
Eur. Phys. J. B (2015) 88: 125
DOI: 10.1140/epjb/e2015-50865-3

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Parameter dependence of stochastic resonance
in the FitzHugh-Nagumo neuron model driven
by trichotomous noise

Huiqing Zhanga, Tingting Yang, Yong Xu, and Wei Xu

Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, P.R. China

Received 17 December 2014 / Received in final form 10 March 2015
Published online 18 May 2015 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2015

Abstract. We investigate the stochastic resonance in a FitzHugh-Nagumo neuron model driven by trichoto-
mous noise and periodic signal, focusing on the dependence of properties of stochastic resonance (SR) on
system parameters. The stochastic resonance is shown through several different measures: system response,
power spectrum and signal-to-noise ratio. Firstly, it is found that whether the neuron can fire regularly
depends on the cooperative effect of the signal frequency and the signal amplitude for the deterministic
FHN neuron. When the forcing amplitude alone is insufficient to cause the neuron firing, the neuron can
fire with the addition of trichotomous noise. Secondly, we show that power spectrum is maximized for an
optimal value of the noise correlation time, which is the signature of SR. Finally, from studying SNR, the
specific system parameters are found to optimize the SR phenomenon.

1 Introduction

It has been proved that stochastic noise can enhance the
response of nonlinear systems to a weak signal. This phe-
nomenon is called “stochastic resonance” (SR) [1–3]. Orig-
inally, SR was proposed to explain why the ice age oc-
curred periodically [4]. The first realization of stochastic
resonance in a laboratory experiment was provided by
Fauve and Heslot [5], in which the SR is measured by
the power spectrum. Then McNamara et al. pointed out
that signal-to-noise ratio (SNR) which is obtained from
the power spectrum of the interwell motion [6] is a more
suggestive signature for SR. The signature of SR is that
the SNR passes through a maximum at an optimal value
of the input noise parameter. Now, the SR phenomenon
has been widely observed for various systems experimen-
tally and theoretically [7,8].

Motivated by the biological applications to neuronal
dynamics [9], we employ the FitzHugh-Nagumo (FHN)
construct as the model system for investigating SR. FHN
model is a simplification of the Hodgkin-Huxley (HH)
model [10] of spike generation in squid giant axons. In
1961, FitzHugh sought to reduce the HH model to a sim-
pler set of equations in two state variables while retaining
its essential excitation characteristics [11]. The reduced
version was experimentally demonstrated by Nagumo
et al. using electrical circuits and it has since been called
the FHN model [12]. It is a model of reduced complexity
providing an insight into the dynamical aspects of neu-
ronal activity, such as the complex responses of neurons to

a e-mail: huiqingzhang@nwpu.edu.cn

sinusoidal stimuli [13]. This model has been widely used in
the literature. For example, Nozaki and Yamamoto inves-
tigated the stochastic resonance in a FitzHugh-Nagumo
neuronal model driven by colored noise [14]. Heneghan
et al. demonstrated that sensory neurons could harness
aperiodic stochastic resonance to optimize the detection
and transmission of weak stimuli [15].

Although this system has been used in a number of
physiologically motivated SR investigations [16–18], few
results have been obtained on SR driven by trichotomous
noise which is a kind of three-level Markovian noise char-
acterized by three parameters: amplitude, correlation time
and flatness [19]. Studying the noise has an important
practical significance. Firstly, the trichotomous noise is
an important type of non-Gaussian colored noise and is
also a particular case of the kangaroo process [20,21] that
has applications in various fields of science. For example
Tammelo et al. have studied transport of Brownian parti-
cles in a simple sawtooth potential subjected to both un-
biased thermal and nonequilibrium symmetric three-level
Markovian noise [22]. Mankin et al. have explored cur-
rent reversals in ratchets driven by trichotomous noise [23]
and the problem of multiple noise-enhanced stability ver-
sus temperature [24]. SR which is induced by trichotomous
noise for fractional oscillator has been investigated [25–28].
The anomalous transport phenomena induced by trichoto-
mous noise in periodic system has been discussed and
the necessary conditions for various anomalous transport
properties have been found [29,30]. In addition to mim-
icking the effects of the finite correlation time of the
real noise, the trichotomous noise may directly provide a
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realistic representation of a real physical situation such as
thermal transitions between three configurations or states.
Moreover, although both trichotomous noise and dichoto-
mous noise are stationary telegraph processes, the for-
mer is more flexible and includes all cases of dichotomous
noise [29–32]. When the dynamical system is very com-
plex and cannot be studied analytically, it is essential to
solve this problem of a numerical scheme. In this paper,
trichotomous noise is obtained numerically and we present
the phenomenon of stochastic resonance in a stochas-
tic nonlinear dynamical system subject to trichotomous
noise.

