
Eur. Phys. J. B (2015) 88: 122
DOI: 10.1140/epjb/e2015-60213-4

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Finite temperature effective field theory and two-band
superfluidity in Fermi gases

Serghei N. Klimin1,a, Jacques Tempere1,2, Giovanni Lombardi1, and Jozef T. Devreese1,3

1 TQC, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium
2 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA
3 Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Received 16 March 2015 / Received in final form 8 April 2015
Published online 11 May 2015 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2015

Abstract. We develop a description of fermionic superfluids in terms of an effective field theory for the
pairing order parameter. Our effective field theory improves on the existing Ginzburg-Landau theory for
superfluid Fermi gases in that it is not restricted to temperatures close to the critical temperature. This is
achieved by taking into account long-range fluctuations to all orders. The results of the present effective field
theory compare well with the results obtained in the framework of the Bogoliubov-de Gennes method. The
advantage of an effective field theory over Bogoliubov-de Gennes calculations is that much less computation
time is required. In the second part of the paper, we extend the effective field theory to the case of a two-
band superfluid. The present theory allows us to reveal the presence of two healing lengths in the two-band
superfluids, to analyze the finite-temperature vortex structure in the BEC-BCS crossover, and to obtain
the ground state parameters and spectra of collective excitations. For the Leggett mode our treatment
provides an interpretation of the observation of this mode in two-band superconductors.

1 Introduction

Multi-bandgap superconductivity, predicted by Suhl
et al. [1], was first revealed in MgB2 [2,3], and more re-
cently in the iron pnictide class of superconductors [4].
The multiple bandgaps arise from differences in character
between the Fermi surface sheets on which Cooper pair-
ing takes place [3]. In the two-bandgap superconductor
MgB2, the two Cooper pairing channels moreover appear
to be in different regimes: taken individually they would
lead to type I and type II superconductivity, respectively.
Therefore, this material was dubbed a “type 1.5” super-
conductor [5]. The competing length scales associated with
the Cooper pairing channels lead to the formation of vor-
tex clusters and stripes [5,6]. The experimental discovery
of vortex clustering in MgB2 has lead to a flurry of ac-
tivity to develop a two-bandgap Ginzburg-Landau (GL)
formalism suitable to describe these patterns.

The increasing interest in two-band superfluid
fermionic system is not restricted to superconductors [7].
Recently, the superfluidity of multiband ultracold atomic
Fermi gases has attracted theoretical attention [8–10], an-
ticipating interesting experiments in this field. Quantum
gases offer the singular advantage that the adaptability
of various experimental parameters (intraband and inter-
band interaction strength, numbers of atoms, trapping ge-
ometry,. . . ) allows to study these systems in regimes in-
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accessible in solids. A GL theory has been developed for
these systems at the microscopic level [10–12], as distinct
from the case of superconductivity where many param-
eters remain phenomenological. Here, we focus on two-
bandgap superfluidity in atomic Fermi gases throughout
the crossover from the weak-coupling BCS regime to the
Bose-Einstein condensate (BEC) regime, where pairing of
molecules in real space occurs.

In the straightforward two-component GL expansion
(TCGL) two single-component GL equations are coupled
through a Josephson term (see, e.g. Refs. [13–15]), and
lead to an intervortex interaction that can account for
vortex clustering [16]. However, the validity of this simple
extension has been the subject of intense debate [17–23].
Kogan and Schmalian [17,19] indicate that the two order
parameters in a two-band superconductor should have the
same length scale of spatial variation in the vicinity of the
critical temperature Tc, when T → Tc. Since the stan-
dard GL formalism is developed for T near Tc, these au-
thors conclude that the GL approach fails to adequately
describe the existence of two different length scales in a
two-band superconductor. On the other hand, Babaev and
Silaev [18] argue that the TCGL expansion is justified
and properly describes two-band systems with different
coherence lengths. Both sides, however, recognize that the
temperature range of validity for the TCGL approach is
restricted from below by the condition that the order pa-
rameter amplitude is small [23]. Therefore, finding an ef-
fective TCGL-like formalism valid well below Tc remains
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an open question. In references [20,21,24,25], an extended
two-component GL formalism is found by performing an
expansion of the free energy and the gap equation in pow-
ers of τ = 1 − T/Tc to order τ3/2 rather than τ1/2 as is
common for the standard GL formalism. This approach
confirms the existence of two distinct length scales [26].
However in practice a complete summation of the series
over τ is not feasible.

It was shown [23] that a TCGL model with phe-
nomenologically determined coefficients yields an accurate
description of vortices and of the magnetic response of a
two-band superconductor in a wide range of temperatures.
Models where the GL parameters are calculated from a mi-
croscopic theory are available in the limit of weak-coupling
BCS superconductors (e.g. Refs. [27,28]), where the as-
sumption of slowly varying fields was a key ingredient.
Here, we invoke the same assumption to develop a theory
that avoids any additional approximation (for example,
small τ , small pair field, or weak coupling) and that re-
trieves in limiting cases the results of known effective field
theories. Our finite-temperature effective field theory re-
trieves the zero-temperature effective field theory [29,30]
in the limit T → 0 throughout the BCS-BEC crossover.
Also in the other limit, T → Tc, the obtained EFT analyt-
ically reproduces the results obtained by the microscopic
path-integral treatment for the homogeneous superfluid in
the entire BCS-BEC crossover [11,12]. The effective field
theory that we obtain in this way has been applied success-
fully to dark solitons in ultracold Fermi gases [31], where
it shows a good agreement with Bogoliubov-de Gennes
theory. The present work for the first time systematically
describes the derivation of the finite temperature EFT for-
malism, which is only briefly represented in reference [31],
and applies the theory to describe vortex structure in the
BCS-BEC crossover.

Next, we extend the effective field theory to interact-
ing mixtures of superfluid Fermi gases. When two pairing
channels are available, these systems represent the quan-
tum gas analog of the two-band superconductors discussed
above. Specifying the species of trapped atoms, their hy-
perfine states, and the number of trapped atoms, fixes
unambiguously the microscopic Hamiltonian in terms of
scattering lengths, chemical potentials, and masses. Start-
ing from the microscopic action functional for two-band
atomic Fermi gases with s-wave pairing, we obtain unique
expressions for the parameters of the effective field theory
for the two band superfluid, including expressions for the
Josephson coupling between the two order parameters as
a function of the scattering lengths. The resulting effec-
tive field theory reveals the presence of two healing length
scales in the two-band superfluids, in close analogy to the
so-called hidden criticality discussed for two-band super-
conductors. In order for the theory to be capable of de-
scribing the experimentally relevant collective excitations
of superfluid Fermi gases, a derivative expansion keeping
only the first order derivatives of the pair field over time
(performed, e.g. in Refs. [11,12]) is not sufficient: second-
order time derivatives are required to determine collective
excitation spectra of Fermi superfluids. Including these

second-order derivatives, we obtain the collective modes
including the Leggett mode, and compare the results ob-
tained in the framework of superfluid two-band systems
to experimental results obtained for the Leggett mode in
two-band superconductors.

The paper is divided in two parts. In the first part,
Section 2, we derive the effective field action and the
field equations for a single-component Fermi superfluid
(Sect. 2.1). In this part we also compare the results for
the thermodynamics of the uniform system to the results
of the microscopic description to show the validity of the
field theory for a large temperature range in Section 2.2.
Also the structure of a vortex in the BCS-BEC crossover
(Sect. 2.3), as well as the collective excitation spectrum
(Sect. 2.4) are calculated and compared to existing treat-
ments such as the Bogoliubov-de Gennes treatment. In
the second part (Sect. 3), we extend the results to a two-
band system (Sect. 3.1), and consider the behavior of the
parameters and thermodynamic quantities of two-band
superfluid Fermi gases at zero temperature and at finite
temperatures (Sect. 3.2). The spectra of collective exci-
tations are again calculated (Sect. 3.3), revealing for the
two-band case also the Leggett mode, i.e. the out-of-phase
oscillation mode between the two bands. The discussion
is summarized in Section 4.

2 Effective field theory for superfluid
Fermi gases

2.1 Derivation of the field equations

2.1.1 Functional integral formalism

An effective field theory for the superfluid order parame-
ter constitutes a powerful tool to study non-uniform phe-
nomena in fermionic superfluids, such as vortices, solitons,
and the effects of strong confinement. Examples are the
Gross-Pitaevskii equation for the temperature-zero Bose
gas and the Ginzburg-Landau theory for superconduc-
tors near the critical temperature. These approaches are
complementary to microscopic descriptions such as the
Bogoliubov-de Gennes approach. The latter works well for
small number of particles, whereas a description in terms
of an effective field theory meets no difficulties for large
numbers of particles, including the thermodynamic limit.
The other advantage of an effective-field based description
is that this usually requires much less computation time
and memory than the Bogoliubov-de Gennes calculation.
Up to now, Ginzburg-Landau (GL) type effective field the-
ories have been developed for superfluid Fermi gases at
T ≈ Tc [11,12] or at T = 0 [29,30]. Both assume a slow
variation of a pair field in space and time, and account for
amplitude as well as phase field fluctuations. For the two-
dimensional Fermi superfluid, a finite-temperature effec-
tive field theory has been formulated taking into account
phase fluctuations in 2D [32,33]. An effective field theory
for cold Fermi gases in 3D has been derived within the
mean-field approximation [34]. The goal of the first part
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of the present paper is to develop an effective field the-
ory that is valid in the whole temperature range up to Tc

and accounts for both amplitude and phase of the pair
field without assuming fluctuations small. This extension
in performed within the functional integral formalism used
in reference [11] and in subsequent works. No additional
hypotheses or modelling are introduced.

