small phase shift is stable. The appearance of two new so-
lutions as the phase shift grows should be associated with
a saddle-node bifurcation, creating a pair of solutions with
opposite stability. The upper branch, also present in Fig-
ure 2a, should correspond to the stable one. Upon further
increasing of φ0, an inverse saddle-node bifurcation anni-
hilating the same pair takes place and, a little farther, a
new saddle-node bifurcation gives rise to the two solutions
in the small peak. The unstable solution of this new pair
annihilates in turn with the preexisting stable solution,
while its stable partner subsists until the phase shift at-
tains its largest values, constituting the rightmost branch
of the bifurcation diagram.

We have verified these conclusions on the stability
properties of the periodic solutions by numerically solv-
ing the equations of motion, with the same scheme as
in Section 3. Dots in Figure 3 show long-time numerical
measurements of amplitude and frequency with the same
parameter choice as for the curves. The control parame-
ter φ0 varies from φ0 ≈ 0 to π at intervals of 0.01 π. In the
zones where three solutions exist, we have integrated the
equations of motion at least twice, starting from different
initial conditions, compatible with large and small oscil-
lation amplitudes. In the small interval corresponding to
the up-down peak, we have refined the phase-shift sam-
pling to get better evidence on the stability of the three
solutions. For the sake of clarity, numerical results in this
interval are not included in Figure 3.

As Supplementary material�, in order to illustrate how
the three main plots of Figure 3 connect with each other,
we provide an animation with rotating views of the reso-
nance curve in the three-dimensional space spanned by the
coordinates (φ0, Ω,A1). The resonance curve for a forced

Fig. 4. Experimental measurements (dots) of the amplitude
A1 and frequency Ω of the main oscillation mode under phase-
shift control of a self-sustained clamped-clamped microoscil-
lator. Experimental errors (not displayed) were estimated in
0.015 mV for the amplitude and 0.1 kHz for the frequency.
Vertical dashed segments indicate the frequency gap caused
by the internal resonance, around ω2 ≈ 63.7 kHz. The solid
line is a fit of the experimental data with the backbone ap-
proximation to our analytical model. The inset illustrates the
backbone approximation for a resonance curve with the pa-
rameters of Figure 2 (Q = 10). The approximation improves
sharply as Q grows.

linear oscillator with the same Q and f0 is plotted for
comparison.

4.2 Preliminary experimental results and the backbone
approximation

As mentioned above, previous experiments on frequency
stabilization by internal resonance in clamped-clamped
microoscillators were carried out for fixed phase shift
(φ0 ≈ π/2) and varying the amplitude of the self-
sustaining force [8]. Under these conditions, due to the
effect of the cubic force, the oscillation frequency increases
with the amplitude until it reaches the resonance region.
The results of Section 4.1, in turn, show that the reso-
nance can also be induced by keeping the self-sustaining
amplitude fixed and varying the phase shift.

We have performed preliminary measurements under
phase-shift control on the same kind of self-sustained mi-
crooscillators as used in previous experiments. In our
experiment, the phase shift is tuned by means of a variable
resistor in an all-pass filter. As Supplementary material�,
we provide diagrams of the circuits used for phase shift
and amplitude control. Dots in the main plot of Figure 4
stand for our measurements in the amplitude-frequency
plane, i.e. over the resonance curve. The amplitude is mea-
sured from an oscillating electric signal produced by the
vibrating silica bar through a capacitive transducer, and is
therefore given in millivolts. The uncertainty in the deter-
mination of amplitude and frequency is around 0.015 mV
and 0.1 kHz, respectively.
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As the phase shift is increased from small values, first,
the frequency and the amplitude grow as well. Then, when
the frequency reaches some 63.3 kHz, the oscillations sud-
denly become irregular, with their amplitude varying er-
ratically over a considerably wide interval. The frequency,
on the other hand, remains stable at a rather well-defined
value, insensible to the amplitude fluctuations. Frequency
stabilization is apparent at this point. Further increase of
the phase shift leads again to more stable oscillations, re-
gaining the regime where both the amplitude and the fre-
quency grow with φ0. A gap, however, has been left vacant
for frequencies between 63.3 and 64.1 kHz, corresponding
to amplitudes between 2.8 and 2.9 mV, approximately.

