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Abstract. We study the Immediate Exchange model, recently introduced by Heinsalu and Patriarca [Eur.
Phys. J. B 87, 170 (2014)], who showed by simulations that the wealth distribution in this model converges
to a Gamma distribution with shape parameter 2. Here we justify this conclusion analytically, in the infinite-
population limit. An infinite-population version of the model is derived, describing the evolution of the
wealth distribution in terms of iterations of a nonlinear operator on the space of probability densities. It
is proved that the Gamma distributions with shape parameter 2 are fixed points of this operator, and
that, starting with an arbitrary wealth distribution, the process converges to one of these fixed points. We
also discuss the mixed model introduced in the same paper, in which exchanges are either bidirectional
or unidirectional with fixed probability. We prove that, although, as found by Heinsalu and Patriarca, the
equilibrium distribution can be closely fit by Gamma distributions, the equilibrium distribution for this
model is not a Gamma distribution.

1 Introduction

Kinetic exchange models have been widely investigated in
recent years within the field of Econophysics, whose aim
is to apply ideas and methods from statistical physics to
economic questions (see reviews [1–6]). In these models,
a large population of agents, each possessing a certain
wealth, undergo random pairwise interactions involving
transfers of wealth from one agent to another. The pre-
cise nature of the interactions differs from one model to
another. It is often the case that, as time progresses, the
distribution of wealth in the population evolves towards
an equilibrium distribution, which is independent of the
initial distribution of wealth among the agents. Charac-
terizing this equilibrium wealth distribution for different
kinetic exchange models is thus a central question to which
many numerical and analytical studies have been devoted.
Researchers have also used empirical data on wealth and
income distributions in order to examine which theoret-
ical distributions can provide a good fit to the data [2]
(Chap. 2), [6–8].

In a recent paper [9], Heinsalu and Patriarca proposed
a new kinetic exchange model which they called the Im-
mediate Exchange model. In this model pairs of agents
randomly interact, an interaction consisting of each of
the agents transferring a random fraction of its wealth
to the other agent, where these fractions are indepen-
dent and uniformly distributed in [0, 1]. Thus, if agents i, j
have wealths xi, xj prior to the interaction, their wealths
following the interaction are

x′
i = (1 − εi)xi + εjxj , x′

j = (1 − εj)xj + εixi, (1)
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where εi, εj are independent and εi, εj ∼ Uniform([0, 1]).
Based on simulation of this process, Heinsalu and
Patriarca have concluded that the wealth distribution con-
verges to a Gamma distribution with shape parameter 2.
Here we rigorously justify this conclusion, by deriving an
infinite population version of the Immediate Exchange
model, in which the time-evolution of the wealth distri-
bution is described by iteration of a nonlinear operator on
a space of probability distributions (Sect. 2), and showing
that Gamma distributions with shape parameter 2 are the
fixed points of this operator (Sect. 3). Furthermore, we
prove that, starting from a general wealth distribution,
iterations of the operator converge to one of these equilib-
rium distributions, determined by the mean wealth of the
initial distribution, which is conserved (Sect. 4).

It is instructive to compare the Immediate Exchange
model with some other kinetic exchange models and ob-
serve how differences in the microscopic rules of wealth
exchange are reflected in the equilibrium distribution
that emerges on the global level. In the well-known
Drăgulescu-Yakovenko model [10], the wealths of two in-
teracting agents are pooled, and then randomly re-divided
among the pair. In contrast to the Immediate Exchange
model which leads to a “humped” equilibrium wealth
distribution (the Gamma distribution), the Drăgulescu-
Yakovenko model leads to an exponential wealth distri-
bution, which thus has a monotone decreasing density,
so that the poorest class is the most numerous. The ex-
ponential distribution has been found to provide a re-
markably good fit to the bulk of some empirical income
distributions [2,8] (Chap. 2). Other studies have sup-
ported a Gamma distribution as a statistical model for
income distributions [7,11]. It is thus of special interest
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to examine which mechanisms in kinetic exchange mod-
els can lead to Gamma-type equilibrium distributions.
One such mechanism has been proposed in the model
of Chakraborti-Chakrabarti [12], namely modifying the
Drăgulescu-Yakovenko model by introducing a saving
propensity, so that interacting agents share only a cer-
tain fraction of their wealths. Simulation of this model
yielded equilibrium distributions which are very well fit-
ted by Gamma distributions. Interestingly, later analyt-
ical work [13] (see also [2], Chap. 5) has revealed that
the equilibrium distribution for this model (in the infinite
population limit) is in fact not a Gamma distribution. The
Immediate Exchange model offers a different mechanism
for generating a Gamma-type distribution, and in this case
it turns out, as shown below, that it is indeed exactly a
Gamma distribution.