We consider a fermionic system of particles with two
spin states each (σ =↑, ↓). In the functional integral for-
malism, the partition function of the fermionic system is
determined by the path integral over the fermion fields
(the Grassmann variables):

Z ∝
∫

D [ψ̄, ψ] e−S . (1)

The system is described by the action functional S of the
fermionic fields ψσ, which is given by:

S = S0 +
∫ β

0

dτ

∫
dr U (r, τ) , (2)

where β = 1/ (kBT ), T is the temperature, kB is the
Boltzmann constant, and S0 is the free-fermion action,

S0 =
∫ β

0

dτ

∫
dr
∑

σ=↑,↓
ψ̄σ

(
∂

∂τ
+Hσ

)
ψσ. (3)

The one-particle Hamiltonian Hσ = −∇2
r/(2m) − μσ al-

lows for population imbalance through the chemical po-
tentials μσ. The interaction Hamiltonian U (r, τ) describes
the contact interactions between fermions:

U = gψ̄↑ψ̄↓ψ↓ψ↑. (4)

The interaction energy with the coupling constant g is de-
termined by the s-wave scattering between two fermions
with antiparallel spins: this is the Cooper pairing chan-
nel. We use the following set of units: � = 1, m = 1/2,
and the Fermi energy for a free-particle Fermi gas EF ≡
�

2k2
F / (2m) = 1, where kF ≡ (3π2n

)1/3 is the Fermi wave
vector and n is the fermion particle density. The antisym-
metry requirement for fermionic wave functions prohibits
s-wave scattering between fermions with parallel spin.

The Hubbard-Stratonovich (HS) transformation is
based on introducing bosonic fields Ψ̄ , Ψ such that the
partition function is represented through the path inte-
gral over the Fermi and Bose fields,

Z ∝
∫

D [ψ̄, ψ]
∫

D [Ψ̄ , Ψ] e−SHS . (5)

The HS action which exactly decouples the four-field in-
teraction terms in the initial Hamiltonian, is the same as
in reference [11],

SHS = S0 + SB +
∫ β

0

dτ

∫
dr
(
Ψ̄ψ↑ψ↓ + Ψψ̄↓ψ̄↑

)
, (6)

with the free-boson action

SB = −
∫ β

0

dτ

∫
dr

1
g
Ψ̄Ψ. (7)

In order to address the whole range of the BCS-BEC
crossover, the coupling constant g is renormalized through
the s-wave scattering length as exactly as in reference [11]
for the one-band system:

1
g

= m

(
1

4πas
−
∫

k<K

dk

(2π)3
1
k2

)
, (8)

with the ultraviolet cutoff K → ∞. The integration over
the fermion fields leads to the partition function,

Z ∝
∫

D [Ψ̄ , Ψ] e−Seff , (9)

with the effective bosonic action Seff depending on the
pair field only:

Seff = SB − Tr ln
[−G

−1
]
. (10)

Here G
−1 (r, τ) = G

−1
0 (r, τ)−F (r, τ) is the inverse Nambu

tensor, written as a sum of the free-fermion inverse Nambu
tensor G

−1
0 and the matrix F proportional to the pair

field Ψ :

G
−1
0 (r, τ) =

(− ∂
∂τ − Ĥ↑ 0

0 − ∂
∂τ + Ĥ↓

)
, (11)

F (r, τ) =

(
0 −Ψ (r, τ)

−Ψ̄ (r, τ) 0

)
. (12)

The effective action (10) is expanded as a series in powers
of the pair field:

Seff = SB − Tr ln
[−G

−1
0

]
+

∞∑
p=1

1
p

Tr [(G0F)p] . (13)

As the integration over the bosonic fields cannot be per-
formed analytically for the effective action (13), approxi-
mations are necessary.

2.1.2 Gradient expansion

The crudest approximation would be to assume the pair
field to be constant in space and time, Ψ (r, τ) = |Ψ |, so
that F (r, τ) = F(r0, τ0) = F0 is independent of space and
time. This is the saddle-point approximation, and it corre-
sponds to replacing all factors F in (G0F)p by the constant
F0. Then, the sum over all orders of p in expression (13)
can be performed analytically. One readily obtains the
saddle point action, and the corresponding saddle point
free energy

Ωs (w) = −
∫

dk

(2π)3

(
1
β

ln (2 coshβEk + 2 coshβζ)

− ξk − w

2k2

)
− w

8πas
, (14)
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with w = |Ψ |2. Here, Ek =
√
ξ2k + w is the Bogoliubov

excitation energy, and ξk = k2 − μ is the free-fermion en-
ergy. The chemical potentials for the imbalanced fermions
are expressed as μ↑ = μ+ ζ and μ↓ = μ− ζ.

To improve on the saddle-point approximation,
Gaussian pair fluctuations can be taken into account.
Then, one writes Ψ (r, τ) = |Ψ | + δΨ with corresponding
F (r, τ) = F0 +δF(r, τ), and expands the action functional
up to second order in the small parameter δΨ . This is
equivalent to truncating the sum over p in expression (13)
at p = 2. This restricted sum leads to gaussian path inte-
grals which can be performed analytically [11,12,29,30].

In the present work, we go beyond this limitation, and
again take the sum over all powers of p. To do this, we
assume that the pair field varies slowly in space and time,
so we can expand the matrix F around its background
value

F (r, τ) = F0 + ∂τ F|0 (τ − τ0)+ ∇F|0 · (r − r0)+ . . . (15)

taking also second derivatives (not written down here) into
account. Subsequently, we replace all but (at most) two
factors F in (G0F)p by F0. The remaining factors F in
(G0F)p are then expanded according to (15). Since the
coefficients .∇F|0, .∂τF|0,. . . are constant, we find that the
trace of (G0F)p can be taken and summed over all p an-
alytically. Thus, after the expansion of the action (13) in
gradients, we perform the complete summation over p an-
alytically exactly, without assuming F0 small. Correspond-
ingly, the range of applicability of this derivative expan-
sion is the same as for the Ginzburg-Landau approach as
far as the spatial and temporal variations are concerned,
but without assuming the “background” Ψ small. A sim-
ilar scheme was developed in references [29,30] at T = 0
and in the unitarity regime. Here, we perform the com-
plete summation of the series in powers of Ψ̄ , Ψ at finite
temperatures and at arbitrary coupling strengths.

2.1.3 Effective action functional

As a result, the effective bosonic action Seff is approxi-
mated by the following effective field action SEFT :

SEFT =
∫ β

0

dτ

∫
dr
{[
Ωs (w) +

D (w)
2

×
(
Ψ̄
∂Ψ

∂τ
− ∂Ψ̄

∂τ
Ψ

)
+ Q̃ (w)

∂Ψ̄

∂τ

∂Ψ

∂τ

− R (w)
2w

(
∂w

∂τ

)2

+
C̃ (w)
2m

(∇rΨ̄ · ∇rΨ
)

−E (w)
2mw

(∇rw)2
]}

. (16)

The (local) saddle-point thermodynamic potential is still
determined by the modulus squared of the position-
dependent order parameter, w = |Ψ |2 as in expres-

sion (14). The other coefficients are given by:

C̃ =
∫

dk

(2π)3
k2

3m
f2 (β,Ek, ζ) , (17)

D =
∫

dk

(2π)3
ξk
w

[f1 (β, ξk, ζ) − f1 (β,Ek, ζ)] , (18)

E = 2w
∫

dk

(2π)3
k2

3m
ξ2k f4 (β,Ek, ζ) , (19)

Q̃ =
1

2w

∫
dk

(2π)3
[f1 (β, ξk, ζ)

− (E2
k + ξ2k

)
f2 (β,Ek, ζ)

]
, (20)

R =
∫

dk

(2π)3

[
f1 (β, ξk, ζ) +

(
E2

k − 3ξ2k
)
f2 (β, ξk, ζ)

3w

+
4
(
ξ2k − 2E2

k

)
3

f3 (β, ξk, ζ) + 2E2
kwf4 (β, ξk, ζ)

]
.

