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Abstract. We study the thermoelectric transport in two dimensional topological system which has
coexistence of superconductivity (SC) and spin-density wave (SDW). The SC is presumed to be of
dx2−y2 +(px+ ipy) type whereas the SDW order parameter is of BCS symmetry. The Hamiltonian describ-
ing such a coexistence phase is shown to have topological phase in addition to the conventional one. The
transport properties in such topological system have two distinct contributions: (i) the surface/edge and
(ii) the bulk. The competition between the surface/edge versus the bulk transport is analyzed in different
parameter regimes and the possibility of enhancing the figure of merit is discussed.

1 Introduction

In last few years, a new field in condensed matter sys-
tems has emerged which is called “Topological insulators
and superconductors” [1,2]. It is based on the realization
that the spin-orbit interaction in materials can lead to
such electronic phases [3–6] which has been observed in
real materials [7–9]. A topological insulator, similar to an
ordinary insulator has a bulk energy gap separating the
highest occupied electronic band from the lowest empty
band [10–13]. It is closely related to the two-dimensional
integer quantum Hall states [14] which have unique edge
states. The surface of such insulators however, necessar-
ily has gapless states (edge states) that are protected by
time reversal symmetry. These states are conducting with
properties unlike any other known one-dimensional or two-
dimensional electronic systems. These states are predicted
to have special properties which are thought to be use-
ful for applications ranging from spintronics to quantum
computation [15]. Due to such technological importance
the field of topological systems has grown rapidly over
the years. Since one of the compelling criteria of a mate-
rial to be topological is that the system ought to have an
energy gap, the topological concept extends over to any
gapped systems such as superconductors and superfluids,
etc. [16–18]. Recently, a possibility of a topological phase
in the coexistence phase of superconductivity and spin-
density wave has been discussed [19–22]. The nature of
such topological phase depends on the symmetry as well
as the amplitudes of both the order parameters.

Recently, the photoemission and the scanning tun-
nelling spectroscopy have become an important experi-
mental tool in identifying the surface states in topological
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systems but the signature of such states in transport mea-
surements is still under debate. The focus of experimental
studies thus has shifted to the separation of bulk conduc-
tion from the surface conduction. Recently, there is an at-
tempt to formulate the thermoelectric transport in topolo-
gial insulators theoretically [23]. Thermoelectric transport
is basically conversion of heat to energy. The efficiency of
such energy conversion depends on the “figure of merit” of
the material which is defined as, ZT = σS2T

κ [24], where
T is the temperature, S is the Seebeck coefficient and σ
and κ are respectively the electrical and thermal conduc-
tivities. In order to achieve a high ZT , the system should
be a good electronic conductor whereas a bad lattice con-
ductor. Further, the material low-dimensionality also have
large S and have high efficiency due to their peaked den-
sity of states [25]. Despite such proposals it was very hard
to discover good thermoelectric materials in the past. This
is due to the fact that σ, S and κ cannot be independently
controlled, namely, a material with large electrical conduc-
tivity σ has large thermal conductivity κ. The discovery of
topological systems gives some hope on the above issues
due to the fact that the edge state conduction remains
good whereas the phonon conduction is suppressed. The
edge states are one-dimensional which satisfies the low di-
mensionality [26] criteria mentioned above. The topolog-
ical phenomena which has already been observed in ma-
terials such as Bi1−xSbx [27], Bi2Se3 [28] and Bi2Te3 [29]
are known as good thermoelectric materials.

In this communication, we study the thermoelectric
transport in two-dimensional topological system which has
coexistence of superconductivity (SC) and spin-density
wave (SDW). The symmetry of SC is considered to be
of dx2−y2 + (px + ipy) type whereas the SDW order pa-
rameter is of BCS symmetry. The Hamiltonian having
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such a structure is shown to have topological coexistence
phases in addition to the conventional one. The thermo-
electric transport in such topological system is discussed
with respect to two distinct contributions: (i) the surface
and (ii) the bulk. The competition among the surface ver-
sus the bulk transport is analyzed in different parameter
regimes and the possibility of enhancement of figure of
merit is discussed in these systems.

