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Abstract. We investigate a recently published analysis framework based on Bayesian inference for the time-
resolved characterization of interaction properties of noisy, coupled dynamical systems. It promises wide
applicability and a better time resolution than well-established methods. At the example of representative
model systems, we show that the analysis framework has the same weaknesses as previous methods,
particularly when investigating interacting, structurally different non-linear oscillators. We also inspect the
tracking of time-varying interaction properties and propose a further modification of the algorithm, which
improves the reliability of obtained results. We exemplarily investigate the suitability of this algorithm to
infer strength and direction of interactions between various regions of the human brain during an epileptic
seizure. Within the limitations of the applicability of this analysis tool, we show that the modified algorithm
indeed allows a better time resolution through Bayesian inference when compared to previous methods
based on least square fits.

1 Introduction

When investigating the dynamics of spatially extended
systems, a division into smaller, largely autonomous but
weakly interacting subunits has proven to be a fruitful
approach in order to understand the whole system. If os-
cillating systems are coupled, their dynamics may syn-
chronize towards a coherent collective behavior, which is
observed in a variety of disciplines, ranging from physics
to the neurosciences [1–19]. In order to understand such
collective behavior, an as precise as possible character-
ization of the underlying coupling between the dynam-
ical units is desirable, and usually targeted utilizing
linear [20] and non-linear [21] time series analysis tech-
niques. In general, such techniques aim at distinguishing
between strength and direction of bivariate interactions
or couplings. Following linear dependency methods such
as Granger causality [22,23], more recent work on chaotic
non-linear dynamics [24] focuses on different approaches
such as information-theoretic ones [25], the Fokker-Planck
formalism [26], recurrence in state space [27], or phase
synchronization [6]. Most of these analysis techniques re-
quire the investigated systems to be stationary, but many
systems experience evolving, transient, or short-term
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interactions. Addressing this issue, modifications and ex-
tensions of techniques had been proposed that aim at a
characterization of transient couplings [28–34].

Recently, Stankovski et al. [35] proposed an analy-
sis framework for the time-resolved characterization of
interaction properties of noisy, coupled dynamical sys-
tems. Assuming gradual changes of the system dynam-
ics, and based on the notion of phase increments [36], the
framework uses Bayesian inference and knowledge propa-
gation [37] between consecutive segments (or windows) of
data. The inclusion of data from previous segments is sup-
posed to allow for shorter window lengths without violat-
ing the requirement of a sufficiently densely sampled state
space, thus enabling the tracking of more rapid and short-
lived changes of interaction properties. It is claimed, that
this framework is capable of inferring strength, direction-
ality, and functional relation of the interaction of coupled
dynamical systems, while being robust to the influence of
noise.

Here, we examine the performance of this Bayesian
inference framework with respect to these claims. Specif-
ically, both its capacity and limitations are characterized
with respect to the inference of interaction properties of
structurally different coupled dynamical systems under
conditions that mimic those when investigating empirical
data. The framework is then used to estimate the tem-
poral variation of interaction properties between different
regions of the human brain during an epileptic seizure.
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2 Method

Consider a population of L dynamical systems, which are
assumed to be oscillatory and weakly coupled. If these os-
cillations are on a limit-cycle, the individual dynamics of
each system can be expressed in terms of phase dynam-
ics [2,3,38,39], which may still be possible approximatively
for some non-linear and chaotic systems [40]. In this view,
the state of each oscillator is defined through its phase φi,
and the evolution equation of the oscillator population is
given by:

φ̇i = ωi + fi(φi) +
∑

i�=j

gij(φi, φj) + ξi (1)

with the natural frequencies ωi of the oscillators and cou-
pling functions gij from oscillator j to i. The noise terms
ξi are assumed Gaussian, i.e., 〈ξi(t)ξj(τ)〉 = δ(t − τ)Eij ,
where the symmetric matrix E with elements Eij encodes
spatial correlations between the noise processes.

Given an oscillator population, time series φi,n =
φi(tn) at discrete times tn = t0 +nh with a timestep h be-
tween two samples and n = 1, . . . , N are observed experi-
mentally. One important endeavor in order to gain insight
about the individual and collective behavior is the infer-
ence of the natural frequencies ωi, and the functions fi

and gij , which in principle determine the dynamical prop-
erties of the oscillators. Estimating the noise intensities ξi

and spatial correlations may provide valuable additional
information about the system and about possible external
inputs. Assume that fi and gij can be approximated by a
finite set of appropriate basis functions Φi,k(φ1, . . . , φL),
such that equation (1) can be rewritten as:

