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Abstract. In contrary to other 1D momentum-conserving lattices such as the Fermi-Pasta-Ulam β (FPU-β)
lattice, the 1D coupled rotator lattice is a notable exception which conserves total momentum while exhibits
normal heat conduction behavior. The temperature behavior of the thermal conductivities of 1D coupled
rotator lattice had been studied in previous works trying to reveal the underlying physical mechanism
for normal heat conduction. However, two different temperature behaviors of thermal conductivities have
been claimed for the same coupled rotator lattice. These different temperature behaviors also intrigue the
debate whether there is a phase transition of thermal conductivities as the function of temperature. In
this work, we will revisit the temperature dependent thermal conductivities for the 1D coupled rotator
lattice. We find that the temperature dependence follows a power law behavior which is different with
the previously found temperature behaviors. Our results also support the claim that there is no phase
transition for 1D coupled rotator lattice. We also give some discussion about the similarity of diffusion
behaviors between the 1D coupled rotator lattice and the single kicked rotator also called the Chirikov
standard map. It is found that the momentum diffusion constant for 1D coupled rotator lattice follows a
power-law temperature dependence of T−3.2 which is close to that of Chirikov standard map which follows
a behavior of T−3.

1 Introduction

The exploration of underlying mechanism for anoma-
lous and normal heat conduction in low dimensional sys-
tems represents a huge challenge in the area of statisti-
cal physics [1–4]. After enormous efforts for more than
one decade from numerical simulation [5–44], theoretical
predictions [45–57] and experimental observations [58–60],
there is still no consensus for the exact physical mechanism
causing anomalous heat conduction. It is believed that mo-
mentum conservation plays an important role in determin-
ing the actual heat conduction behavior. In general, 1D
non-integrable lattices with momentum conserving prop-
erty should have anomalous heat conduction where the
thermal conductivity κ diverges with the lattice size N as
κ ∝ Nα where 0 < α < 1 [1–4]. However, the 1D cou-
pled rotator lattice is a well-known exception. It exhibits
normal heat conduction behavior despite its momentum
conserving nature [61,62].

The normal heat conduction in 1D coupled rotator
lattice was discovered via numerical simulations by two
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groups independently [61,62]. In order to understand the
underlying mechanism, the temperature dependence of
thermal conductivity has been studied in detail in both
works. In reference [61], the temperature dependence of
thermal conductivity of coupled rotator lattice has been
found to be like κ(T ) ∝ eΔV/T where ΔV is a positive
constant proportional to the barrier height of the poten-
tial energy. However, in reference [62], a temperature de-
pendence of thermal conductivity of κ(T ) ∝ e−T/A was
claimed where A is a positive constant. There it was also
argued that a possible phase transition at temperature
around T ∼ 0.2–0.3 where heat conduction is normal
above this temperature while anomalous below this tem-
perature exists [62]. Although this phase transition state-
ment was challenged as a finite size effect [63,64], a later
work supported this phase transition conjecture after de-
riving a similar temperature dependent thermal conduc-
tivity as κ(T ) ∝ e−T/A [50].

Most recently, the 1D coupled rotator lattice re-
attracts much attention due to the new finding of simulta-
neously existing normal diffusion of momentum as well as
normal diffusion of heat energy [65]. It is argued that the
normal behavior might be due to the reduced number of
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conserved quantities which is unique for periodic interac-
tion potentials [66,67]. But the new debate is that whether
the stretch is conserved or not in 1D coupled rotator lat-
tice. The investigation of 1D coupled rotator lattice will
be the key to unravel the true mechanism behind the con-
nection between momentum conservation and normal or
anomalous heat conduction. Therefore, it is timely to re-
visit the temperature dependence of thermal conductivity
of 1D coupled rotator lattice as a first step.