Our experimental results can be satisfactorily fitted by
the model presented in Section 4.1, with a suitable choice
of its parameters. To this end, it is useful to note first that
the quality factor of a clamped-clamped silica microoscil-
lator as used in the experiments is typically in the order
of 104 to 105 [8]. This large quality factor implies that
the Duffing resonance curve is very narrow, with its two
leaning branches very close to each other. Under these con-
ditions, the two branches are well represented by a single
curve – sometimes called backbone curve [16] – given by an
approximate expression for the interdependence between
amplitude and frequency. The inset of Figure 4 shows a
resonance curve with Q = 10 and its backbone approxi-
mation. As Q grows and the curve becomes narrower, the
approximation is increasingly good.

The backbone approximation for the Duffing resonance
curve is obtained from equations (2) by neglecting the con-
tribution of damping and of the external force. With the
notation of equations (2), the backbone curve is given by:

A =
√

(Ω2 − 1)/β̃.

The value of the phase shift φ0 along the curve can
then be determined from the second of those equations:
sinφ0 = ΩA/Qf0. In order to fit the experimental data
outside the internal-resonance gap, and taking into ac-
count the above functional relation between amplitude
and frequency along the backbone curve, we propose the
fitting function

A1 = a1

√
(Ω/ω1)2 − 1, (18)

where the tunable parameters a1 and ω1 account for
the units of measure of A1 and Ω in the experiment.
Our estimate yields a1 = (6.4 ± 0.1) × 10−2 mV, and
ω1 = (46± 1) kHz. The line in the main plot of the figure
stands for this estimate. Assuming for our microoscillator
a quality factor of the order of 104 or larger, the width of
the resonance curve would fall well inside the dispersion of
the experimental data, which justifies using the backbone
approximation.

To fit the gap in the backbone curve, indicated by ver-
tical dashed lines in Figure 4, we now turn the attention
to equations (16). Solving the two last equations for the
product A2 sinψ2, and replacing the result into the second

equation, makes it possible to write

sinφ0 =
[
1 +

ν4

(ω2
2 −Ω2)2 + ω2

2Q
−2
2 Ω2

]
sinΦ0. (19)

The constant ν4 – where ν has units of frequency – is pro-
portional to the product of the coupling constants, J1J2,
and to the ratio of the quality factors of the two involved
oscillation modes, Q1/Q2. These quantities cannot be dis-
cerned from each other in our experiment, and ν must
therefore be considered as a single fitting parameter. The
angle Φ0, in turn, can be associated to the phase shift in
the zone of the gap when the internal resonance is absent,
i.e. for ν4 ∝ J1J2 = 0. From our measurements of am-
plitude and frequency as functions of the phase shift (not
presented here) we estimate sinΦ0 = 0.16 ± 0.01.

Equation (19) makes it clear that the gap in the back-
bone curve appears when the second term inside the
square bracket in the right-hand side is large enough as
to make sinφ0 > 1, for which no real value of the phase
shift φ0 satisfies the equation. The Lorentzian profile of
this term as a function of the frequency Ω indicates that
the gap occurs around ω2. As advanced in Section 4.1, its
width ΔΩ is proportional to ω2Q

−1
2 . Locating the center

of the gap, we estimate ω2 = (63.7± 0.2) kHz. Tuning the
constant ν, on the other hand, requires knowing the qual-
ity factor Q2 of the higher-harmonic mode, to which we
do not have access in the experiment. However, if – in the
spirit of the backbone approximation – we assume that Q2

is large, the contribution of the term ω2
2Q

−2
2 Ω2 in the de-

nominator of the Lorentzian function can be neglected by
comparison to (ω2

2−Ω2)2. Within this assumption, we find
ν4 = (ω2ΔΩ)2(1 − sinΦ0)/ sinΦ0. Taking ΔΩ = 0.8 kHz,
our estimate yields ν = (10.8 ± 0.2) kHz.