This paper is organized as follows. Section 2 presents
the FitzHugh-Nagumo neuron model (FHN model). In
Section 3, in order to study SR phenomenon, we calculate
system response, power spectrum and signal-to-noise ratio
numerically. Finally, some discussions and conclusions are
given in Section 4.

2 Model system

In this paper, we consider a FHN model [33] with an ape-
riodic input signal driven by trichotomous noise:

εẋ = −x(x2 − 1/4)− ω + A0 + S(t) + ξ(t), (1)
ω̇ = x − ω , (2)

where x(t) is a “fast” variable representing the membrane
voltage of the neuron, ω(t) is a “slow” (recovery) vari-
able which determines the refractory time, A0 is a critical
value which makes the neuron fire periodically. Through-
out the paper we fix A0 = −0.31056. As the state vari-
ables x(t) and ω(t) exhibit dynamics on different time
scales, the parameter ε is chosen such that ε � 1. We
fix ε = 0.005. S(t) = A sin 2πft is the sinewave input,
where A is the amplitude, and f is the frequency of the
periodic signal. ξ(t) is assumed to be a zero-mean sym-
metric trichotomous noise which is a random stationary
Markovian process that consists of jumps between three
values: a, 0 and −a. The jumps follow in time according
to a Poisson process, while the values occur with the sta-
tionary probabilities: Ps(a) = Ps(−a) = q, Ps(0) = 1−2q
with 0 < q � 1/2. We can obtain the transition probabil-
ities between the states ±a and 0:

P
(
−a, t + t

′ |a, t
)

= P
(
a, t + t

′ | − a, t
)

= P
(
±a, t + t

′ |0, t
)

= q
(
1 − e−vt

′ )
,

(3)

P
(
0, t + t

′ |a, t
)

= P
(
0, t + t

′ | − a, t
)

= (1 − 2q)
(
1 − e−vt

′ )
, t

′
> 0, v > 0.

(4)

The switching rate v is the reciprocal of the noise correla-
tion time: v = 1/τ . In the stationary case the fluctuation
process satisfies the following conditions:

〈ξ(t)〉 = 0,
〈
ξ(t)ξ(t

′
)
〉

= 2qa2e
−v

∣∣∣ t−t
′ ∣∣∣

. (5)
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Fig. 1. A time series of membrane potentials of the noiseless
FHN model. (a) A = 0.01, f = 0.5, (b) A = 0.05, f = 0.5,
(c) A = 0.05, f = 1, (d) A = 0.05, f = 2. The amplitude for
the input signal is enlarged ten times for better viewing (heavy
line).
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Fig. 2. Phase diagram of the FHN neuron without noise in
the parameter space of the forcing frequency f and the forcing
amplitude A. The firing state is denoted in white, and the
nonfiring state and bistable state in black.

The flatness parameter ϕ is [19]

ϕ =
〈
ξ4(t)

〉
/

〈
ξ2(t)

〉2
= 1/2q. (6)

It can be seen that the flatness parameter of trichotomous
noise can range from 1 to ∞.

3 Stochastic resonance

Figure 1 presents dynamical responses of the noiseless
FHN neuron under different sinusoidal current. Appar-
ently, for A = 0.01, f = 0.5, the signal is too weak to
excite a neuron. As the amplitude increases, the neuron is
excited to output the spike train. Especially, the forcing
amplitude requires of an optimal frequency to bring out
the output of the variable x and signal is very well syn-
chronized in time. However, with the frequency further
increasing, the neuron does not fire in each period cycle
of the external signal, with several cycles being skipped.