In this work, we will revisit the temperature depen-
dence of thermal conductivities for the 1D coupled rota-
tor lattice. We find that the temperature dependence is
neither κ(T ) ∝ eΔV/T nor κ(T ) ∝ e−T/A as previously
claimed [61,62]. The actual temperature dependence is a
power-law dependence as κ(T ) ∝ T−3.2. The possible con-
nection with the momentum diffusion of single kicked rota-
tor or the Chirikov standard map has also been discussed.
In order to determine whether there is a phase transition,
we also present the temperature dependent thermal con-
ductance at different system sizes. All the thermal con-
ductances for different sizes collapse to the same value
at low temperatures while approach to the power-law be-
havior as κ(T ) ∝ T−3.2 at high temperatures. However,
the crossover temperature decreases as the system size in-
creases. This fact indicates that there is no phase transi-
tion between normal and anomalous heat conduction. In
thermodynamical limit, the heat conduction is normal for
all temperatures except the trivial zero temperature point.
In Section 2 the lattice model and numerical methods will
be introduced. Numerical results and discussions will be
presented in Section 3 and the results will be summarized
in Section 4.

2 Model and numerical methods

The Hamiltonian for the 1D coupled rotator lattice is de-
fined as the following [61,62]:

H =
N∑

i=1

[
p2

i

2
+ K[1 − cos (qi+1 − qi)]

]
(1)

where qi and pi denote the displacement from equilibrium
and momentum for ith atom, respectively. The mass of
the atom m and the Boltzmann constant kB has been set
into unity. The parameter K with energy dimension rep-
resents the coupling strength of the inter-atom potential.
Therefore, the system temperature T can be rescaled by
T/K and we can also set K = 1 for simplicity [68]. The
equations of motion for ith atom are

q̇i = pi

ṗi = K sin (qi+1 − qi) − K sin (qi − qi−1). (2)

At low temperature limit, the displacements are small
values so that |qi+1 − qi| � 1. The Hamiltonian can be

expanded into the Taylor series as:

H =
N∑

i=1

[
p2

i

2
+

(qi+1 − qi)2

2

− (qi+1 − qi)4

4!
+

(qi+1 − qi)6

6!
− . . .

]
. (3)

This Hamiltonian will approach to the integrable
Harmonic lattice only at zero temperature T = 0. The first
stable nonlinear potential term will be the sextic potential.

On the other hand, at infinite high temperature limit
T = ∞, the rotator lattice will approach to another in-
tegrable system consisting of N independent and isolated
free particles as

H =
N∑

i=1

p2
i

2
. (4)

This is because the kinetic energy is proportional to the
temperature as

〈
p2

i

〉
= T and the potential energy in equa-

tion (1) is confined by the cosine function.
Without getting into numerics, we can get a qualita-

tive picture of the thermal conductivity of 1D coupled
rotator lattice as the function of temperature. The ther-
mal conductivity κ(T ) will diverge in the low temperature
limit approaching to the harmonic limit and will decay to
zero in the high temperature limit as approaching to the
unconnected N free particles. As a general picture, the
thermal conductivity κ(T ) will decrease as the tempera-
ture increases.

For numerical simulations, we will use both non-
equilibrium molecular dynamics (NEMD) and equilib-
rium molecular dynamics (EMD) methods. In the NEMD
method, the first and last atoms are put into contact with
the left and right Langevin heat baths with temperature
TL/R and fixed boundary conditions with q0 = qN+1 = 0
are applied. The equations of motion for the lattice are:

q̈i = − sin (qi) + sin (qi+1 − qi) − λq̇i + ξi, i = 1
q̈i = − sin (qi − qi−1) + sin (qi+1 − qi), i = 2, . . . , N − 1
q̈i = − sin (qi − qi−1) + sin (−qi) − λq̇i + ξi, i = N (5)

and the Gaussian white noise ξ1(t) and ξN (t) satisfy
〈
ξ1/N (t)

〉
= 0,

〈
ξ1/N (t)ξ1/N (0)