5 Conclusion

Micromechanical devices have opened the possibility of re-
newed mutual contribution between nonlinear physics and
technological applications [7,18]. On one side, this minute
machines – still belonging to the realm of Newtonian me-
chanics – often function within regimes where nonlinear
effects play a substantial role in the dynamics. This is par-
ticularly true for micromechanical oscillators, which are
foreseen to be used as pacemakers in time-keeping elec-
tronic devices, and whose large vibration amplitudes bring
them well beyond the linear elastic regime. On the other
side, well-developed techniques of MEMS fabrication can
be used to build up microscale lab equipment, where com-
plex physical phenomena such as the collective dynamics
of large populations of nonlinear coupled oscillators may
be realized and tested. This path is just beginning to be
explored [19,20].

In this paper, we have studied two technologically
relevant aspects of the self-sustained Duffing oscillator,
which models a clamped-clamped elastic bars inserted in
a feedback circuit. Firstly, following a variant of the tra-
ditional multiple-scale approach used to study the stabil-
ity of the standard Duffing equation [16], we have shown
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that the self-sustained oscillator is stable along the entire
resonance curve. This result, already advanced in refer-
ence [12], has here been obtained without assuming that
the nonlinear force is a perturbation to the linear inter-
action, which is consistent with realistic conditions in the
operation of micromechanical oscillators. Stability along
the whole resonance curve contrasts with the well-known
standard behavior, where an unstable branch develops in
the middle part of the curve. The difference resides in
the fact that, in the self-sustained oscillator, the system is
controlled by fixing the phase shift between oscillation and
forcing whereas, in the standard case, the control parame-
ter is the forcing frequency. The situation is reminiscent –
although not fully equivalent – to the basic process of feed-
back stabilization prescribed by control theory [21]. We
have shown that, within the multiple-scale approximation,
the equations of motion can be exactly solved, and pro-
vided numerical evidence that validate the approximation.

In the second place, we have elaborated on a model for
the internal resonance between the main oscillation mode
and a higher-harmonic mode in a clamped-clamped oscil-
lator. The interest of this phenomenon lies in that it has
been associated with the frequency stabilization observed
in microoscillators upon variation of the forcing ampli-
tude [8]. Frequency stability under amplitude fluctuations
is an unavoidable condition for the use of microoscillators
as frequency references in time-keeping devices. The model
describes the internal resonance as a synchronization pro-
cess between the main nonlinear oscillation, represented
by the self-sustained Duffing equation, and a linear oscil-
lator of different frequency coupled to the main mode. Due
to this phenomenon, the Duffing resonance curve develops
a gap, which is associated to a wide phase-shift interval
where the oscillation frequency remains practically con-
stant. A similar “island” effect has recently been reported
for an externally forced Duffing oscillator coupled through
displacement and velocity to a linear oscillator [22]. It is
interesting to point out that, in the vicinity of the gap, the
amplitude-frequency interdependence is similar to that of
the standard forced Duffing oscillator at its subharmonic
resonances [16]. In order to establish the stability prop-
erties of the model, we have performed numerical simula-
tions. These support a picture where the resonance occurs
through two pairs of direct-inverse saddle-node bifurca-
tions. Finally, we have presented preliminary experimental
results which illustrate the internal resonance in the situ-
ation where, contrary to previous experiments, the phase
shift between forcing and oscillation was controlled. Model
and experiment were fitted to each other within a high-
quality-factor approximation.

At the microscale, an important dynamical ingredi-
ent – that has however been purposely left aside in our
description – is added by noise. Random fluctuations of
both thermal and electronic origin become increasingly
influential on the mechanics of micromachines as these
decrease in size. In the case of oscillators, noise makes
it necessary to work at larger amplitudes, which in turn
increases the effects of nonlinearities. To our knowledge,
a theoretical approach to the interplay between noise and
nonlinearities focused on the dynamics of micromechanical

systems is still lacking. This seems to be an appealing next
step in the lines of the present research, where the physics
of stochastic processes should have their say.
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periments were conducted at the MEMS Laboratory of Centro
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