(21)

The functions fp (β, ε, ζ) are determined explicitly using
the recurrence relations:

f1 (β, ε, ζ) =
1
2ε

sinh(βε)
cosh(βε) + cosh(βζ)

, (22)

fp+1 (β, ε, ζ) = − 1
2pε

∂fp (β, ε, ζ)
∂ε

. (23)

The corresponding equations for the order parameter fol-
low from the stationary action principle with the func-
tional (16). In order to study the evolution of the order
parameter in real time, we replace τ by it as in refer-
ence [11]. This results in a set of two coupled equations.
The first equation reads:

i
∂ (wD)
∂w

∂Ψ

∂t
= A (w)Ψ + Q∂2Ψ

∂t2
− RΨ2

w

∂2Ψ̄

∂t2

− 1
w

∂ (wR)
∂w

Ψ
∂Ψ̄

∂t

∂Ψ

∂t
(24)

+
(
∂Q
∂w

+
1

2w
∂ (wR)
∂w

)
Ψ̄

(
∂Ψ

∂t

)2

− 1
2
∂
(R

w

)
∂w

Ψ3

(
∂Ψ̄

∂t

)2

(25)

− C∇2
rΨ +

2EΨ2

w
∇2

rΨ̄

+
2
w

∂ (wE)
∂w

Ψ
(∇rΨ̄ · ∇rΨ

)

−
(
∂C
∂w

+
1
w

∂ (wE)
∂w

)
Ψ̄ (∇rΨ)2

+
∂
( E

w

)
∂w

Ψ3
(∇rΨ̄

)2
, (26)

and the other equation is conjugate to (26). Here, the
coefficients C and Q are related to, respectively, C̃ and
Q̃ by:

C = C̃ − 2E , Q = Q̃ − R. (27)
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The coefficient A ≡ ∂Ωs/∂w is given by:

A (w) = −
∫

dk

(2π)3

(
1

2Ek

sinh(βEk)
cosh(βEk) + cosh(βζ)

− 1
2k2

)
− 1

8πas
. (28)

Note that within the local-density approximation (LDA)
time and space derivatives in (26) are neglected, and we
arrive at the known gap equation for a uniform Fermi
superfluid

A (w) = 0. (29)

In the BCS-BEC crossover regime, the coefficient E in (26)
is, in general, not negligible. This leads to mixing of Ψ and
Ψ̄ in the evolution equations. This mixing is not surpris-
ing. In the particular case when space and time varia-
tions of the order parameter about its saddle-point value
δΨ ≡ Ψ −Δ are small, these variations are equivalent to
the Gaussian fluctuations [11]. For temperatures below Tc,
the fluctuation action is a non-diagonal quadratic form: it
contains terms which mix conjugate and non-conjugate
pair fields [35].

Taking the limit T → Tc in the present approach and
neglecting the second-order time derivatives, we can com-
pare the effective field action of the present work with
the results of the standard Ginzburg-Landau type the-
ory [11,12]. In taking the T → Tc limit, we also expand
the thermodynamic potential with respect to w = |Ψ |2 up
to quartic order in the pair field: ΩGL

s = Ωs|w=0 − aw +
bw2/2. The coefficients a and b obtained in this way co-
incide exactly with those given in reference [11]. However,
performing the summations over p in (13) before taking
the limit w → 0 we find that the coefficient D differs from
the coefficient d of reference [11]:

lim
w→0

D (w) =
1
4

∫
dk

(2π)3

(
tanh βξk

2

ξ2k
− β

2ξk cosh2 βξk
2

)
.

(30)
It remains real for all T < Tc, whereas an imaginary part
appears just when the order of limits w → 0 and T → Tc

is reversed. This difference is explained by the fact that
in reference [11], |Ψ | is a small parameter, so that the
chemical potential μ plays the role of the energy scale.
There is a point close to the unitarity regime where both μ
and |Ψ | turn to zero. In this singularity point, the energy
scale vanishes and the time dependent Ginzburg Landau
description (TDGL), as concluded in reference [11], fails.
Contrary to the regime near Tc, a TDGL equation is ob-
tained in reference [11] for all couplings at T = 0. In this
case a nonzero order parameter “precludes a vanishing en-
ergy scale, and the low frequency expansion of the effective
action is well defined for all couplings” [11]. In the present
approach, |Ψ | is not a small parameter, because we per-
formed the summation of the effective field action over
the whole series in powers of |Ψ |. Therefore the derived
effective field action is valid not only for the zero temper-
ature case but also for the whole range of temperatures
below Tc, except, maybe, for a vicinity of the aforesaid
singular point.

Fig. 1. Thermodynamic potential difference Ωs − (Ωs|w=0)
calculated within the finite temperature EFT (full symbols)
and within the standard GL theory [11] (hollow symbols) as a
function of the temperature for different values of the inverse
scattering length.

The coefficient at the first time derivative obtained in
the present work is verified by the comparison with the
corresponding coefficient found in references [32,33] for a
Fermi gas in 2D keeping only the phase fluctuations but
without assuming the phase to be small. This confirms the
importance of a correct sequence of limits: T → Tc and
|Ψ | → 0. When |Ψ | = 0 is set from the very beginning, as
in reference [11], and then T varies, a singularity appears
at T = Tc and μ = 0. On the contrary, the coefficient (30)
contains no singularity when passing the point μ = 0.

2.2 Thermodynamic potential

As established in references [36,37], for a BCS supercon-
ductor the dynamic part of the effective action must be,
in general, time-nonlocal and contain both propagating
and dissipative parts. In the weak-coupling BCS super-
conductors the propagating part is less than the damped
one [38]. However, in the atomic Fermi gases, the prop-
agating component plays an important role because of
the presence of the condensed molecular bosons whose dy-
namics is primarily the conserved one [39]. The developed
formalism catches the non-dissipative part of the time-
dependent term in the effective action. Thus the evolu-
tion equation for the order parameter (when neglecting
the second-order time derivatives) is governed by a time-
dependent nonlinear Schrödinger equation [40,41] (rather
than a time dependent Ginzburg-Landau equation, which
must account for the carrier dissipation).

Figure 1 shows the difference Ωs − (Ωs|w=0) as a func-
tion of temperature for several values of the inverse scat-
tering length 1/as, for the present approach (full curves)
and the standard GL approach (dashed curves). Accord-
ing to the chosen system of units, as is measured in units
of the inverse to the Fermi wave vector kF , and Ωs is
measured in units of EF . The same units are assumed in
the other figures. As discussed in the previous paragraph,
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near Tc the results are close to each other. For T → 0, the
present approach converges to the result for the ground
state energy of the superfluid Fermi gas obtained in the
microscopic theory of the homogeneous system. Indeed, in
the limit of a stationary and homogeneous system with-
out vortices, the minimization of the effective action (16)
obviously leads to the saddle-point gap equation of refer-
ence [11] for all temperatures. In contrast, the standard
GL approach is seen to fail for T 
 Tc, and does so more
strongly for negative scattering lengths.

2.3 Finite-temperature vortex

Vortices in superfluid Fermi gases in the BCS-BEC
crossover have been studied with several methods. The
vortex core structure was elucidated within a Bogoliubov-
de Gennes approach by Simonucci et al. [42]. The BdG
results of reference [42] describe an isolated vortex beyond
the weak-coupling BCS case, and in the whole tempera-
ture range 0 < T < Tc. Also the present effective field
theory allows us to investigate the vortex core structure
at arbitrary temperature and coupling strengths, and has
the advantage of requiring much less computational effort.
Here, we compare the results from the present treatment
to the BdG results.

In Figure 2, the amplitude modulation function a(r) ≡
|Ψ(r)|/|Ψ(∞)| for a vortex is plotted for several inverse
scattering lengths 1/as and several temperatures. In ref-
erence [42], three temperatures are considered for each
scattering length: T/Tc = 0, 0.5, and 0.9. We use the same
temperatures, except T = 0 : the low-temperature curves
are calculated here for T/TF = 0.005. At low temperatures
the calculated results very slowly depend on T , so that we
can compare our low-temperature results with those for
T = 0 from reference [42]. We find that the agreement is
good as the temperature becomes larger or the interaction
regime goes towards the BEC regime. A significant quan-
titative difference between BdG and EFT appears only in
the BCS regime at low temperatures.

In Figure 3, we plot the distributions of the total
fermion density, comparing BdG and EFT results. The
density can be calculated by two methods: (1) in the local
density approximation (LDA):

n(LDA) = −∂Ωs

∂μ
, (31)

and (2) accounting for the gradient terms in the effective
action (54),

n(tot) = −∂Ωs

∂μ
− 1

2
∂ρqp

∂μ

(
da (r)
dr

)2

− 1
2r2

∂ρsf

∂μ
a2 (r) (32)

with the superfluid density ρsf and the quantum pressure
coefficient ρqp:

ρsf =
C̃
m

|Ψ |2 , (33)

ρqp =

(
C̃ − 4E

)
Δ2

m
. (34)

Fig. 2. Amplitude modulation function of the order parame-
ter a(r) = |Ψ(r)|/|Ψ(∞)| for a vortex at different temperatures
and scattering lengths. The results of the present theory (heavy
curves) are compared with the BdG data of reference [42] (thin
curves). Amplitude modulation function of the order parame-
ter a(r) = |Ψ(r)|/|Ψ(∞)| for a vortex at different temperatures
and scattering lengths. The results of the present theory (heavy
curves) are compared with the BdG data of reference [42] (thin
curves).