φ̇i =
K∑

k=0

c
(i)
k Φi,k(φ1, . . . , φL) + ξi (2)

where Φi,0 = 1, c
(i)
0 = ωi and the rest of the Φi,k are a

number of K basis functions with respective coefficients
c
(i)
k capable of adequately describing the coupling func-

tions. In principle, this holds for nonlinear couplings, pro-
vided the functional basis reproduces the coupling mech-
anism. The task of inferring the interaction properties of
the oscillators is reduced to the inference of these coeffi-
cients. We here use a set of functions sin(lφ1 − mφ2) and
cos(lφ1 − mφ2) with m = ±1 for l = 1, m ≤ 3 for l = 0,
and m = 0 for l ≤ 3, yielding 17 Fourier basis functions
in total. This is the same functional basis used in refer-
ence [41]. Although references [35,42] use a decomposition
into Fourier modes as well, it is not stated which modes
exactly they include.

While a similar approach has already been taken be-
fore [41,43–45] using least square fits for estimating the
model coefficients, Stankovski et al. [35,42] presented a
method based on Bayesian inference, which is derived
in references [35,42,46–51]. Let the experimental data be
given in the form of a multivariate, L-dimensional time
series X = {φi,n ≡ φi(tn)}, while the model parameters

M = {c(l)
k , Eij} are to be inferred. If h is sufficiently small,

the mid-point Euler discretization scheme

φ̇i,n =
φi,n+1 − φi,n

h
, φ∗

i,n =
φi,n+1 + φi,n

2
(3)

is used to describe the dynamics in terms of the observed
discrete time series.

Assume that the model parameters are distributed
with a certain probability density Pprior(M) which en-
closes prior knowledge. Given observational data X ,
Bayes’ theorem allows a refinement of the model parame-
ters with respect to these data:

PX (M|X ) =
�(X|M)Pprior(M)∫

�(X|M)Pprior(M) dM . (4)

The likelihood function �(X|M) is the probability to ob-
serve the data X for given prior model parameters M.
Thus Bayesian inference assigns a high probability to pa-
rameters which make the observed data likely, while sup-
pressing parameters for which this is not the case. With
known prior density the sole problem that remains is the
calculation of the likelihood function, which can be per-
formed analytically [46–51] under the restriction to white
noise.

If the prior density is Gaussian, the posterior will be
Gaussian again. A two-step iteration scheme [42] yields the
most probable values for the coefficients in equation (2):

Eij =
N−1∑

n=0

h

N

(
φ̇i,n −

K∑

k=0

c
(i)
k Φi,k(φ∗

·,n)

)

×
(

φ̇j,n −
K∑

k=0

c
(j)
k Φj,k(φ∗

·,n)

)
,

Ξ
(i,j)
kw =(Ξprior)

(i,l)
kw + h

N−1∑

n=0

Φi,k(φ∗
·,n)(E−1)ijΦj,w(φ∗

·,n),

r
(i)
k =

L∑

l=1

K∑

w=0

(
Ξ−1

prior

)(i,l)

kw
c(l)
w

+ h

N−1∑

n=0

L∑

l=1

[
Φi,k(φ∗

·,n)(E−1)ilφ̇l,n− 1
2

∂Φl,k(φ·,n)
∂φl

]
,

c
(i)
k =

L∑

l=1

K∑

w=0

(
Ξ−1

)(i,l)

kw
r(l)
w , (5)

that give estimators Eij for the noise correlation ma-
trix and Ξ

(i,j)
kw for the inverse covariance matrix of the

Gaussian posterior density PX . The c
(i)
k are the most prob-

able coefficient values under this probability density.
Given a prior density Pprior(M), equations (5) yield

the posterior distribution PX . If the experimental data
consist of a stream of data, where the time series is divided
into B smaller windows, the posterior of one window can
be used as a prior for the subsequent one. This way, the
knowledge becomes more and more refined as more data
are taken into account.
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However, this approach is too restrictive if the inferred
parameters are subject to changes over time, as a sharply
peaked Gaussian prior distribution allows very little vari-
ability away from the most probable value of Pprior(M).
This problem is tackled by broadening the posterior den-
sity of one window, so that the prior density for the
next window allows changes away from this most prob-
able value. This broadening is implemented by adding a
matrix Σ̂diff , which effectively implements a normal diffu-
sion of the parameter probabilities:

Σ̂b+1
prior = Σ̂b

post + Σ̂b
diff . (6)

In principle, the diffusion matrix takes a form (Σdiff)ij =
ρijσiσj with standard deviations σi of the diffusion of the
coefficients ci, but assume here that the changes of the
parameters are uncorrelated and the matrix is diagonal,
i.e., ρij = δij .