Figure 2 depicts the phase diagram of the determin-
istic FHN neuron in the parameter space of the forcing
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Fig. 3. Membrane potentials for various values of the noise
correlation time τ with fixed A = 0.01, f = 0.5. The profiles
of the dynamical response without noise are also superimposed
with heavy line. (a)–(d) a = 0.01, q = 0.3, (e) and (f) a = 0.01,
τ = 0.06, (g) and (h) τ = 0.06, q = 0.3.

frequency f and the forcing amplitude A, in which the
firing state is denoted in white, and the nonfiring state
and bistable state in black. It is shown that when the am-
plitude is too small, the firing cannot appear. Note that
the increasing of the forcing amplitude tends to expand
the effective frequency domain in which the FHN neuron
is excited to fire.

Next, some realizations of the voltage variable are pre-
sented to show the effect of trichotomous noise on the dy-
namic response of the FHN model in Figure 3. Dynamical
response without noise is shown in heavy line. We con-
sider a subthreshold signal amplitude A = 0.01 that does
not allow firing in the absence of noise. Figures 3a–3d
display the trajectories for various noise correlation time
with fixed a = 0.01, q = 0.3. For a very small τ , the neuron
cannot be excited to fire as the noise would hardly reach
the threshold for firing. As the noise correlation time is
increased, the neuron shows its basic oscillatory charac-
ter with bursts. What is more, for small or large noise
correlation time, the system spends most of its time fluc-
tuating around the rest potential and displays trains of
few short periodic oscillations. It is worth noting that the
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Fig. 4. The power spectrum of x with three different τ value:
0.001, 0.06, 1. Other parameters of the system are a = 0.01,
q = 0.3, A = 0.01, f = 0.5.

phenomenon of synchronization is qualitatively visible for
moderate noise and the noise-excited oscillations becomes
more irregular for larger or smaller noise correlation time.
This is a significant of stochastic resonance. With fixed
a = 0.01, τ = 0.06, increasing q causes less stimulus cy-
cles to be skipped and the phenomenon of synchronization
is more easily to be seen as q increases. Remarkably, for
q = 1/2, the neuron is capable of firing at every circle.
With fixed τ = 0.06, q = 0.3, we can observe that increas-
ing a causes increase in firing rate of the neuron. However,
when a is very large, the noise-excited oscillations becomes
more irregular.

To identify the stochastic resonance behavior in the
FHN model the power spectral density is calculated with
different values of τ in Figure 4. The peak in the power
spectrum can be very well pronounced at the frequency
of the periodic signal. It is evident that the height of the
noise-induced peak in the power spectrum is very small
for a weak noise. With the increase of noise correlation
time, the height increases. However, with further increase
of τ , the height of the peak starts to decrease. This demon-
strates that the neuron responds more coherently in the
case of τ = 0.06, which agrees with the result presented in
Figure 3. This significant observation indicates the possi-
bility of an occurrence of stochastic resonance.

Another dynamical feature of the SR phenomenon can
be measured from the SNR. The SNR is obtained from
the power spectrum as

SNR = 10 log
S

N
= 10 log

S(ω0)
N(ω0)

, (7)

where the signal power S = S(ω0) = |Y (ω0)|2 is the mag-
nitude of the output power spectrum Y (ω) at the input
frequency ω0, and the noise power N = N(ω0) at in-
put frequency ω0 is some average of |Y (ω)|2 at nearby
frequencies [33].