2 Model Hamiltonian

In the present work, we consider the coexistence of SDW
and d-wave superconductivity which can generate a triplet
and non-zero center of mass superconducting order param-
eter. We, thus start with a Hamiltonian on a 2D square
lattice [21,22] as:

H =
∑

k,σ

ξkc
†
k,σck,σ +

U

N

∑

k,k′
c†k,↑ck+Q,↑c

†
k′−Q,↓ck′,↓

+
∑

k,k′
V 1(k, k′)c†k,↑c

†
−k,↓c−k′,↓ck′,↑

+
∑

k,k′
V 2(k, k′)c†k,↑c

†
−k−Q,↓c−k′−Q,↓ck′,↑. (1)

Here, ξk is the bare dispersion due to the tight binding
approximation on a 2D square lattice, U is the on-site
Coulomb interaction, V 1,2 are the pairing strengths for
d-wave and p-wave superconductivity andN is the number
of sites. Also, ξk = −2t(cos kx+cos ky)−4t′ cos kx cos ky−μ
and c†kσ (ckσ) denotes creation (annihilation) operator of
the electron with spin σ = (↑, ↓) at k = (kx, ky). Here,

∑′

k
is the sum of k over the reduced Brillouin zone (RBZ). We
express the wave-vector k in units of π

a , with ‘a’ the lattice
parameter of the underlying square lattice. Q = (π, π) is
the SDW nesting vector in 2D. We assume here a commen-
surate SDW so that k + Q = k − Q. The staggered spin
magnetization is defined asM0 = − U

N

∑
k,σ σ〈c†k+Q,σck,σ〉.

Since the discussion would be about three order parame-
ters below, the crystal symmetry are such that the com-
mutator of any two of them should give the third one.
Thus, if V 1 is assumed to be of singlet d-wave symmetry,
the SDW state guarantees that V 2 should be of triplet
type. So we get the singlet interaction V 1

k,k′ = V 1
0 sksk′

and V 2
k,k′ = V 2

0 pkpk′ , where sk = 1
2 (cos kx − cos ky) and

pk = sin kx + i sin ky. We further assume that V 1,2 are
attractive. The SC order parameters are defined as, for
singlet state,

�1
k′ = �1

0sk′ = V 1
0 sk′

∑

k

sk

〈
c†k,↑c

†
−k,↓

〉

= V 1
0 sk′

′∑

k

sk

〈
c†k+Q,↑c

†
−k+Q,↓

〉
.

On the other hand, the triplet order is

�2
k′ = �2

0pk′ = V 2
0 pk′

∑

k

pk 〈c−k,↓ck+Q,↑〉

= �2
0(sin kx + i sinky) = �2

1,k + i�2
2,k

while
�2∗

k′ = V 2
0 p

∗
k′
∑

k

p∗k
〈
c†k,↑c

†
−k−Q,↓

〉
.

Defining ξ+k = −4t′ cos kx cos ky−μ and ξ−k = −2t(coskx+
cos ky) and employing the nesting property in the band
dispersion i.e. ξ+k+Q = ξ+k , ξ−k+Q = −ξ−k and also the order
parameters

�1
k+Q = −�1

0

(
cos kxa− cos kya

2

)
= −�1

k

and
�2

k+Q = −�2
k,

the Hamiltonian in the momentum space can be ex-
pressed as, H =

∑
k ψ

†
kH(k)ψk where the four-component

spinor ψk is, ψ†
k = (c†k↑, c−k−Q↓, c−k↓, c

†
k+Q↑). Thus, the

Hamiltonian matrix H(k) in this basis is written as:

H(k) =

⎛

⎜⎜⎜⎜⎝

ξ+k + ξ−k �2
k �1

k M0

�2∗
k −ξ+k + ξ−k M0 −�1

k

�1
k M0 −(ξ+k + ξ−k ) −�2∗

k

M0 −�1
k −�2

k ξ+k − ξ−k

⎞

⎟⎟⎟⎟⎠
.