Originally [35,42], σi were estimated as a fixed frac-
tion of the parameter values, σi = pw ci. The parame-
ter pw governs how much prior information is lost and
has to be chosen appropriately. However, we will demon-
strate that this method inevitably yields biased inference
results, and propose a modified approach: Assume, that
the parameters values cb

i are known for each window b.
Then, the change from one window to the next one can
be estimated by:

σb
i = cb+1

i − cb
i . (7)

With these estimators for the probability diffusion, and
starting from the first window, the inference is repeated.
According to equation (6) this choice of σb

i always ensures,
that the most probable value of cb+1

i from the previous it-
eration is within one standard deviation of the most prob-
able value of cb

i in the next iteration. This algorithm grad-
ually adapts the σb

i such that enough variability is allowed
to track changing parameters where necessary, while mak-
ing best use of knowledge propagation where possible. Of
course, as knowledge about the parameter values for all
windows is required, this modification is only applicable
in offline data analysis.

2.1 Estimation of interaction properties

Based upon the inferred coefficients c
(i)
k , the following es-

timators are used for the characterization of interacting
properties:

1. The natural frequencies are inferred by ω̂i = c
(i)
0 .

2. Let κ = {k : ∂Φ
(i,j)
k /∂φj �= 0} be the set of indices,

where the basis function describing the dynamics of os-
cillator i depends upon φj (i.e., is part of the coupling
from j to i). The coupling strength from oscillator j
onto oscillator i is characterized by the norm of the
coefficient vector (c(i)

k )k∈κ,

K̂j→i =

√∑

k∈κ

(
c
(i)
k

)2

. (8)

3. The direction of the interaction is characterized by:

d̂j→i =
K̂j→i − K̂i→j

K̂j→i + K̂i→j

(9)

and takes values around 0 if there is no or equally
strong coupling, and values around ±1 if the interac-
tion is completely directed.

We compare the directionality inferred by the Bayesian in-
ference method to the directionality index d̂j→i

EMA obtained
with the well-established evolution map approach [41]
(EMA). With EMA, the same approximation (2) of the
system dynamics is used, but the optimal coefficients are
estimated with a least square method.

Coupling strength estimation is compared to the mean
phase coherence [52]

R =

∣∣∣∣∣
1
N

N−1∑

n=1

ei(φ1,n−φ2,n)

∣∣∣∣∣ , (10)

which is a measure of phase locking, with R = 0 indicating
no synchronization at all and R = 1 meaning perfect phase
coherence.

2.2 Non-linear model systems with constant coupling

The capability of the method in inferring interaction prop-
erties of phase oscillators and Poincaré oscillators, which
are limit cycle systems, has been shown before [35,42].
Here, we will investigate the method when applied to non-
linear systems with chaotic dynamics at the paradigmatic
examples of Rössler and Lorenz systems.

The dynamics of two diffusively coupled noisy Rössler
oscillators [53] obeys the equations

ẋR
i = ωi

(−yR
i − zR

i

)
+ Kj→i

(
xR

j − xR
i

)
+ ξx,

ẏR
i = ωi

(
xR

i + ayR
i

)
+ ξy ,

żR
i = ωi

(
b + zR

i

(
xR

i − c
))

+ ξz, (11)

with i ∈ {1, 2}, the parameter values a = 0.15, b = 0.2
and c = 10.0, and dynamical noise of varying intensity. In
the presented setup the frequency of the oscillation can
slightly be adjusted through ωi.

Secondly, the Rössler oscillator defined by
equation (11) is coupled diffusively to a Lorenz
oscillator [54,55]

ẋL = β1

(
yL − xL

)

ẏL = xL
(
β2 − zL

) − yL

żL = xLyL − β3z
L + KR→L

(
xR − zL

)
(12)

with β1 = 10, β2 = 28 and β3 = 2.66. The z-variable of
the Lorenz dynamics allows a better (in contrast to the
x and y variables) phase definition. Therefore, the Lorenz
oscillator is also coupled in its z-component, while the
Rössler oscillator is coupled through its x-component by
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Fig. 1. (a) Estimated coupling strengths K̂2→1 (black) and K̂1→2 (blue) as a function of coupling strength K1→2. (b) Estimated

directionality d̂2→1 as a function of coupling strength K1→2, obtained by the Bayesian inference algorithm (black) and the EMA
method (blue), for two coupled Rössler oscillators with ω1 = 0.9, ω2 = 1.1 (solid lines) and ω1 = 1.1, ω2 = 0.9 (dashed lines).
Estimated directionality should lie on the dotted line. Averages and standard deviations (shaded areas or error bars) over
100 independent realizations are shown.

neglecting the lower indices i and j in equation (11) and
replacing xR by zL with the parameters chosen as before
except for ωi = 2.0.