Firstly, we investigate the effect of noise parameter on
SNR. The results of calculation of the SNR as the function
of noise correlation time are shown in Figure 5 for different
values of a. It can be seen that when the appropriate noise
is applied, the SNR increases monotonously as a function
of τ indicating the occurrence of SR phenomenon. When
a is small and large, the SNR increases at first and then
decreases as τ increases. Within a certain range of a, the
increase of τ induces the value of the SNR to decrease at
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Fig. 5. The performance of SNR as the functions of τ with
various values of a. The parameters are A = 0.01, f = 0.5,
q = 0.3.
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Fig. 6. Plot of SNR as a function of τ for different values
of q with a = 0.01. The other parameters are identical with
Figure 5.

first. It is quite interesting to find that the position of the
peak shifts to the left at first and then shifts to the right as
the noise amplitude increases. In addition, the peak value
of SNR increases initially, then decreases and increases fi-
nally with the increasing of a. Note that when a is large
enough, the SNR curve changes little with further increase
of a. In Figure 6, the various SNR curves with different
values of q versus noise correlation time are plotted. It is
obvious that the SR phenomenon cannot occur for very
small values of q and it can be easily observed by increas-
ing the q value. For an optimal noise correlation time, the
SNR possesses a maximum. What is more, the increasing
of q enhances the SR phenomenon.

Figure 7 displays SNR as a function of a with dif-
ferent τ . We can observe that as a increases, the SNR
first increases reaching to the maximum, then decreases
and finally increases again at fixed τ value. However, SNR
changes little with further increasing of a. The curves of
SNR as a function of q are plotted in Figure 8. At certain
noise correlation time the figure displays that with increas-
ing q the SNR first increases and then changes slowly. In
conclusion, SR can be enhanced by adjusting noise param-
eter, which can verify the conclusions showed in Figures 5
and 6.

Now we fix the noise parameter with a = 0.01, q = 0.3
and study the effect of the input signal on SNR curve in
Figure 9. Apparently, with the increase of signal amplitude
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Fig. 7. The curves of SNR versus a for various values of τ with
fixed A = 0.01, f = 0.5, q = 0.3.
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Fig. 8. Plot of SNR as a function of q for different values
of τ with a = 0.01. The other parameters are identical with
Figure 7.
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Fig. 9. The SNR curves of a stochastic FH neuron for various
forcing amplitudes and frequency with fixed a = 0.01, q = 0.3.
(a) f = 0.5, (b) A = 0.01.

the height of the SNR peak increases. Note that the SNR
value increases as A increases because the dynamical re-
sponse of the FH neuron becomes more synchronized with
stronger periodic stimulus. In addition, we find that the
stochastic FH neuron has a critical forcing amplitude Ac,
above which the resonance with a maximal SNR disap-
pears. Moreover, we can see that SR occurs only in an op-
timal range of frequency values. The effect of increasing f
is to shift the SNR peak towards smaller vales of τ . Fur-
thermore, we can find an optimal value of f which yields
the largest enhancement of the system response. This is
due to the fact that the forcing amplitude requires an op-
timal frequency to make the input signal and the system
output to be synergistic which can be seen in Figure 1.
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4 Conclusions

In this paper, we mainly consider the phenomenon of SR
in a FitzHugh-Nagumo neuron model with trichotomous
noise.

Firstly, we demonstrate the effect of signal and noise
on the system response. The result shows that under cer-
tain conditions the neuron can be excited. Then we discuss
the influences of the noise parameter on the system output
power spectrum by numerical calculation. The power spec-
trum exhibits a sharp peak and the peak value presents
nonmonotonous behavior as functions of the noise cor-
relation time, which is a typical feature of SR. Finally,
the signal-to-noise ratio is used to measure the SR phe-
nomenon. It turned out that SR occurs only in a domain
parameter. In addition, the following conclusions can be
obtained.

(1) Noise amplitude a first enhances SR, then weakens
it and enhances it again. Moreover, the SNR peak
shifts towards smaller noise correlation time at first
and then shifts towards larger τ value.

(2) Larger q promotes the occurrence of SR.
(3) Larger signal amplitude A promotes the occurrence

of SR. However, there is a critical forcing amplitude
Ac, above which the resonance with a maximal SNR
disappears.

(4) The peak value shifts to smaller noise level with in-
creasing input signal frequency and there is an optimal
value of f which yields the largest enhancement of the
system response.

Given that FitzHugh-Nagumo model has been widely used
as a prototypic model for spiking neurons as well as for
cardiac cells, we believe that our results are useful to anal-
yse the excitable cells in living organisms.
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