The superfluid density determined by (33) explicitly leads
to the expression

ρsf =
|Ψ |2
3m2

∫
dk

(2π)3
k2 f2 (β,Ek, ζ) . (35)

Remarkably, this expression corresponds exactly to the
Landau-type formula for a Fermi superfluid, but now
extended throughout the whole BCS-BEC crossover,
similarly to reference [43]. The total superfluid den-
sity, as shown in reference [43], consists of two parts:
the mean-field contribution, that is equivalent to (35),
and a fluctuation contribution. The fluctuation contri-
bution was also considered in the microscopic rederiva-
tions of the Berezinskii-Kosterlitz-Thouless theory based
on a path-integral treatment of phase fluctuations in
two-dimensional Fermi gases within the low-wavelength
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Fig. 3. Density distribution (in units of the bulk density n0)
for a vortex at different temperatures and scattering lengths.
The results of the present theory (curves) are compared with
the BdG data of reference [42] (symbols). The density calcu-
lated within LDA is shown by the solid curves, and the density
calculated accounting for the gradient terms is shown by the
dashed curves.

approximation [32,33,44]. The superfluid density entering
the phase action as a prefactor at (∇θ)2 in these works
can be obtained from (35) by a straightforward transla-
tion of the present formalism to the two-dimensional case.
These two examples represent a reassuring analytic veri-
fication of the present formalism as they agree with well-
established preceding results.

As was also the case for the order parameter, the agree-
ment between BdG and EFT is gradually better for higher
temperatures and/or when moving to the BEC side, where
EFT retrieves the Gross-Pitaevskii theory. The gradient
corrections improve the agreement between BdG and EFT
in the BCS and unitarity regimes. However, in the BEC
regime the gradient corrections are extremely small, ex-
cept at T = 0. In the low-temperature limit, the gradient
corrections in the BEC regime result in a small artifact:
the density goes to negative values near the vortex cen-
ter. Thus in the BEC regime, LDA seems to describe the

density better than the calculation including the gradient
corrections. These results are in agreement with the recent
work of reference [45] (citing our approach in Ref. [16] of
that paper) where a long-wavelength approximation has
been developed for the BdG equations. That approach
differs from the present formalism in that we perform the
long-wavelength expansion for the exact effective bosonic
action rather than for the BdG equations (which are al-
ready an approximation). Nevertheless, the results of these
two approaches are close to each other.

2.4 Collective excitations

The spectrum of the collective excitations is determined
in the following way, similarly to reference [46]. First, we
assume that the pair field Ψ is a sum of the uniform and
time-independent mean-field value Δ and the fluctuation
field ϕ:

Ψ (r, τ) = Δ+ ϕ (r, τ) , Ψ̄ (r, τ) = Δ+ ϕ̄ (r, τ) (36)

and keep the fluctuations up to second order. Next, the
pair field is rewritten in the (q, iΩn) representation. This
gives us the quadratic fluctuation action in matrix form:

S
(quad)
EFT =

1
2

∑
q,n

(ϕ̄q,nϕ−q,−n) × M (q, iΩn)

(
ϕq,n

ϕ̄−q,−n

)
,

(37)
where the matrix M (q, iΩn) is determined by:

M1,1 (q, iΩn) = U +
C

2m
q2 − iΩnD̃ +Ω2

nQ,

M1,2 (q, iΩn) = U − E
m
q2 −RΩ2

n,

M2,1 (q, iΩn) = M1,2 (q,−iΩn) ,
M2,2 (q, iΩn) = M1,1 (q,−iΩn) , (38)

with the coefficients introduced in (14)–(21) and

U (w) = w
∂2Ωs (w)
∂w2

, D̃ (w) =
∂ [wD (w)]

∂w
, (39)

C = C̃ − 2E , Q = Q̃ − R. (40)

The spectra of collective excitations are determined after
the transition iΩn → ω as the roots of the equation

det M (q, ω) = 0. (41)

The solution of equation (41) in the long-wavelength ap-
proximation yields the Bogoliubov-Anderson (Goldstone)
mode with the frequency

ωq = vsq, (42)

where vs is the first sound velocity. It is expressed through
the coefficients of the effective field action similarly to
references [46,47]:

vs =

√
1
m

UC̃
D̃2 + 2UQ̃ . (43)
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Fig. 4. The sound velocity vs calculated using formula (43)
(solid curve) and neglecting the second time derivative (dashed
curve), compared with the result of reference [48] for a 3D
Fermi gas.

Note that the coefficient Q̃ corresponding to the second
order of the derivative expansion for the time derivatives
enters the sound velocity together with the first order co-
efficient D̃. This result demonstrates that the second order
of the derivative expansion is important for the spectrum
of collective excitations.

In the zero temperature limit, the coefficients entering
the matrix (38) for the quadratic fluctuation action corre-
spond exactly to those obtained within the Gaussian pair
fluctuation (GPF) theory [46] and in the zero-temperature
theory of reference [29]. Remarkably, despite the fact that
the approach of reference [29] is non-perturbative (i.e.
without assuming the non-uniform part of the pair field to
be small), the coefficients for the zero-temperature action
functional in reference [29] appear to be the same as in
the GPF at T = 0 [46]. In other words, at zero tempera-
ture, the result of two approximations (small fluctuations
and slowly varying fluctuations) does not depend on their
sequence. On the contrary, at nonzero temperatures these
two approximations do not commute.

In Figure 4, the sound velocity vs (in units of the
Fermi velocity vF ≡ �kF /m) calculated using the mean-
field values of the chemical potential is plotted as a func-
tion of the inverse scattering length and compared with
that extracted from reference [48] for a Fermi gas in three
dimensions. In that paper, the effect of both phase and
amplitude fluctuations of the order parameter is taken
into account in the determination of the sound velocity of
the uniform superfluid system in the BCS-BEC crossover.
The results obtained in reference [48] depend strongly on
whether amplitude fluctuations are taken into account or
not. The amplitude fluctuations are incorporated in ref-
erence [48] following Schakel [30], obtaining results at the
unitarity regime and at T = 0. The present calculation
also takes into account both phase and amplitude fluctua-
tions, at all coupling strengths and temperatures. We can
see from Figure 4 that our result for vs and that of ref-

erence [48] agree excellently at the BCS side, and exhibit
only a slight difference in the BEC regime.

In order to show the importance of the terms of second
order in the time derivative, we show in Figure 4 also
the sound velocity determined within our EFT neglecting
the coefficient Q̃ in (43). It is clear that setting Q̃ = 0
leads to a substantial change in the BCS regime, while
leaving the result in the BEC regime unaffected.

3 Two-band Fermi superfluids

3.1 Extension of the EFT to two bands

The extension of the EFT formulated in the above sub-
section to the two-band Fermi systems is particularly in-
teresting due to recent intense discussions on the applica-
bility of the GL approach to the coupled Fermi systems
far below Tc [17–23].

Here, we consider a fermionic system of two types
of particles (j = 1, 2) with two spin states each de-
scribed by the microscopic atomic Hamiltonians Hσ,j as
in the section on the one-band system, with possibly dif-
ferent masses and chemical potentials for each band. The
path-integral scheme remains the same as above. The in-
teraction Hamiltonian U (r, τ), however, is more compli-
cated, because it describes both intraband and interband
interactions:

U =
∑

j=1,2

gjψ̄↑,jψ̄↓,jψ↓,jψ↑,j

+ g3
(
ψ̄↑,1ψ↑,1ψ̄↓,2ψ↓,2 + ψ̄↓,1ψ↓,1ψ̄↑,2ψ↑,2

)
+ g4

(
ψ̄↑,1ψ↑,1ψ̄↑,2ψ↑,2 + ψ̄↓,1ψ↓,1ψ̄↓,2ψ↓,2

)
. (44)

The terms with the coupling constants g1, g2 determine
the intraband scattering between two fermions of the same
type and with antiparallel spins: these are the two Cooper
pairing channels. The terms with g3 and g4 are related to
the interband scattering for the fermions with antiparallel
and parallel spins, respectively. In ultracold gases, scat-
tering between fermions with parallel spins is not present
for fermions in the same band due to the Pauli princi-
ple. However, parallel spin scattering between fermions
in different bands should be kept, as it contributes to
the renormalization of the effective interaction. Terms of
the type ψ̄↓,1ψ̄↑,1ψ↓,2ψ↑,2 are not included in the interac-
tion Hamiltonian (44). They are kept in some theoretical
schemes (e.g. [8,9,13]) and describe an ad hoc model inter-
band scattering of pairs. However, we avoid such terms in
the starting microscopic action because they cannot arise
from any density-density type of interaction.