〉
= 2λkBTL/Rδ(t) (6)

where TL and TR are the temperature for the left and
right Langevin heat baths and λ is the coupling strength.
The temperatures are set as TL/R = T (1 ± Δ) where T
denotes the average temperature and Δ gives rise to the
temperature gradient along the lattice, and is chosen as
Δ = 0.1 in our simulations. In the dimensionless units, the
coupling strength λ is set to be λ = 1 which is not too large
and not too small. The equations of motion of equation (5)
will be integrated with the second order Verlet velocity
algorithm and the time step Δt is chosen as Δt = 0.01 in
dimensionless unit. The temperature profile and thermal
conductivity in the next section will be calculated using
the NEMD method.
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Fig. 1. Temperature profiles for the 1D coupled rotator lattice
at (a) T = 0.1 and (b) T = 0.8. The lattice sizes are N =
50, 100, 200, 400, 800 and 1600 and the color rules of the lines
are the same for both (a) and (b). The first and last atoms are
put into contact with Langevin heat baths with temperature
set as TL/R = T (1± Δ) where Δ = 0.1 here.

In the EMD method, there is no heat bath and the pe-
riodic boundary conditions qi = qi+N are applied. The
equations of motion for the lattice can be simply ex-
pressed as

q̈i = − sin (qi − qi−1) + sin (qi+1 − qi), i = 1, . . . , N. (7)

The average energy density is the input parameter and the
temperature need to be calculated as T = Ti =

〈
p2

i

〉
where

〈·〉 denotes time average which is equivalent to the ensem-
ble average due to the chaotic nature of the coupled rota-
tor lattice. The equations of motion of equation (7) will be
integrated with fourth order symplectic algorithm [69,70]
which is more accurate and the time step Δt = 0.1 will
be used. The momentum diffusion constant in the next
section will be calculated via the EMD method.

3 Results and discussions

Before we discuss the results of thermal conductivities, we
first show the temperature profiles. In Figure 1, the tem-
perature profiles at two different temperatures T = 0.1
and T = 0.8 are plotted. The lattice sizes are chosen
as N = 50, 100, 200, 400, 800 and 1600. For relative low
temperature at T = 0.1, the temperature jumps at two
boundaries are obvious. However, the temperature jumps
are reduced with the increase of lattice size N as can be
seen in Figure 1a. In Figure 1b where the temperature is
relatively high at T = 0.8, all the temperature profiles col-
lapse to the same straight line as the temperature jumps
are very small for all lattice sizes.

In order to obtain the temperature dependence of ther-
mal conductivities, we need first define the way how κ(T )
can be calculated numerically. We notice that the temper-
ature profiles all collapse to the same straight line if the
temperature jumps can be ignored at high temperatures

Fig. 2. Thermal conductivities κ(T ) as the function of temper-
ature for different lattice sizes N = 50, 100, 200, 400, 800 and
1600. The straight line is proportional to T−3.2 which describes
the temperature behavior of κ(T ) at high temperature region
very well.

or long lattice sizes. It is appropriate to define the thermal
conductivity κ(T ) as:

κ(T ) =
JN

TL − TR
(8)

where J = 〈Ji〉 is the average heat flux along the lat-
tice in the stationary state and the local heat flux Ji is
defined as Ji = −piK sin (qi+1 − qi) via the energy conti-
nuity equation.

In Figure 2, the thermal conductivities κ(T ) as the
function of temperature are plotted for different lattice
sizes N = 50, 100, 200, 400, 800 and 1600. At high tem-
perature region, all the thermal conductivities κ(T ) for
different lattice sizes collapse together indicating the sat-
uration of thermal conductivities as the increase of lattice
size. This is characteristic for lattices with normal heat
conduction. As the temperature decreases, the thermal
conductivities first increases and then becomes flat. This
is because the phonon mean free paths are getting longer
as the temperature reduces and the ballistic regime will be
approached if the phonon mean free paths are longer than
the lattice size. The boundary jumps will dominate the
temperature profiles as in Figure 1a and the definition of
κ(T ) of equation (8) will no longer reflect the actual ther-
mal conductivities.