(2)
In what follows, we study the energy spectrum of the
above Hamiltonian. The Hamiltonian (Eq. (3)) is diag-
onalized and the quasiparticle spectrum is obtained as,

E±,±(k) = ±
√
ξ+2
k + ξ−2

k + (�1
k)2+ | �2

k |2 +M2
0 ± 2G,

(3)
where

G =
√
ξ−2
k | �2

k |2 +(�2
1,k �1

k −M0ξ
+
k )2 + ξ+2

k ξ−2
k .

It is obvious that the energy spectrum is fully gapped
as shown in Figure 1 and the gap closes only when the
rhs of the above equation vanishes. A straight forward
calculation provides a condition where the gap closes at
points k = (0, 0) and (π, π) is:

16t2 +M2
0 = (4t′ + μ)2. (4)

Thus, one can find a topologically trivial and non-trivial
regions with respect to these parameters. Since the critical
phase line is determined by the condition 16t2 + M2

0 =
(4t′ + μ)2 the phase becomes topological in the region
where 16t2 + M2

0 > (4t′ + μ)2 whereas it is trivial for
16t2 + M2

0 < (4t′ + μ)2. The details of these work have
been discussed in a recent paper [22].
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Fig. 1. Energy spectra E±,+(k), corresponding to coexistence
of SC order parameters dx2−y2 + (px + ipy) and that of the
SDW order parameter showing fully gapped spectrum. For
illustration, here, we have chosen t′ = −0.3t, M0 = 0.075t,
�1

0 = �2
0 = 0.005t, μ = 0.25t (t = 0.30 eV).

3 Thermoelectric transport

In order to study thermoelectric transport in these system,
we consider a 2D sample as a ribbon geometry where the
ribbon width is taken to be very narrow. This is due to
the fact that the edge states can have comparable contri-
bution as compared with the bulk. Using a linear response
theory [30], the electric current j and thermal current w
which are coupled, are written as:

(
j/q

w

)
=

(
L0 L1

L1 L2

)( − dμ
dx

− 1
T

dT
dx

)
, (5)

where q is the electron charge −e, μ is the chemical po-
tential. Here, the field used are the electric field and the
thermal gradient. The electric and thermal transport co-
efficients are obtained as:

σ = e2L0, S = − 1
eT

L1

L0
, κe =

1
T

L0L2 − L2
1

L0
,

ZT =
L2

1

L0L2 − L2
1 + κLTL0

, (6)

where κe is the electron thermal conductivitiy and κL is
phonon thermal conductivity. Here, Lν ’s are the correla-
tion functions determining the thermoelectric transport
coefficients.

Since the topological systems have distinct edge and
bulk states, we consider the transport due to both inde-
pendently. We first consider the edge transport only. To
describe the coherent transport of the edge states, we use
the Landauer formula. The edge states are assumed to be
perfectly conducting and the transmission coefficient T (E)
is taken as unity. This is true when the electron energy is
within the bulk gap (−� < E < �), � being the effective
gap. The energy here is measured from the bottom of the
conduction band. While carrying out the calculation of the
transport coefficients, we consider the bottom of the bulk
conduction band and neglect the valence band such that
we deal only with the edge states. We further, restrict the
chemical potential μ to be within the gap. The edge state

correlation function Lν is given by:

Le
ν(μ) =

2�
sh

∫
dET (E)(E − μ)ν

(
− ∂f

∂E

)
, (7)

where the suffix ‘e’ means the edge transport, h is the
Planck constant and � and s respectively are the length
and the cross-section of the sample, the factor 2 comes
from the two gapless channels of the 2D system. The in-
tegral in the above correlation function can be rewritten
in a dimensionless form as:

Le
ν(μ̄) =

2�
sh

(kBT )ν

∫ Δ̄

−Δ̄

dy(ȳ − μ̄)ν e(ȳ−μ̄)