The Hubbard-Stratonovich (HS) transformation is
based on introducing auxiliary fields Ψj and χj such that
the relation

Z ∝
∫

D [ψ̄, ψ]
∫

D [Ψ̄ , Ψ]
∫

D [χ̄, χ] e−SHS (45)

is satisfied. In the HS action SHS , the fermion fields ap-
pear only up to quadratic order so they can be integrated.
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The HS action which exactly decouples the four-field in-
teraction terms in the initial Hamiltonian, involves two
pair fields and two density fields corresponding to the in-
terband normal channel (see Ref. [49]):

SHS = S0 + SB + Sχ

+
∑

j=1,2

∫ β

0

dτ

∫
dr
(
Ψ̄jψj,↑ψj,↓ + Ψjψ̄j,↓ψ̄j,↑

+ iχ̄jρj + iχj ρ̄j

)
, (46)

where ρ1 = ψ̄1,↑ψ2,↓+ψ̄2,↑ψ1,↓ and ρ2 = ψ̄1,↑ψ2,↑+ψ̄2,↓ψ1,↓
are combinations of the fermion variables, Ψj and χj are
the HS pair and density fields, respectively. The actions
of the free HS fields are given by:

SB = −
∫ β

0

dτ

∫
dr
[

1
G1

Ψ̄1Ψ1 +
1
G2

Ψ̄2Ψ2

− 1
G12

(
Ψ̄1Ψ2 + Ψ̄2Ψ1

)]
, (47)

Sχ = −
∫ β

0

dτ

∫
dr
(

1
g3
χ̄1χ1 +

1
g4
χ̄2χ2

)
. (48)

The intraband channel for same-spin fermions is not
present (nor is it in Ref. [11]) because we assume the
temperature is low enough so that only s-wave scatter-
ing occurs. The four-field HS transformation exactly elim-
inates the fermion-fermion interaction from the initial
Hamiltonian. If the interband coupling is switched off, the
effective bosonic action exactly turns to that exploited in
reference [11] for two independent bands.

Although there is no Josephson interband coupling
in the initial fermion-fermion interaction (44), this cou-
pling emerges in a natural way in the effective bosonic
action (47) and follows explicitly from the HS transfor-
mation of the microscopic action. The coupling constants
Gj are related to those from (44) in the following way:

1
G1

=
g2

g1g2 − g2
12

,
1
G2

=
g1

g1g2 − g2
12

,

1
G12

=
g12

g1g2 − g2
12

, g12 = g4 − g3. (49)

In order to address the whole range of the BCS-BEC
crossover, the coupling constants g1, g2 are renormalized
through the s-wave scattering lengths as,j similarly to ref-
erence [11] and in the above subsection for the one-band
system:

1
gj

= mj

(
1

4πas,j
−
∫

k<K

dk

(2π)3
1
k2

)
(50)

with K → ∞. In order to ensure convergence in the ther-
modynamic potential and in the gap equation, the other
two coupling constants g3, g4 must also be renormalized
through equation (50), with the scattering lengths as,3

and as,4 and the mass parameter m3 = m4 ≡ m12. The

mass parameter m12, as shown below, enters the final re-
sults through the factor γm12 with the interband coupling
parameter γ ≡ 2( 1

as,3
− 1

as,4
). Consequently this mass can

be chosen arbitrary as far as the renormalization is con-
cerned, and we set m12 =

√
m1m2. With these renormal-

izations, g2
12/(g1g2) ∝ 1/K2, so that the stability condi-

tion g1g2 > g2
12 is always fulfilled.

The integration over the fermion fields leads to the
partition function,

Z ∝
∫

D [Ψ̄ , Ψ]
∫

D [χ̄, χ] e−Seff , (51)

with the effective bosonic action Seff . The details for the
effective bosonic action are described in the Appendix.
The ultraviolet-divergent part of the effective bosonic
action can be explicitly extracted. When introducing a
sufficiently large momentum cutoff k0 for the fermion
fields, the part of the HS action for k > k0 provides the
ultraviolet-divergent part of the effective bosonic action

δS
(div)
eff (k0) = −

∫ β

0

dτ

∫
dr
∫

(k>k0)

dk

(2π)3
∑

j=1,2

mj

k2

× Ψ̄j (r, τ)Ψj (r, τ) +O
(
k−4

)
. (52)

The density fields χj do not contribute to the ultravio-
let divergence of the effective bosonic action. In the limit
|gj| → ∞ (corresponding to K → ∞), the divergence of
the action SB is exactly compensated by (52) using (50),
so that the part of the effective action depending on the
pair fields Ψj is regularized. On the contrary, the density-
field action Sχ unrestrictedly increases when K → ∞.
Thus the functional e−Sχ acts as a product of delta func-
tions for the density fields χj(r, τ) at all (r, τ). As a re-
sult, the subsequent integration over the density fields is
performed exactly, and we arrive at the effective bosonic
action depending on the pair fields only:

Seff = SB −
∑

j=1,2

Tr ln
[−G

−1
j

]
. (53)

The inverse Nambu tensor G
−1
j for each band has been de-

termined above. In the effective field action (53), the cou-
pling strengths of the starting Hamiltonian are reduced
to only three input parameter of the theory: two scatter-
ing lengths as,1, as,2 and the Josephson interband coupling
strength γ. The intraband coupling strengths (expressed
here through the scattering lengths) and the interband
coupling strength are the standard input parameter which
are used in known works of two-band superconductiv-
ity/superfluidity (see, e.g. Refs. [1,8–10,13]). These pa-
rameters are measurable: the scattering lengths and the
Josephson interband coupling strength can be experimen-
tally determined and controlled using e.g. the Feshbach
resonance.

The effective action (53) is expanded as a series in
powers of the pair field in the same way as for a one-
band system. Correspondingly, the derivative expansion
and the summation over the whole series in powers of the
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pair fields is performed for each band independently. As
a result, the bosonic action Seff is approximated by the
following effective field action S(2b)

EFT :

S
(2b)
EFT =

∑
j=1,2

S
(j)
EFT −

∫ β

0

dτ

∫
dr

m12γ

4π
(
Ψ̄1Ψ2 + Ψ̄2Ψ1

)
,

(54)
where S(j)

EFT is the effective field action for each band de-
termined by (16).

The equations of motion for the order parameters fol-
low from the stationary action principle, resulting in a set
of four coupled equations. Two equations – for j = 1 and
j = 2 – are:

i
∂ (wjDj)
∂wj

∂Ψj

∂t
= Aj (wj)Ψj − m12γ

4π
Ψ3−j

+ Qj
∂2Ψj

∂t2
− RjΨ

2
j

wj

∂2Ψ̄j

∂t2

− 1
wj

∂ (wjRj)
∂wj

Ψj
∂Ψ̄j

∂t

∂Ψj

∂t

+
(
∂Qj

∂wj
+

1
2wj

∂ (wjRj)
∂wj

)
Ψ̄j

(
∂Ψj

∂t

)2

− 1
2

∂
(Rj

wj

)

∂wj
Ψ3

j

(
∂Ψ̄j

∂t

)2

− Cj

2mj
∇2

rΨj +
EjΨ

2
j

mjwj
∇2

rΨ̄j

+
1

mjwj

∂ (wjEj)
∂wj

Ψj

(∇rΨ̄j · ∇rΨj

)

− 1
2mj

(
∂Cj

∂wj
+

1
wj

∂ (wjEj)
∂wj

)

× Ψ̄j (∇rΨj)
2+

1
2mj

∂
( Ej

wj

)

∂wj
Ψ3

j

(∇rΨ̄j

)2
,

(55)

and the other two equations are conjugate to (55). Within
the local-density approximation (LDA) time and space
derivatives in (55) are neglected and we obtain two cou-
pled gap equations,

Aj (wj)Ψj − m12γ

4π
Ψ3−j = 0. (56)

The two-band effective action allows for mass imbalance
m1 �= m2. This can be important for two-band super-
conductors but seems to be less relevant for ultracold
atomic gases, because phase coherence and Josephson cou-
pling between species with different masses are hardly
achievable. In the treatment of applications of the EFT
in the present paper, we assume no mass imbalance. Con-
sequently, for the numerical calculations we use the same
set of units as in Section 2.