Another class of kinetic exchange models involves uni-
directional interactions in which only one of the agents,
randomly chosen to be the “loser”, transfers a portion
of its wealths to the “winner”. In Angle’s Inequality Pro-
cess [14,15] the loser transfers a fixed fraction of its wealth
to the winner. In Mart́ınez-Mart́ınez and López-Ruiz’s Di-
rected Random Market model [16], the fraction of the
loser’s wealth transferred is random and uniformly dis-
tributed in [0, 1]. For the Inequality Process an analytic
form of the equilibrium distribution is unknown. For the
Directed Random Market model it was proved in refer-
ence [17] that the equilibrium distribution is a Gamma
function with shape parameter 1

2 , which means that its
density is monotone decreasing, with a singularity at 0,
and thus represents an even more extreme case of the phe-
nomena noted above for the Drăgulescu-Yakovenko model,
whereby the poorest group is the largest.

In their paper [9], Heinsalu and Patriarca also pre-
sented a “mixed” model in which interactions are either
bidirectional as in the Immediate Exchange model, or uni-
directional as in the Directed Market model [16], each case
occuring with a certain fixed probability. This model is
also studied here (Sect. 5) in the infinite-population limit,
and we prove that, despite the fact that the equilibrium
distribution can be closely fitted by a Gamma distribution,
as shown by numerical simulations in [9], the equilibrium
distribution is in fact not a Gamma distribution.

It should be noted that all the models discussed above
and studied below have exponentially decaying tails, and
thus do not display the Pareto effect observed in empiri-
cal wealth distibutions, wherby the distribution of wealth
among the wealthiest 5–10 percent follows a power-law
distribution [2] (Chap. 2). Obtaining power-law tails re-
quires introduction of additional features into the models,
such as heterogeneity of the agents [18] or dependence
of the fraction of wealth exchanged on agents’ current
wealth [19].

2 Infinite-population version
of the Immediate Exchange model

We now formulate the infinite-population discrete-time
version of the Immediate Exchange model in the

framework of López and co-workers [20,21]. The distribu-
tion of wealth is described by a probability density pt(x)
so that pt(x)dx is the fraction of the population whose
wealth is in the interval [x, x + dx] at time t = 0, 1, 2, . . .
It is assumed that at each time step (“day”) all agents are
randomly paired and exchange wealth according to the
rule (1). Assuming the wealth distribution pt(x) before
the interactions of day t take place is given, we derive the
probability density pt+1(x) following these interactions,
and thus the time-evolution of the distribution of wealth.

The language of probability theory is convenient in
deriving the evolution equation. Let us choose a random
agent and let U be a random variable representing this
agent’s wealth before the interaction on day t takes place,
and X its wealth following the interaction. Thus the dis-
tributions of U and of X are given by the probability
densities pt(x) and pt+1(x), respectively. Let V represent
the wealth of the agent with whom our focal agent inter-
acted, which is a random variable whose distribution is
also pt(x). Then we have

X = ε1U + ε2V (2)

where ε1, ε2 are independent of each other and of U, V ,
and uniformly distributed on [0, 1]. The probability den-
sity pt+1(x) will thus be found by computing the distribu-
tion of X given by (2). We use the following simple result.

Lemma 1. Assume W is a non-negative random variable
with probability density p(x), and ε is a random vari-
able with ε ∼ Uniform([0, 1]), W, ε independent. Then
the probability density of the product εW is given by:

S[p](x) =
∫ ∞

x

p(u)
u

du. (3)

Proof.

P (εW ≤ x) =
∫ 1

0

∫ x
ε

0

p(u)dudε

=
∫ x

0

p(u)
∫ 1

0

dεdu +
∫ ∞

x

p(u)
∫ x

u

0

dεdu

=
∫ x

0

p(u)du + x

∫ ∞

x

p(u)
u

du

⇒ d

dx
P (εW ≤ x) =

∫ ∞

x

p(u)
u

du.

Denoting the set of all probability densities on [0,∞) by
P we can consider S, defined by (3), as an operator S :
P → P . The above lemma implies that the density of both
ε1U and ε2V is S[pt]. Therefore the density of pt+1 of X ,
which by (2) is the density of the sum of two independent
and identically distributed random variables ε1U, ε2V is
given by the convolution:

pt+1(x) = (S[pt] ∗ S[pt])(x) =
∫ x

0

S[pt](x − v)S[pt](v)dv,

(4)
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or more explicitly

pt+1(x) =
∫ x

0

(∫ ∞

x−v

pt(u)
u

du

) (∫ ∞

v

pt(u′)
u′ du′

)
dv

=
∫ x

0

∫ ∞

y

∫ ∞

x−y

pt(u)
u

pt(v)
v

dvdudy. (5)

In other words, defining the nonlinear operator T : P → P
by:

T [p] .= S[p] ∗ S[p], (6)

we have that the evolution of the wealth distribution for
the Immediate Exchange model is given by:

pt+1 = T [pt], t = 0, 1, 2, . . . (7)

This is the infinite-population formulation of the
Immediate Exchange model.