(e(ȳ−μ̄) + 1)2
, (8)

where ȳ = E
kBT , �̄ = �

kBT , μ̄ = μ
kBT and β = 1

kBT , T
being the temperature. Using this edge-state correlation
functions the thermoelectric coefficients are calculated. It
is noticed that the edge contribution to the thermoelec-
tric coefficients such as the figure of merit (ZT) is inde-
pendent of the system size � and s eventhough the edge
correlation functions are directly proportional to � and in-
versely proportional to the cross-sectional area s. Further,
ZT is unusually large and exceeds unity when the chem-
ical potential is in the bulk band. This is due to the fact
that when μ is in the bulk band, the correlation functions
L0 has only exponential dependence on μ but L1 and L2

have combined exponential and algebraic dependence. On
the contrary, when the chemical potential is in the bulk
gap, ZT becomes exponentially small (μ→ 0) which is in
agreement with the figures (see Figs. 2 and 3).

Next, we consider the bulk thermoelectric transport.
The bulk transport are calculated using the Boltzmann
transport theory. We assume that the relaxation time τe
is constant. Since these transports are valid within the in-
elastic scattering length, we regard the inelastic scattering
length as the effective system size. We use only the upper
two subbands because there is a large gap between the
upper and lower subbands due to the narrow-ribbon con-
finement. The bulk correlation function Lν is written as:

Lb
ν(μ) =

∫
dE(E − μ)ν

(
− ∂f

∂E

)
D(E)τev2, (9)

where the suffix ‘b’ means the bulk transport and τe is
the relaxation time which is assumed to be constant. Also
D(E) and v respectively are the bulk DOS and the veloc-
ity. The above integral can be changed to integral over the
momentum variables as:

Lb
ν(μ) =

τe
c

∫
d2k

(2π)2

(
∂E+,+(k)

�∂kx

)2

(E+,+(k) − μ)ν

×
(
−∂f(E+,+(k) − μ)

∂E+,+

)
+ (E+,+ → E+,−).

(10)
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Fig. 2. Computation of longitudinal electrical conductivity,
thermopower, electronic thermal conductivity and figure of
merit as a function of the chemical potential (μ) at T = 20 K
for � = 1 μm. Black curve shows the bulk, dashed curve shows
the edge and red curve shows the total contribution to the
above quantities. For illustration, here, we have chosen �1

0 =
�2

0 = 0.005t, M0 = 0.075t, t′ = −0.3t, κL = 0.5 W m−1K−1,
c = 0.1 nm (t = 0.30 eV).
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Fig. 3. Computation of longitudinal electrical conductivity,
thermopower, electronic thermal conductivity and figure of
merit as a function of the chemical potential (μ) at T = 20 K
for � = 0.8 μm. Black curve shows the bulk, dashed curve shows
the edge and red curve shows the total contribution to the
above quantities. For illustration, here, we have chosen �1

0 =
�2

0 = 0.005t, M0 = 0.075t, t′ = −0.3t, κL = 0.5 W m−1K−1,
c = 0.1 nm (t = 0.30 eV).
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Using dimensionless variables namely kxa = y1 and
kya = y2, the above equation is written as:

Lb
ν(μ̄) =

τe
c�2

(kBT )ν+1

∫ π

−π

dy1

∫ π

−π

dy2

(
∂Ē+,+(y1, y2)

∂y1

)2

× (Ē+,+(y1, y2) − μ̄
)ν e(Ē+,+(y1,y2)−μ̄)
(
e(Ē+,+(y1,y2)−μ̄) + 1

)2

+
(
Ē+,+ → Ē+,−

)
. (11)

The variable Ē+,+(−) in the above equations is written
as, Ē+,+(−) = E+,+(−)

kBT which is functions of y1 = kxa
and y2 = kya. Using the parameters in the energy dis-
persion, the above correlation functions are calculated. It
is noted that all the bulk correlations Lν behave alge-
braically when the chemical potential is in the bulk band
whereas they have combinations of algebraic and expo-
nential dependence when μ is in the bulk gap. Meanwhile,
the figure of merit is larger when the chemical potential is
away from the band edge.