3.2 Uniform two-band superfluid

3.2.1 Parameters and thermodynamic functions at T = 0

In two-bandgap Fermi superfluids, the interband interac-
tions compete with the intraband interactions and affect
the ground-state phases. The thermodynamic potential
per unit volume for the uniform two-band system resulting
from the action functional (54) is:

Ω =
∑

j=1,2

Ωs,j − m12γ

4π
(
Ψ̄1Ψ2 + Ψ̄2Ψ1

)
. (57)

At zero temperature, the mean-field thermodynamic po-
tential adequately describes the properties of the Fermi
superfluid in the whole range of the BCS-BEC crossover.
The internal energy as a function of the total fermion par-
ticle density n, is determined at T = 0 through the ther-
modynamic relation

E = Ω + μn. (58)

In the present treatment we assume that the masses of the
fermions in the two subbands are the same, the band offset
is equal to zero, and the subbands are in thermodynamical
equilibrium in the sense that their chemical potentials are
equal. The number equation

−∂Ω
∂μ

= n (59)

determines the chemical potential that is common for both
bands. The three parameters Ψ1, Ψ2, μ are found by solv-
ing the number equation (59) along with the two coupled
gap equations (56). The roots of this coupled set of equa-
tions are derived numerically, and we investigate the de-
pendence of these solutions on the interband coupling γ
and on the intraband coupling parameters 1/as,j where
as,j is the scattering length between fermions in band j.

In Figure 5a, the order parameters for a two-band su-
perfluid Fermi gas are plotted as a function of the in-
terband coupling strength γ for the inverse scattering
length of the “stronger” band 1/as,1 = 0 and for differ-
ent values of the inverse scattering length of the “weaker”
band 1/as,2. As intuitively expected, both Ψ1 and Ψ2 are
monotonously increasing functions of the interband cou-
pling strength γ. The difference Ψ2 − Ψ1 is an increasing
function of the difference 1/as,1 − 1/as,2.

Figure 5 reveals some surprising details of the inter-
play between the interband and intraband couplings. At
large γ, the dependence of Ψ1 on 1/as,2 has the same
sign as that of Ψ2 on 1/as,2. However, at small γ (here,
γ � 0.35), the order parameter Ψ1 becomes a decreasing
function of 1/as,2 and this behavior persists even at zero
coupling where one expects Ψ1 to be independent of as,2.
This behavior of the order parameter can be explained by
a population transfer between bands. Indeed, even in the
limit of the zero coupling, the common chemical potential
leads to unequal fermion densities in the two bands, and
in particular, to a depletion of the weak band. The com-
mon chemical potential will be affected by the scattering
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Fig. 5. (a) Order parameters Ψ1 (solid curves) and Ψ2 (dashed
curves); (b) chemical potential (solid curves) and internal en-
ergy (dashed curves) for a two-band superfluid Fermi gas as a
function of the interband coupling strength γ for the inverse
scattering length of the “stronger” band 1/a1 = 0 and for dif-
ferent values of 1/a2.

lengths of both bands, even in the limit of zero interac-
tion coupling between different bands, and this results in
a population transfer between the bands. The “stronger”
band drains away more fermions from the “weaker” band
as the difference between the inverse scattering lengths
1/as,1 − 1/as,2 grows. These additional fermions allow to
form more pairs, resulting in an increase of Ψ1 as 1/as,2

becomes more negative.
In Figure 5b, we show the common chemical potential

μ and the internal energy per particle E/n as a function of
the interband coupling strength γ, for several values of the
inverse scattering 1/as,2 length of the “weaker” band. We
can see that an increasing interband coupling acts like an
increasing intraband coupling: both the chemical poten-
tial and the internal energy decrease when γ rises. In the
BEC limit, the difference between E/n and μ gradually
decreases, while at all coupling E/n < μ. This inequality
must necessarily be fulfilled, because the thermodynamic
potential per unit volume is equal to minus the pressure:
Ω = −P and the pressure remains positive.

In Figure 6a we return to the question of population
transfer between the bands, and plot the order parameters
as a function of 1/as,2, for 1/as,1 = 0 and for several values
of γ. Here, the interaction parameter of the second band
crosses over from the BCS regime at 1/as,2 = −1 to the
BEC regime at 1/as,2 = 1. In the range 1/as,2 < 0, the

Fig. 6. (a) Order parameters Ψ1 (solid curves) and Ψ2 (dashed
curves); (b) fermion densities in the first band (solid curves)
and second band (dashed curves); (c) pressure for a two-band
superfluid Fermi gas as a function of the inverse scattering
length 1/as,2, for 1/as,1 = 0 and for different values of the
interband coupling strength γ.

first band is the “stronger” band, and for 1/as,2 > 0,
the first band is the “weaker” band. In the BEC regime,
we find a remarkable feature: Ψ1 can turn to zero when
1/as,2 is sufficiently large and γ is sufficiently small (here,
at γ = 0). At this critical point, also Ψ2 reveals a kink.

The origin of this suppression of Ψ1 becomes clear when
we look at the dependence of the relative fermion densities
for the first and second band as a function of 1/as,2, shown
in Figure 6b. We again see that, even when γ = 0, the com-
mon chemical potential couples the bands through popu-
lation transfer. As γ grows, this population transfer is re-
duced. In the BEC range, the population transfer is more
pronounced, and when γ is small and 1/as,2 is sufficiently
large, the population transfer can completely deplete the
first band, driving Ψ1 down to zero. This possibility has
gone hitherto unnoticed in the theoretical descriptions
of two-band systems, as these are usually studied in the
BCS limit. Even in strong-coupling superconductors, the
BEC regime seems not to be achieved. Therefore this ef-
fect seems to be a new feature related to the Fermi gases
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Fig. 7. Susceptibility ∂Ψ2/∂γ for the “weaker” band as a func-
tion of T/Tc for inverse scattering lengths 1/(kF as,1) = 0 and
1/(kF as,2) = −0.5. Here, Tc is the critical temperature for the
two-band system.

where the BCS-BEC crossover regime can be experimen-
tally probed.

The effect of band population transfer can also been
seen in the dependence of the pressure P = −Ω on
1/as,2, shown in Figure 6c. The pressure exhibits a lo-
cal maximum for the curve with γ = 0 when the “weaker”
band becomes completely depleted. Moreover, when γ is
nonzero but sufficiently small, the pressure depends on
1/as,2 non-monotonically.

3.2.2 Temperature dependence of parameters

As shown in reference [23], a Josephson coupling for two-
bandgap superconductors yields the symmetry breakdown
from U(1)×U(1) to U(1) and hence eliminates the super-
conducting phase transition for a “weaker” band at Tc,2,
where Tc,2 is the critical temperature for the “weaker”
band in the absence of interband coupling. As a result,
the divergence of the coherence length is removed for the
“weaker” band. For a sufficiently small interband cou-
pling, one of the coherence lengths has a peak near Tc,2.
This peaked behavior of the coherence length and related
quantities was also considered in reference [50], where it
was referred to as “hidden criticality”. The peaked behav-
ior near Tc,2 is most clearly revealed in the γ susceptibility
of the order parameters, ∂Ψj/∂γ. There is no true criti-
cality in a two-band fermion system at T < Tc. Rather,
the terminology introduced in reference [50] emphasizes
the fact that the coupled system is still affected by the
proximity of the weaker band.

We find that the non-monotonic temperature depen-
dence of the thermodynamic quantities is also present in
two-bandgap superfluid atomic Fermi gases, as shown in
Figure 7. For sufficiently weak interband coupling, a peak
appears in ∂Ψ2/∂γ at T ≈ Tc,2. Note that in the stan-
dard GL model a non-physical divergence of ∂Ψ2/∂γ oc-
curs at Tc,2: in order to find a finite susceptibility peak the

Fig. 8. The healing lengths ξj corresponding to the stronger
(j = 1) and weaker (j = 2) bands are shown as a function
of temperature for different coupling parameters γ. The inset
shows the ratio ξ1/ξ2.

Bogoliubov-de Gennes (BdG) equations had to be used in
reference [50]. We find that our present formalism, like
the BdG equations, leads to a convergent susceptibility at
T ≈ Tc,2.

As already indicated above, a common chemical po-
tential for the two bands can lead to a partial depletion of
the population of the “weak” band. This will also affect
the critical temperature Tc,2 corresponding to the weak
band, even at zero interband coupling, γ = 0. This effect,
to the best of our knowledge, did not attract attention in
past works on multiband superconductors, as these con-
sider only the BCS limit for the scattering lengths, where
the feedback of the gap parameter to the density and to
the number equations is negligible.

Having obtained the bulk values Ψ1 and Ψ2 for a uni-
form (bulk) system, the healing lengths can be deter-
mined for the two-bandgap case by substituting Ψj(r) =
Ψ

(bulk)
j tanh(x/

√
2ξj) in the EFT energy functional for a

stationary pair field. This variational “trial function” de-
scribes how a two-bandgap superfluid in a semi-infinite
space heals from a wall at x = 0 back to the bulk values
Ψ

(bulk)
j of the band gaps. The healing lengths ξj are deter-

mined variationally and the result is shown in Figure 8.
We find, in agreement with reference [17], that the ratio of
healing lengths converges to 1 in the limit T → Tc. The ob-
tained peaked behavior of the healing length ξ2 near Tc,2

also agrees with the results of references [23,50] derived
using a very different method. These healing lengths will
also determine the structure of vortices in the fermionic
superfluids. In superconductors, the London penetration
depth comes into play as a second length scale, but the
experiments on quantum gases work with neutral atoms
so that there is no coupling to the vector potential.