The systems are integrated numerically with
Conedy [56] using an Euler scheme for stochastic
differential equations when dynamical noise is present
in the system and with a fourth order Runge-Kutta
method otherwise. The integration step size is 0.01, and
the sampling step is h = 0.2. In order to avoid transient
effects, the simulation is run for 100 time units first
and is only then observed recording the dynamical vari-
ables xR

i and zL until 61440 data points (corresponding
to 15 windows of length 4096) are sampled. We generate
100 realizations of the systems by randomly choosing the
initial conditions in state space near the attractors.

Phase information are obtained as arctan H{x}(t)
x(t) by

applying the Hilbert transform [57]

H{x}(t) =
1
π

p.v.

∫ ∞

−∞

x(τ)
t − τ

dτ (13)

with the Cauchy principal value p.v. to the recorded dy-
namical observables in order to mimic realistic conditions
of analysis.

2.3 Model systems with time-varying coupling

To investigate systems, where the coupling strengths are
not constant any more but are subject to changes over
time, we use a pair of coupled noisy phase oscillators

φ̇i(t) = ωi + Kj→i(t) sin (φj(t) − φi(t)) + ξi(t). (14)

The coupling strengths Kj→i are functions of time due
to an external forcing. The exact correspondence of
the model parameters to the inferred coefficients allows

quantification of the goodness of inference results (see
Sect. 4).

The natural frequencies are fixed at ω1 = 1.1 and
ω2 = 0.9, and the noise amplitude is chosen at ξi = 0.1 for
both oscillators. An Euler integration scheme with step-
width 0.01 is used for numerical integration. The noise is
included by drawing a normally distributed random vari-
able ξi,n ∼ N (0, h ξ2

i ) in each step. Transient behavior of
the system is discarded by omitting the first 10 000 steps
of integration. After that, the simulation is run recording
every 20th step, yielding a sampling width of h = 0.2,
until B N values of the observables φ1,2, corresponding
to B windows of length N , are recorded. Every simulation
is repeated 100 times with initial conditions φ1(0), φ2(0)
drawn randomly from a uniform distribution on [0, 2π).

3 Investigation of model systems
with time-independent couplings

3.1 Coupled Rössler oscillators

Consider two Rössler oscillators according to equa-
tion (11), which are structurally identical up to slightly
different natural frequencies (ω1 = 0.9 and ω2 = 1.1). The
coupling strengths are kept constant during every sim-
ulation, but between simulations K1→2 is varied from 0
to 0.02, while K2→1 = 0.02 always. For every set of pa-
rameters, inference is applied to 100 independent real-
izations of the system dynamics with randomly chosen
initial conditions. We infer coupling strengths using the
Bayesian framework, and coupling directions both with
the Bayesian and the conventional EMA approach. The
inference results are presented in Figure 1. The estimated
coupling strengths reflect the changes of the underlying
coupling strengths, with K̂2→1 being constant and K̂1→2

increasing monotonously.

http://www.epj.org
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We find that, if K1→2 = 0, this coupling strength is
slightly overestimated by the Bayesian inference method
with K̂1→2 ≈ 0.007. This rather small deviation from 0
has a more obvious effect upon the estimation of cou-
pling direction: in the case of directed couplings it leads
to an underestimation of the directionality by d̂2→1 ≈ 0.6.
Indeed we find that the smaller the number of basis
functions (provided sufficient approximation of the phase
dynamics), the smaller the bias of underestimating inter-
action direction. This result emphasizes the importance of
finding an appropriate set of basis functions.

Generally, and particularly visible in bidirectional cou-
pling K1→2 = K2→1 = 0.02, the directionality of the cou-
pling is biased in favor of the faster oscillator, which is
spuriously detected as a driving force even if the coupling
is symmetric. This bias is slightly smaller for the investi-
gated Rössler oscillator when using the Bayesian inference
method, but nonetheless still apparent.

If white noise is coupled dynamically to the oscilla-
tor (we investigated signal-to-noise ratios between 2500
and 50, data not shown), we find that the general per-
formance of both the Bayesian inference method and the
conventional evolution map approach is decreased: while
the bias of directionality towards the faster oscillator per-
sists, the directional coupling is strongly underestimated
by both estimators for d2→1 = 1, with Bayesian inference
performing only slightly better (d̂2→1 < 0.15) than EMA
(d̂2→1

EMA < 0.08).

3.2 Coupled Rössler and Lorenz oscillators

We also investigate the inference of interaction direction
between two structurally different systems, whose indi-
vidual attractors differ topologically, at the example of a
Rössler oscillator coupled to a Lorenz oscillator accord-
ing to equation (12). We switch off coupling in one di-
rection completely (KR→L = 0 or KL→R = 0) and vary
the coupling strength in the other direction (KL→R or
KR→L respectively) between 0 and 1. Hence we expect
the directionality dR→L = 0 if there is no coupling at all,
KL→R = KR→L = 0, and in all other cases dR→L = −1 or
dR→L = 1 respectively.