At high temperatures, it is clearly seen that the
thermal conductivities follow a power-law dependence as
κ(T ) ∝ T−3.2. For the longest size we considered here as
N = 1600, this power-law behavior can be best fitted for
more than two orders of magnitudes for the κ(T ) value as
shown in Figure 3. This also explains the poor fitting of
the κ(T ) ∝ eΔV/T dependence in reference [61] and the
κ(T ) ∝ e−T/A dependence in reference [62].

This power-law dependence of κ(T ) ∝ T−3.2 cannot
be explained by the effective phonon theory which is able
to predict the temperature dependent thermal conduc-
tivities for other typical 1D nonlinear lattices such as
FPU-β lattice and generalized nonlinear Klein-Gordon
lattices [71–78]. According to the effective phonon the-
ory, the thermal conductivity for low temperature rotator
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Fig. 3. Thermal conductivities κ(T ) as the function of tem-
perature for lattice size N = 1600. The data are taken from
Figure 2 and can be best fitted to be a power-law dependence
as κ(T ) ∝ T−3.2.

lattice with Hamiltonian of equation (3) can be derived as

κ(T ) ∝ 1
ε
∝ T−2 (9)

where ε is the nonlinearity strength with the following
temperature dependence

ε ∝
〈
(qi+1 − qi)6

〉

〈(qi+1 − qi)2〉 ∝ T 2 (10)

at low temperature region. Here we consider the sextic
potential term as the lowest nonlinear term because the
dynamics governed by the negative quartic potential term
is unstable. Therefore, the actual temperature behavior of
κ(T ) ∝ T−3.2 is steeper than the prediction of κ(T ) ∝ T−2

from effective phonon theory.
Although it is difficult to unravel the exact physical

mechanism behind the power-law dependence of thermal
conductivities for coupled rotator lattice, it is very helpful
to look into the transport properties of the single kicked
rotator (the Chirikov standard map) [79]. As the name
indicates, the coupled rotator lattice is a kind of connected
kicked rotators. The equations of motion for the single
kicked rotator are

pn+1 − pn = K sin (qn)
qn+1 − qn = pn+1 (11)

where qn and pn denote the coordinate and momentum
after nth kick.

The variation of momentum p is unbounded and can
be characterized by a normal diffusion [79,80]

〈
Δp2(t)

〉 ∼ 2Dt (12)

where D is the diffusion constant. This is similar to the
normal momentum diffusion for 1D coupled rotator lat-
tice. According to references [79,80], the diffusion constant
D depends on the coupling strength K as:

D ∝ (K − 1.2)3, 1.2 < K < 4 (13)
D ∝ K2, K > 4 (14)

where 1.2 is the chaos threshold for the kicked rotator.

If one assumes the transport properties of coupled ro-
tator lattice are the same as that of single kicked rotator,
one would expect that the energy diffusion constant DE as
well as the momentum diffusion constant DP of coupled
rotator lattice should also follow the same dependence as
that of single kicked rotator as in equation (13). To trans-
late the K dependence into T dependence, we notice that
the parameter K in single kicked rotator of equation (11)
plays the same role as that in the coupled rotator lat-
tice as in equation (2). As we have discussed above, the
dynamics of coupled rotator lattice can be rescaled with
T/K. The K dependence should be inversely proportional
to the T dependence. Low K value region corresponds to
the high T region and vice verse. For normal heat con-
duction, the thermal conductivity κ is proportional to the
energy diffusion constant DE . This will finally give rise
to the prediction of temperature dependent thermal con-
ductivity κ(T ) of coupled rotator lattice from the analogy
with single kicked rotator:

κ(T ) ∝ T−2, low T (15)
κ(T ) ∝ T−3, high T. (16)

As a consistence check, we calculate the momentum dif-
fusion constant DP for the coupled rotator lattice with
EMD method. According to reference [27], one can define
the momentum fluctuation correlation function CP (r, t) as

CP (r = i − j, t) =
〈pi(t)pj(0)〉
〈pj(0)pj(0)〉 (17)

where j is the reference atom and r = i−j denotes the dis-
tance from the reference atom. The momentum diffusion
process can be measured by the mean square displace-
ment as 〈

r2(t)
〉

P
=

∑

r

r2CP (r, t). (18)