Since the actual thermoelectric transport coefficients
involve both the edge and bulk correlation functions, we
use Lν = Le

ν + Lb
ν and compute the transport properties.

It has already been mentioned in the earlier section that
the thermoelectric transports in the topological systems
are due to the competition between the edge and the bulk
contributions. As has already been discussed above, the
relative magnitudes of both the edge and the bulk trans-
ports for different chemical potentials are different, the
figure of merit ZT is also different. When the chemical
potential is in the bulk band, ZT from the edge becomes
larger eventhogh the number of edge carriers are exponen-
tially small. This is due to the fact that the edge trans-
port is overridden by the bulk contributions and a high ZT
from the edge never appears. In a similar way, ZT from
the bulk becomes larger when the chemical potential is in
the bulk gap. In this case, there are very few bulk carriers
whereas there are some edge carriers for which the edge
carriers dominate and hence ZT is suppressed. This is a
clear indication that in topological system the edge and
the bulk transport compete with each other suppressing
the total ZT.

In order to compute the transport properties, we con-
sider the following parameters: the hopping integral t is
taken as 0.30 eV and the next nearest neighbour hopping
integral as t′ = −0.3t. The SC and SDW order parame-
ters respectively are considered to be �1

0 = �2
0 = 0.005t,

M0 = 0.075t. The computation is performed at a tem-
perature T = 20 K. The relaxation time is taken to be
τe = 10−13 s. The phonon thermal conductivity is taken to
be constant which is κL = 0.5 W m−1 K−1. The effective
system size � is assumed to be 1 μm and the cross-sectional
area s is taken as 10 nm×0.1 nm (Fig. 2) (the same is re-
peated for � = 0.8 μm, see Fig. 3). All these parameters are
taken in an adhoc basis and the thermoelectric coefficients
are computed. The results are shown in Figures 2 and 3. It
is obvious from Figures 2 and 3 that the edge contribution
to σ, κe and ZT is much higher as compared to the bulk.
On the contrary, the Seebeck coefficient has comparable

contribution from both, a positive contribution from edge
whereas a negative contribution from bulk. Thus, there is
a partial cancellation due to opposite charge carriers in
the edge and the bulk. This results a peak structure in
the Seebeck coefficient near the band edge which makes
the figure of merit large.

Due to the edge-bulk competition, there is a possibility
that ZT could be maximum when the chemical potential
is near the band edge. In such a case, the bulk conduction
is dominant at high temperature. On lowering tempera-
ture, the bulk-edge cross-over takes place and there is a
possibility that ZT might be higher as shown in Figures 2
and 3. The edge current in these system provides ballistic
transport but such transport crucially depends on the in-
elastic scattering length � of the edge states (see Figs. 2
and 3 for � = 1 μm and 0.8 μm) because they loose their
coherence due to inelastic scattering. At high tempera-
ture, � is short and the bulk transport is dominant but at
low temperature, � is long and the edge transport is dom-
inant. This might be the reason why an enhanced figure
of merit results at low temperature.

4 Conclusion

In conclusion, we summarize the main findings of the
present work. The thermoelectric transport in a two-
dimensional topological system has been studied. The
topological system being a coexistence phase of SC
(dx2−y2 + (px + ipy)) and SDW whose topological nature
has been studied in an earlier work [22]. Due to the appear-
ance of distinct edge and bulk states in such a topological
system, the thermoelectric transport is computed consid-
ering both separately. Landauer formulation has been used
for the edge transport whereas the bulk transport is com-
puted using Boltzmann transport theory. Since the actual
transport involves both the contributions, the competition
between them is analyzed in different parameter regimes.
It is argued that at low temperature, since the bulk-edge
crossover takes place, there might be a possibility that the
figure of merit can have high value in such system.
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