As depicted in Figure 2, directionality is not estimated
correctly by either method. Even if there is no coupling
present at all, d̂R→L

Bayes and d̂R→L
EMA take values around −0.5,

suggesting directed interactions from the Lorenz to the
Rössler oscillator. If KL→R ≈ 1 or KR→L ≈ 1, the
Bayesian estimators at least show the correct sign of
the directionality, while EMA suggests coupling in the op-
posite direction in both cases. However, if the Rössler os-
cillator drives the Lorenz oscillator (blue lines in Fig. 2),
the direction of this interaction is estimated with the
wrong sign up to values of KR→L = 0.3. In consequence,
no reliable estimation of directionality is possible here.

Our studies with model systems show, that interaction
properties can only be inferred with the Bayesian inference
framework [35] if a phase-based description is meaning-
ful. In non-linear systems with chaotic dynamics this is
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Fig. 2. Estimated directionality index d̂R→L as a function of
coupling strength inferred with the Bayesian method (solid
lines) and EMA (dashed lines), if KR→L or KL→R is kept zero,
while KL→R (black) or KR→L (blue), respectively, is varied
from 0 to 1. Averages and standard deviations (shaded areas
or error bars) over 100 independent iterations are shown.

usually not the case. Structural differences (e.g. differing
natural frequencies or topologically different attractors)
between oscillators limit the applicability of the Bayesian
inference method and lead to spurious results, similarly to
many other methods as has been pointed out in previous
studies [43,55,58–61].

4 Investigation of time-evolving couplings

4.1 Influence of the choice of the parameter pw

When investigating the time-dependence of interaction
properties, prior knowledge must be neglected partially.
In the original inference method [35] this forgetting is reg-
ulated through the parameter pw (see Sect. 2). It has been
shown before [35,42], that the choice of the parameter pw

influences the ability to track rapid changes of interaction
properties. We examine this influence in more detail at
the example of noisy phase oscillators (see Sect. 2.3) with
different time-dependent changes of the coupling strength,
which are depicted in the insets of Figures 3a−3f. We here
chose to not investigate time-evolving non-linear systems
in the light of the shortcomings in characterizing interac-
tions between non-linear systems already in the stationary
case. For every window b, the inference yields one set of
coefficients c

(i),b
k . Let α̂b ({c(i),b

k }i=1,...,L
k=0,...K) be an estimator,

which is a function of these coefficients (e.g., the estima-
tors for direction and strength of interactions used here),
and let α denote the corresponding “true” value, which is
to be inferred. We generate time series with the original
sampling width h by means of step functions, i.e.

α̂(tj) =
B−1∑

b=0

α̂b χτb
(j) (15)
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Fig. 3. The estimator MSE(K̂2→1, K2→1) for the goodness of the original inference algorithm [35] as a function of the choice of
the parameter pw (black vertical lines indicate optimal choice of pw) for different time-dependent changes (parts (a)−(f)) of the
coupling K2→1(t). The MSE thresholds for the modified algorithm are indicated by gray horizontal lines. Averages and standard
deviations (shaded areas) over 100 independent iterations are shown. Note the different scales of the MSEs. The insets show

the coupling strength as a function of time (dotted lines), together with the time-resolved estimator of coupling strength K̂2→1

inferred by the modified algorithm with a window length of 4096 (solid lines; for part (c), results from the original inference
algorithm were shown in Ref. [42]). In parts (d)−(f), the coupling changes abruptly in the middle of the time series. Note that
the time series differ in their lengths (20, 50, and 200 windows respectively), and hence have stationary periods of different
durations.

where the set τb = {b N, . . . , (b + 1)N − 1} denotes all
time step indices that have been assigned to window b.
These allow the calculation of the expected deviation of
the inferred estimator from its reference value, even when
the reference value changes on time scales smaller than
one window length N .

The parameter pw is varied from 10−2 to 102. We con-
sider the mean squared error

MSE (α̂, α) =
1
T

∫ T

0

(α̂(t) − α(t))2 dt (16)

and investigate the dependence of MSE upon the param-
eter pw at the example of the coupling strength (K2→1

inferred by K̂2→1). We find, that the optimal choice of pw

that minimizes MSE(K̂2→1, K2→1) depends upon the type
of the underlying temporal variation of the coupling (see
Fig. 3). In the case of constant coupling strength (Fig. 3a),
it is at pw = 0, but varies up to 0.5 in other cases (Figs. 3b
and 3d).

We emphasize that there is not one globally optimal
choice for pw. Hence, knowledge about the outcome of the
inference algorithm is required prior to applying it in order
to ensure reliable performance of the method.