The healing length calculated here from the vortex
profiles should be distinguished from the pair correlation
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length as discussed in reference [51]. The latter should
be calculated from the correlation function g↑↓ (ρ) as in
reference [51].

3.3 Spectra of collective modes

In a two-band system, the Bogoliubov-Anderson
(Goldstone) collective mode should also exist, as in
a one-band system. The existence of a Goldstone mode is
a universal result, caused by the spontaneous breakdown
of gauge symmetry associated with the superfluid phase
transition. In addition, another collective mode can ap-
pear in a two-band system, as first derived by Leggett [52]
for a two-band BCS superconductor. The Leggett mode
has been observed in MgB2 using Raman scattering [53],
but to the best of our knowledge, it has not yet been
observed in multi-component atomic Fermi gases. This
has not stopped theoretical efforts to consider two-band
Fermi superfluids in the BCS-BEC crossover regime
at zero temperature [8,9]. In references [8,9] the model
interband Josephson interaction is present already in the
starting Hamiltonian, and the interaction is measured
in terms of potentials rather than scattering lengths.
In the present treatment, the Josephson interaction
emerges from the interatomic scattering interactions.
Nevertheless, we can perform a qualitative comparison of
our results with those of references [8,9].

The spectrum of collective excitations in a one-band
system was determined solving the equation (41) where
the dynamic matrix M(q, ω) is given by (38). As follows
from the effective action (37), the dynamic matrix for the
two-band system is a 4× 4 matrix that can be written as

M
(2band) (q, ω) =

(
M1 (q, ω) + κη · I −κI

−κI M2 (q, ω) + κ

η · I

)
,

(60)
where Mj (q, ω) are the dynamic matrices for each band, I

is the unit 2×2 matrix, κ is proportional to the interband
coupling strength κ ≡ m12γ

4π , and η = |Ψ2|
|Ψ1| is the ratio of

the gap parameters for two bands. The eigenfrequencies
of the collective excitations are determined by the roots
of the equation

det M
(2band) (q, ω) = 0. (61)

We are searching for the eigenfrequencies at small mo-
menta q, that is in accordance with the approximation of
slowly varying pair fields. Therefore the roots of the equa-
tion (61) are approximated by the leading terms of the
Taylor series in powers of the momentum, similarly as for
the one band system.

Bogoliubov-Anderson mode

The Bogoliubov-Anderson mode at small q is an acoustic
mode ωq = vsq determined by the sound velocity vs. For

Fig. 9. Heavy curves: the sound velocity in a two-band super-
fluid Fermi gas as a function of the temperature for 1/as,1 = 0,
1/as,2 = −0.5, with different values of the interband coupling
parameter γ. Thin curves: the one-band sound velocity param-
eters vs,1 and vs,2 described in the text.

the two-band system we find:

vs =

{(
κ
(U1 + η2U2

)
+ 2ηU1U2

)( C̃1

m1
+ η2 C̃2

m2

)

×
[
κ

(
D̃1 + η2D̃2

)2

+ 2η
(
D̃2

1U2 + η2D̃2
2U1

)

+2
(
κU1 + κη2U2 + 2ηU1U2

) (Q̃1 + η2Q̃2

)]−1
}1/2

.

(62)

In Figure 9, the temperature dependence of the sound ve-
locity in a two-band system is shown. We plot the sound
velocity as a function of temperature for 1/as,1 = 0 and
1/as,2 = −0.5, using different values of the interband cou-
pling parameter γ. For comparison, the one-band sound
velocities for each band are shown in the same graph by
thin curves. They are calculated using formula (43) with
the parameters (β, μ, |Ψ |) attributed to each band in the
coupled two-band system (rather than with the parame-
ters for an independent one-band system). In other words,
in the figure, vs,j = v

(1band)
s (β, μ, |Ψj |), where |Ψj | are de-

termined from the coupled gap equations (56) for the two-
band system with the number equation (59). Under these
conditions, the inequality

min (vs,1, vs,2) ≤ vs ≤ max (vs,1, vs,2)

is fulfilled. It should be noted that vs,1, vs,2 are not the
true sound velocities in the two-band system: they are
only auxiliary parameters. There is a unique first sound
velocity vs for the whole system given by (62).

We see from Figure 9 that vs,2 shows a rapid decrease
for temperatures near Tc,2 < Tc. This decrease of vs,2

becomes more gradual as the interband coupling γ be-
comes larger. This is reflected in the behavior of vs(T ):
near Tc the sound velocity of the Bogoliubov-Anderson
mode shows a dip.
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Fig. 10. The frequency (squared) of the Leggett mode for a
two-band Fermi gas at T = 0 is shown as a function of 1/as for
the interband coupling γ = 0.01. The Leggett mode frequency
is scaled by the two-quasiparticle threshold Et ≡ min(2Ek)

(full line), 2Δ (thin dashed line) and 2
√

Δ2 + μ2 (thin dot-
dashed line), respectively.

Leggett mode

The Leggett mode is specific for two-band superfluids as
it describes small oscillations of the relative phase of two
condensates. In the long-wavelength approximation, the
frequency of the Leggett mode can be approximately writ-
ten as:

ωL (q) ≈
√
ω2

L,0 + v2
Lq

2, (63)

so that it remains gapped in the limit q → 0 (for γ �= 0).
The frequency of the Leggett mode is determined numer-
ically by solving equation (61). In the long-wavelength
approximation an analytic approximation for the Leggett
mode frequency can be obtained:

ωL,0 ≈
(

2U1κη

P 2
1 + 2U1Q̃1

+
2U1

κ

η

P 2
2 + 2U2Q̃2

)1/2

. (64)

In Figure 10, we plot the frequency (squared) of the
Leggett mode, ω2

L,0, for a two-band Fermi gas at T = 0,
as a function of the inverse scattering length 1/as =
1/as,1 = 1/as,2. The Leggett mode frequency is scaled
to the two-particle threshold Et ≡ min(2Ek) similarly as
in reference [8] where Et is deemed to be the physically
reasonable maximal value for the frequency of collective
oscillations. This scaling factor is equal to 2Δ for μ > 0
and 2

√
Δ2 + μ2 for μ < 0, where Δ = max(|Ψ1|, |Ψ2|).

We can qualitatively compare the behavior of ω2
L,0 ob-

tained in the present treatment with the result shown in
Figure 5 of reference [8]. At present, it is not obvious how
the parameters used in the theory of references [8,9] can be
matched to the scattering lengths used in our approach.
There is a difference between the two theories, because
the starting atomic Hamiltonian of reference [9] contains
a priori scattering between Cooper pairs, which is not in-
voked in the present formalism. Nevertheless, we can see
a clear similarity between the behavior of ω2

L,0 in refer-
ence [8] and in the present treatment.

γ γ
ω

Ψ

ω
Ψ

Ψ

−

−

γ γ
ω

Ψ

ω
Ψ

Ψ

−

Fig. 11. Temperature dependence of the Leggett mode fre-
quencies ωL (full symbols) and twice the order parameter |Ψ2|
(hollow symbols) for 1/as,1 = −1, 1/as,2 = −2 (a) and for
1/as,1 = 0, 1/as,2 = −1 (b), at different values of the interband
coupling strength, γ = 0.1 (circles) and γ = 0.01 (diamonds).

In Figure 11, the temperature dependence of the
Leggett mode frequency is analyzed for different values
of the intraband scattering lengths and of the interband
coupling strength. The Leggett mode softens with increas-
ing temperature and turns to zero at T = Tc. The Leggett
mode cannot exist in a one-band system, because it de-
scribes oscillations of the relative phase of two conden-
sates. Therefore the Leggett mode frequency must drop
down as T > Tc,2, especially at weak interband coupling.
This trend is clearly visible in Figure 11. The behavior of
the Leggett mode as a function of temperature obtained
in the present formalism agrees qualitatively well with the
experimental measurement [54] of this mode in MgB2, and
with different theoretical approaches [55,56].

The observation of the Leggett mode in two-band su-
perconductors was problematic during a long time, be-
cause at ωL > 2 |Ψ2|, the Leggett mode can dissipate to
one-particle excitations [52]. Therefore the range of obser-
vation for the Leggett mode is approximately restricted
by the condition ωL < 2 |Ψ2|. As pointed out in refer-
ence [57], the weak-band order parameter in conventional
superconductors is very small, thus making the experi-
mental observation of the Leggett mode rather difficult.
However, recently the Leggett mode has been clearly indi-
cated [53–55]. In Figure 11, the temperature dependence
of the Leggett mode frequencies is shown for two sets of
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values of the intraband scattering lengths: the BCS regime
for both bands with 1/as,1 = −1, 1/as,2 = −2 (Fig. 11a)
and the case with 1/as,1 = 0, 1/as,2 = −1 (Fig. 11b).
In order to see the range for the possible experimental
observation of the Leggett mode, twice the order param-
eter for a “weak” band is plotted in the same figure. The
arrows indicate the upper bound temperature TL for the
observation of the Leggett mode, where ωL = 2 |Ψ2|. At
T > TL, the Leggett mode dissipates, and at T < TL it can
be observable. As seen from Figure 11a, this upper bound
temperature exists in the BCS regime. For a stronger cou-
pling 1/as,1 = 0, 1/as,2 = −1, however, the condition
ωL < 2 |Ψ2| is fulfilled in the whole range 0 < T < Tc.
We can conclude that the strong-coupling regime is more
favorable for the observation of the Leggett mode than
the BCS regime. The strong-coupling regime has been ex-
perimentally realized in the condensed atomic gases using
the Feshbach resonance. Therefore the observation of the
Leggett mode in ultracold Fermi gases is expectable.