The momentum diffusion of 1D coupled rotator lattice is
normal [65], therefore, a momentum diffusion constant DP

can be defined as

DP = lim
t→∞

〈
r2(t)

〉
P

2t
. (19)

In Figure 4, we plot the momentum diffusion constant DP

for the coupled rotator lattice as the function of temper-
ature. The same temperature dependence of DP ∝ T−3.2

has been obtained.
Therefore, the prediction of κ(T ) ∝ T−3 with anal-

ogy to the single kicked rotator at high temperature or
low K region is close to the numerical observation of
κ(T ) ∝ T−3.2. This indicates there might be some deeper
connection between the diffusion behavior of single kicked
rotator and 1D coupled rotator lattice. In addition, the
analogy analysis also predicts a κ(T ) ∝ T−2 behavior at
low temperature region which is the same as the predic-
tion from the effective phonon theory of equation (9). The
reason why this temperature behavior cannot be observed
in numerical simulations might be due to the severe finite
size effect at low temperature region as can be seen in
Figure 1a.
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Fig. 4. Momentum diffusion constant DP as the function
of temperature for 1D coupled rotator lattice. The numeri-
cal data are obtained via equilibrium MD simulations as in
reference [65]. The solid line of T−3.2 is guided for the eye.

In the final part we will discuss the issue about the
possible phase transition between normal and anomalous
heat conduction for 1D coupled rotator lattice. As we have
shown in Figure 3, the actual temperature dependence of
κ(T ) is a power-law dependence as κ(T ) ∝ T−3.2. This
indicates the analytic derivation of κ(T ) ∝ e−T/A in ref-
erence [50] originally for a lattice with pinned on-site po-
tential can not be extended to 1D coupled rotator lattice.

On the other hand, the claim that the transition tem-
perature is around (0.2–0.3) in reference [62] has been
challenged in references [63,64] with numerical simulations
of larger sizes. The possible phase transition could be a fi-
nite size effect. Here we reconfirm the finite size effect by
giving a more illustrative picture in Figure 5. The heat
conductance σ(T, N) ≡ κ(T )/N for different sizes N col-
lapse to a common value given by the harmonic limit in
the low temperature limit while approaching the power-
law temperature behavior of σ ∝ T−3.2 at high temper-
ature regime. As the temperature decreases, the phonon
mean free path will overcome the lattice size and the heat
conductance will saturate to a value determined by the
harmonic limit of coupled rotator lattice. As can be seen
from Figure 5, the heat conductance for short lattice will
first bend and become flat as the temperature decreases.
This crossover temperature decreases as the lattice size
increases smoothly and no sign of phase transition can be
observed. It is also noticed that the crossover tempera-
ture happens to be around (0.2–0.3) for lattice sizes of a
few thousands. Therefore, our results also indicate that
there is no phase transition between normal and anoma-
lous heat conduction for the 1D coupled rotator lattice. In
thermodynamical limit as N → ∞, the heat conduction
should be normal for all temperatures except the trivial
zero temperature point.

4 Summary

We have systematically investigated the temperature de-
pendence of thermal conductivities of 1D coupled rotator
lattice. The actual temperature dependence is a power-law

Fig. 5. Heat conductance σ as the function of temperature
T for different lattice size N = 50, 100, 200, 400, 800 and 1600.
All the other parameters are the same as in Fig. 2. The left-
pointing arrow represents the trend of decreasing crossover
temperature as the lattice size increases.

dependence of κ(T ) ∝ T−3.2 which is different with the
observations of previous studies. The possible connection
with the single kicked rotator or the Chirikov standard
map has been discussed where a κ(T ) ∝ T−3 dependence
can be implied. Our results also reconfirm that the previ-
ously claimed possible phase transition should be a finite
size effect.
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No. 11205114 (N.L.), the Program for New Century Excellent
Talents of the Ministry of Education of China with Grant No.
NCET-12-0409 (N.L.) and the Shanghai Rising-Star Program
with Grant No. 13QA1403600 (N.L.).
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