Apart from this challenge of appropriately choos-
ing pw, we stress an inherent bias in the inference
algorithm: as prior knowledge is ignored proportionally
to the value of the inferred coupling itself, σi = pwci, a
change from a high absolute value of ci will always be
more readily followed than a change from small ci.

4.2 Modified algorithm for inferring time-evolving
interaction properties

The proposed modification of the algorithm aims at re-
solving the described problems. We now use this modi-
fied algorithm to infer the same time-depending couplings
investigated before.

The inferred evolution of the coupling strengths re-
flects the underlying time-varying coupling quite well
(insets Fig. 3). The time dependent forgetting σb

i from
equation (7), based upon the coupling strength differ-
ences between adjacent windows, is proportional to the
temporal changes of the coupling and allows variabil-
ity where needed while preserving knowledge propagation
where possible, regardless of the current values of the es-
timated coupling. Estimating the necessary limitation of
knowledge propagation in terms of the temporal changes

http://www.epj.org


Eur. Phys. J. B (2015) 88: 193 Page 7 of 11

0 1 2 3 4 5 6 7 8

time ×104

0.00

0.02

0.04

0.06

0.08

0.10

co
up

lin
g
st
re
ng

th

(a)

500 1000 1500 2000 2500 3000 3500 4000

window length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ea
n
sq
ua

re
d
er
ro
r
(M

SE
) (b)

ˆ2→1

ˆ2→1

Fig. 4. (a) Exemplary evolution of the coupling strength K2→1 (dotted line) inferred by K̂2→1 with window lengths N = 4096
(gray) and N = 512 (black). Why the bias increases at both ends of the time series remains open for future studies. (b) Mean

squared error MSE(d̂2→1, d2→1), averaged over 100 independent iterations with standard deviations indicated by shaded areas,
as a function of the window length N for our modified Bayesian inference (black) and the original EMA (blue) method. Findings
obtained with the original Bayesian method are similar to those obtained using EMA for large pw. For very small pw, inference
results do not resolve the short-lived peaks of the coupling strength, and for optimally chosen pw they are similar to those
obtained with our modified method (see [42] and Fig. 3).

of the coupling strengths instead of their current values
themselves appears more appropriate as shown here.

The performance of this proposed inference algorithm
is again characterized in terms of the MSE. As no pa-
rameter choice is required here, the achieved goodness is
represented by global goodness thresholds in Figure 3. It
is revealed, that for all inspected time courses of the cou-
pling strengths (see insets of Fig. 3), the goodness of the
original algorithm outperforms our modified method only
for a small range of values of pw. The width and position of
this range, however, depend on the particular time course
of the coupling strength. For a constant coupling strength
(Fig. 3a) very large values of pw, for time courses of the
coupling strength that include variations (Figs. 3b−3f)
very small values of pw lead to a large increase of the
MSE. Hence, particularly for field studies when the exact
time course of the coupling strength is usually unknown,
the optimal choice of pw requires some fine-tuning. In-
terestingly, our modified algorithm performs close to the
optimal pw regardless of the couplings investigated here.
Therefore, our algorithm is likely to yield more reliable re-
sults than the original one if no prior knowledge about the
time-dependence of the inferred interactions is available,
and does not impose the challenge of choosing a critically
important parameter. Furthermore, it does not suffer from
the bias outlined above.

On the downside, this modified algorithm has limited
goodness when inferring constant interaction properties.
Small parameter differences between adjacent windows
tend to sustain themselves by limiting the extent of prior
knowledge passed on to the next window, giving a non-
vanishing limit upon the achievable goodness (note that
this effect is also present in the original algorithm [35],

where this limitation depends upon the estimated value
of the coupling strength itself). It will have to be subject
of future investigations if this effect can be suppressed.

4.3 Time resolution and goodness of inference

We compare the Bayesian inference method with the orig-
inal evolution map approach [41] with respect to goodness
(in terms of the MSE) of inferring time-dependent inter-
action properties as a function of the temporal resolution.
Again, the phase oscillators defined in equation (14) are
inspected as a model system.

A higher temporal resolution using smaller window
length N , is favorable in order to reveal short-lived, tran-
sient changes of the interactions or to determine the tim-
ing of a change in the coupling. We demonstrate this at
the example of short-lived Gaussian peaks of the coupling
strength K2→1, which are on the time scale of 4096 data
points.

As can be seen from Figure 4a, these short increases
of coupling strength cannot be revealed if the window
length is N = 4096, but if the temporal resolution is im-
proved, the transient increases in coupling strength are
detected indeed. On the downside, less data per window
increase bias towards estimating finite coupling strength
even if coupling is absent between the investigated sys-
tems. This bias does not surprise, given it arises from
small deviations from 0 in a larger number of coeffi-
cients, and the partial suppression of knowledge propa-
gation in the presented modification of the inference al-
gorithm. Nevertheless, comparing the mean squared error
MSE(K̂2→1, K2→1) for the presented algorithm with that
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obtained by the original EMA method (Fig. 4b), (par-
tial) knowledge propagation indeed helps to improve the
goodness when reducing the window length N . Therefore,
when the characterization of interactions is required with
high temporal resolution, the use of our modified method
is beneficial.