4 Conclusions

The first main result of the present work is the deriva-
tion of a finite temperature, all-coupling effective field the-
ory for superfluid Fermi gases, obtained by performing a
gradient expansion of the pair field around a background
value that is not necessarily small. Assuming the valid-
ity of the derivative expansion for the order parameter,
the effective field action functional has been obtained by
systematically summing all terms in powers of the order
parameter, and is therefore valid at all temperatures be-
low Tc. The expansion has been performed up to second
order in both spatial gradients and time derivatives, so
that the resulting effective field theory is capable of de-
scribing collective excitations for temperatures below Tc.
The finite-temperature EFT is a straightforward exten-
sion of several preceding approaches: the effective field
theory developed for T ≈ Tc [11,12] and that developed
for T = 0 [29,30]. The current formalism corresponds with
these approaches in the appropriate limiting cases. Also we
retrieve the BCS-BEC theory result for the ground state
energy at T = 0. Finally, the results for vortices (described
here) and for solitons (described in Ref. [31]) correspond
well with the results obtained from Bogoliubov-de Gennes
calculations. The advantage of the current formalism is
that the coefficients of the proposed action functional (54)
are closed and tractable expressions, which turn to the
known GL coefficients in the limit T → Tc, and are fast
to compute.

The present EFT describes the ultracold Fermi gases
in the BCS-BEC crossover, smoothly passing the unitarity
regime, similarly to reference [11] and the related analytic
theories. The unitarity regime needs however a special
care, as discussed in Section 2. Accurate quantitative re-
sults have been obtained at unitarity and T = Tc using nu-
meric approaches [58,59], and analytically, using different
methods, e.g. ε-expansion [60], 1/N -expansion [61], the
renormalization group methods [62–64]. However, these
analytic methods are focused at the unitatity regime. At

present, to the best of our knowledge, there is no known
analytic theory which accurately quantitatively describes
the Fermi gases in a unified way through the whole BCS-
BEC crossover, including the unitarity point. Therefore
the analytic theories smoothly describing the ultracold
Fermi gases in the BCS-BEC crossover are useful, be-
cause they can provide a reasonable description of ul-
tracold Fermi gases in the whole range of the coupling
strength, except the aforesaid singularity point.

It is established in reference [11] that the solution for
the critical temperature obtained within the functional in-
tegral method accounting for Gaussian fluctuations about
the saddle point smoothly interpolates between the two
limiting cases – BCS and BEC regimes. Many subsequent
works use analytic approximations similar to that in ref-
erence [11] for the thermodynamic functions of ultracold
Fermi gases (e.g. [12,46,65]). Also our work follows this di-
rection, being particularly aimed on the treatment of the
ultracold Fermi gases below Tc.

The second main result of this work is the exten-
sion of the effective field formalism to the case of two-
band fermionic superfluids. The resulting effective field
action contains the same input parameters (the scat-
tering lengths and the interband coupling strength) as
those in other approaches to the two-band superfluid-
ity/superconductivity (e.g. Refs. [1,8–10,13]). These input
parameters can be independently measured and even pre-
cisely controlled – for ultracold gases. They completely
fix the microscopic Hamiltonian for the mixture of two
atomic Fermi superfluids, with Cooper pairing within each
superfluid and contact interactions between the atoms be-
longing to different superfluids. In the effective bosonic
action obtained by the path-integral treatment of this
Hamiltonian, the two superfluid order parameters are
coupled by a Josephson term that is not introduced ad
hoc, but follows directly from applying the Hubbard-
Stratonovich transformation, before any approximation is
made. This Josephson coupling is kept also after perform-
ing the gradient expansion which results in the effective
two-field theory.

For the two-band superfluid, the current theory reveals
a non-monotonic temperature behavior of the thermody-
namic parameters near the (uncoupled) critical temper-
ature of a “weaker” band, similar to that obtained for
two-band superconductors with a Bogoliubov-de Gennes
treatment (whereas the standard Ginzburg-Landau treat-
ment fails to reproduce this). Also the existence of two
healing length scales is captured by the present effective
field theory for a two-band Fermi superfluid.

The formalism developed here can find a broad spec-
trum of applications, in particular as a complementary
method to the Bogoliubov-de Gennes equations which are
restricted to the mean-field approximation and to the BCS
case, and which become cumbersome when many vor-
tices are present. The present method is applicable in
the whole range of the BCS-BEC crossover, allows one
to take into account the fluctuations, and requires much
less computation time than the Bogoliubov-de Gennes for-
malism. Moreover, the EFT allows one to obtain analytical
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solutions in some cases where the Bogoliubov-de Gennes
equations can be solved only numerically.
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Appendix: Effective bosonic action
for a two-band system

The integration over the fermionic variables in (45) is per-
formed exactly. We use the Nambu representation with
four-dimensional spinors

ψ =

⎛
⎜⎜⎜⎜⎝

ψ1,↑

ψ̄1,↓

ψ2,↓

ψ̄2,↑

⎞
⎟⎟⎟⎟⎠ . (A.1)

Note that for the second band we use spin projections op-
posite to those used in the first band. The HS action (46)
is then represented in matrix form as follows:

SHS = SB + Sχ +
1
2

∫ β

0

dτ

∫
dr
(
ψ ψ̄

)

×
((−G

−1
)
1,1

(−G
−1
)
1,2(−G

−1
)
2,1

(−G
−1
)
2,2

)(
ψ

ψ̄

)
, (A.2)

with SB and Sχ given by (47) and (48), respectively. The
following matrices for the inverse 4-dimensional Nambu
tensor are introduced:

(−G
−1
)
1,1

=

⎛
⎜⎜⎜⎜⎝

0 0 0 −iχ2

0 0 iχ2 0

0 −iχ2 0 0

iχ2 0 0 0

⎞
⎟⎟⎟⎟⎠ , (A.3)

(−G
−1
)
1,2

=

⎛
⎜⎜⎜⎜⎜⎝

∂
∂τ − Ĥ1 Ψ̄1 −iχ1 0

Ψ1
∂
∂τ + Ĥ1 0 iχ1

−iχ̄1 0 ∂
∂τ − Ĥ2 −Ψ̄2

0 iχ̄1 −Ψ2
∂
∂τ + Ĥ2

⎞
⎟⎟⎟⎟⎟⎠
,

(A.4)

(−G
−1
)
2,1

=

⎛
⎜⎜⎜⎜⎜⎝

∂
∂τ + Ĥ1 −Ψ1 iχ̄1 0

−Ψ̄1
∂
∂τ − Ĥ1 0 −iχ̄1

iχ1 0 ∂
∂τ + Ĥ2 Ψ2

0 −iχ1 Ψ̄2
∂
∂τ − Ĥ2

⎞
⎟⎟⎟⎟⎟⎠
,

(A.5)

(−G
−1
)
2,2

=

⎛
⎜⎜⎜⎜⎝

0 0 0 iχ̄2

0 0 −iχ̄2 0

0 iχ̄2 0 0

−iχ̄2 0 0 0

⎞
⎟⎟⎟⎟⎠ . (A.6)

The integration over the fermion fields ψ is performed in
the same way as in reference [11] and results in a partition
function written as a the path integral over the boson fields
Ψ and χ,

Z ∝
∫

D [Ψ̄ , Ψ]
∫

D [χ̄, χ] e−Seff , (A.7)

where the effective bosonic action depends on the pair and
density fields through

Seff = SB −
∑

j=1,2

Tr ln
[−G

−1
j

]
. (A.8)
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62. P. Nikolić, S. Sachdev, Phys. Rev. A 75, 033608 (2007)
63. K.B. Gubbels, H.T.C. Stoof, Phys. Rev. Lett. 100, 140407

(2008)
64. I. Boettcher, J.M. Pawlowski, C. Wetterich, Phys. Rev. A

89, 053630 (2014)
65. R. Haussmann, W. Rantner, S. Cerrito, W. Zwerger, Phys.

Rev. A 75, 023610 (2007)

http://www.epj.org

	Introduction
	Effective field theory for superfluid Fermi gases 
	Two-band Fermi superfluids 
	Conclusions 
	Effective bosonic action for a two-band system
	References