5 Estimating interaction properties
in the human epileptic brain

Brain signals during an epileptic seizure exhibit oscilla-
tory behavior with complex spatial and temporal changes
in frequency content [62–65]. The identification of brain
regions that are involved in the genesis, propagation and
termination of seizures and the time-resolved character-
ization of strength and direction of interactions between
these regions can help to advise new developments that
aim to efficiently control seizures [66–72].

We here consider multichannel intracranial electroen-
cephalographic (EEG) data of 5 min duration centered
around a focal epileptic seizure that was recorded from an
epilepsy patient undergoing presurgical evaluation. The
patient had signed informed consent that her/his clini-
cal data might be used and published for research pur-
poses, and the study protocol had previously been ap-
proved by the local medical ethics committee. The EEG
was recorded prior to surgery via two intrahippocampal
depth electrodes (each equipped with 10 cylindrical con-
tacts of length 2.5 mm and an intercontact distance of
4 mm; implanted stereotactically in the medial temporal
lobes) and from grid electrodes (rectangular flexible grid
of 8× 4 contacts with an intercontact distance of 10 mm;
placed subdurally onto the temporal lateral neocortex)
referenced against the average activity of two recording
contacts (GLA1 and GLA2) distant to the seizure-onset
zone (SOZ covered by contact GLD6, Fig. 5a). Data were
band-pass filtered between 0.1−70 Hz and sampled at
200 Hz using a 16 bit analog-to-digital converter. Prior
to estimating strengths and direction of interactions, we
digitally band-pass filtered the data between 1 and 45 Hz
(2nd order Butterworth characteristic), suppressed pos-
sible contributions of the power line frequency using a
notch filter, and derived phase time series via the Hilbert
transform [52,57].

We divided the data into disjoint segments of 20.48 s
duration (corresponding to 4096 data points) and esti-
mated the direction of interaction d̂EMA using the EMA
approach [41] and the strength of interaction using the
mean phase coherence R [52]. These were compared to es-
timates of strength (K̂) and direction (d̂) of interaction
obtained with our modification of the Bayesian inference
approach (Sects. 2 and 4.2). For the latter, we considered
segments of 20.48 s duration as well as shorter ones of
5.12 s (1024 data points) and 2.56 s (512 data points)
duration benefiting from the better temporal resolution
allowed by knowledge propagation. This analysis yields
estimators for coupling strength and direction for each

combination of pairs of recording contacts in a moving-
window fashion.

We chose exemplary short- and long-ranged interac-
tion between various brain regions: SOZ (GLD6) and its
direct neighborhood (GLD7), SOZ and hippocampus of
the opposite (contralateral) brain hemisphere (TR03), two
adjacent intrahippocampal contacts (TR02, TR03), and
two regions from the temporal lateral neocortex (GLD1,
GLA8) spatially separated both from each other and from
the SOZ. The findings for these brain regions are presented
in Figure 5.

Bayesian inference unveiled a slight decrease in cou-
pling strength K̂ from the neighborhood of the SOZ to
the SOZ itself (GLD6, GLD7, Fig. 5c) prior to the seizure,
followed by a slight increase during the seizure. This did
not reflect the increase of the mean phase coherence R
at the onset of the seizure. Interestingly, the direction
of interaction between these brain regions was estimated
rather constant around 0 by both EMA and Bayesian in-
ference (Fig. 5d). The small tendency towards identifying
the neighboring brain area as driving the SOZ surprises,
as the SOZ was not identified as the driving force here.
Findings were consistent among all inspected windows
lengths.

The strength of interactions between SOZ and the
contralateral hippocampus (GLD6, TR03, Fig. 5e) esti-
mated by Bayesian inference slightly decreased over the
whole recorded time span, which did not explain the in-
crease of R at the seizure onset. Both Bayesian inference
and EMA identified the contralateral hippocampus to be
driven by the SOZ most of the time (Fig. 5f), although
there was a deviation between both directionality estima-
tors at the end of the seizure. Again, results obtained by
Bayesian inference were qualitatively consistent among all
window lengths.

The two adjacent contacts within the contralateral hip-
pocampus (TR02, TR03, Fig. 5g) were highly coherent
over the whole recording period, as identified by R ≈ 1
constantly for all windows. Hence, and conforming with
numerical investigations on systems restricted to the syn-
chronization manifold, the Bayesian estimators of the
strength of interactions obtained from different window
lengths differed, as no information on the whole phase
space was available in order to reliably infer interaction
properties. It is interesting to note, that the directionality
was still inferred consistently over all windows lengths us-
ing Bayesian inference (Fig. 5h). However, it differed from
the direction of interaction estimated by EMA, which in-
dicated a reversal of the direction at seizure onset.

The interaction between two spatially separated ar-
eas from the temporal lateral neocortex (GLD1, GLA8)
showed confounding evolution of both K̂ and d̂, where
both strength and direction of interaction inferred by
Bayesian inference differed significantly between differ-
ent window lengths inspected (Figs. 5i and 5j). This phe-
nomenon has not been observed in any of our numerical
studies with model data before.

Overall, neither the improved time resolution nor the
characterization of strength and direction of couplings
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Fig. 5. (a) Schematics of the electrode grid placed over the left temporal lateral neocortex and the bilateral intrahippocampal

depth electrodes. (b) EEG recording from GLD6 covering the seizure onset zone. (c)−(j) Estimators K̂ and R for coupling

strength (left), d̂EMA and d̂ for interaction direction (right) from electrode pairs (GLD7, GLD6), (TR03, GLD6), (TR02,
TR03), and (GLD1, GLA8) per line from top to bottom, see (1) to (4) in (a). The gray-shaded area indicates the seizure, and

time points refer to the beginning of a window. R and d̂EMA are shown for a window length of 4096 data points, Bayesian results
K̂ and d̂ also for shorter windows of length 1024 and 512.

does reveal any transient changes of the interaction
properties of different brain areas that can help identi-
fying beginning and end of an epileptic seizure or may en-
large our understanding of seizure dynamics. Further work
is thus needed in order to shed more light on the func-
tional mechanisms underlying seizure generation, spread,
and termination.

6 Conclusion

We have investigated the Bayesian inference of time-
dependent interaction properties, comparing it to the well-
established evolution map approach [41] and the mean
phase coherence [52] that yield estimators for the di-
rection and the strength of interactions, respectively.
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In the case of coupled, non-linear oscillators with time-
independent interaction properties we observed limita-
tions of the Bayesian inference method, where it was not
able to improve shortcomings of other approaches, in par-
ticular with respect to inferring directed interactions be-
tween systems with structural differences. This could be
shown both for two interacting Rössler oscillators with
different natural frequencies, and for coupled Rössler and
Lorenz oscillators, where the problem was even more man-
ifest. Hence, Bayesian inference does not appear to widen
the class of systems, where a phase-based description of
interaction properties is meaningfully applicable. Further-
more, the canonical estimators K̂i→j for the strength of
interactions miss a universal interpretation. It is not mean-
ingful to compare the absolute values obtained for two dif-
ferent pairs of oscillators, as the coupling strengths alone
contain only little information about the effect of the cou-
pling without taking into account the dynamics of the
individual oscillators themselves. Hence, only statements
about the evolution of the strength of interaction between
one pair of oscillators are meaningfully possible with the
Bayesian framework. Of course, this limitation holds for
many model-based characterizations of interaction prop-
erties (cf. [43,55,58–61,73,74]) and is not unique to the
Bayesian approach.

Our investigations of temporal changes of interaction
properties in the human brain during an epileptic seizure
did not reveal transient changes of either the strength
or direction of interactions that may give deeper insight
into possible mechanisms underlying genesis, propagation
and termination of seizures, but demonstrate that the use
of Bayesian inference does allow inference of interaction
properties with higher temporal resolution.

We have shown, that our proposed modification of the
method for inferring time-varying interaction properties
by partially forgetting prior knowledge is superior to the
original method, in the sense that it achieves better good-
ness on average without the necessity of fine-tuning any
parameter. When achieving better time resolution by re-
ducing the window length, Bayesian inference and knowl-
edge propagation in our modified algorithm allow im-
proved accuracy compared to the original EMA method.

The Bayesian inference approach can easily be adapted
to encompass network dynamics with any number L of
partaking oscillators [42], although the number of required
base functions and inferred coefficients scales with L2 and
limits the possible size of an investigated network. Still,
it can be used to merge the benefits of Bayesian inference
with those of triplet locking [75], which has been shown
to yield better results than pairwise interaction estimation
when dealing with large numbers of interacting systems.

In conclusion, in coupled systems where phase-based
approaches are meaningful the investigated Bayesian in-
ference method with our presented modification can im-
prove the goodness of estimation of interaction proper-
ties at higher time resolution. However, we point out that
the method in its current state cannot overcome difficul-
ties of well-established methods when inferring non-linear,
chaotic systems, particularly if they are structurally

different. In such cases, the use of methods assessing struc-
tural differences might help to identify more adequate sets
of basis functions.
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