3 The equilibrium distribution

By (7) the equilibrium distributions are thus the solutions
of the functional equation T [p] = p, that is:

p = S[p] ∗ S[p]. (8)

To solve this equation, we apply the Laplace transform

L[p](s) =
∫ ∞

0

e−sxp(x)dx

to both sides of (8), and set p̂ = L[p], obtaining

p̂(s) = (L[S[p]](s))2 .

Noting that

L[S[p]](s) =
1
s

∫ s

0

p̂(s′)ds′, (9)

we conclude that the Laplace-transformed version of (8) is:

p̂(s) =
(

1
s

∫ s

0

p̂(s′)ds′
)2

. (10)

To solve this equation, we set

g(s) =
√

p̂(s)

and obtain that (10) is equivalent to:

g(s) =
1
s

∫ s

0

(g(s′))2ds′.

Multiplying both sides by s and then differentiating, we
obtain the differential equation

[sg(s)]′ = g(s)2,

that is

g′(s) =
1
s
g(s)[g(s) − 1],

a separable equation which is solved to yield:

g(s) =
1

1 + Cs
,

hence

p̂(s) = (g(s))2 =
1

(1 + Cs)2
.

The inverse Laplace transform now gives:

p(x) =
1

C2
xe−

x
C .

Denoting by w the mean wealth w =
∫ ∞
0

xp(x)dx, we have
C = w

2 , which yields

Theorem 1. For each w > 0, there exists a unique equi-
librium distribution for the Immediate Exchange process
satisfying

∫ ∞
0

xp(x)dx = w, given by:

pw(x) =
4

w2
xe−

2
w x. (11)

This is the Gamma distribution with shape parameter 2,
as found in the simulations of [9].

4 Convergence to the equilibrium distribution

To fully explain the simulation results in reference [9],
we need to prove that the iterations (7) converge to an
equilibrium distribution (11), starting from an arbitrary
initial probability density p0. Since the process is wealth-
preserving (see Lem. 2 below), the value of w will be de-
termined by the mean wealth of the initial density:

w =
∫ ∞

0

xp0(x)dx. (12)

Theorem 2. Let p0(x) be a probability density on [0,∞)
satisfying (12), and such that, for some α > 1,

Mα(p) =
∫ ∞

0

p(x)xαdx < ∞. (13)

Then the cumulative probability functions of the itera-
tions (7) converge to that of pw(x) given by (11), that is
for all x ≥ 0,

lim
t→∞

∫ x

0

pt(u)du =
∫ x

0

pw(u)du.

Since the proof of Theorem 2 follows the same technique
as that used for analogous results for the Drăgulescu-
Yakovenko model and the Directed Random Market
model [17,22], we will be brief, and refer to those papers
for details, indicating only the general argument and some
points where calculations somewhat different from those
in the above papers are required.

For α ≥ 1 and w > 0, we define Pα,w as the set
of all probability densities satisfying (12) and (13). We
first show that the operator T defined by (6) maps the
space Pα,w into itself.
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Lemma 2. If α ≥ 1, w > 0, and p ∈ Pα,w then T [p] ∈
Pα,w.

Proof. Assume p ∈ Pα,w. Exchanging order of integration,
and using the inequality (x + u)α ≤ 2α−1(xα + uα), we
have:

Mα(p) =
∫ ∞

0

xαT [p](x)dx

=
∫ ∞

0

xα

∫ x

0

S[p](x − v)S[p](v)dvdx

=
∫ ∞

0

xα

∫ x

0

(∫ ∞

x−v

p(u)
u

du

)(∫ ∞

v

p(u′)
u′ du′

)
dvdx

=
∫ ∞

0

(∫ ∞

v

p(u′)
u′ du′

)∫ ∞

v

xα

(∫ ∞

x−v

p(u)
u

du

)
dxdv

=
∫ ∞

0

(∫ ∞

v

p(u′)
u′ du′

)∫ ∞

0

(x+v)α

(∫ ∞

x

p(u)
u

du

)
dxdv

≤ 2α−1

∫ ∞

0

(∫ ∞

v

p(u′)
u′ du′

) ∫ ∞

0

(xα + vα)

×
(∫ ∞

x

p(u)
u

du

)
dxdv

=2α−1

∫ ∞

0

(∫ ∞

v

p(u′)
u′ du′

)∫ ∞

0

p(u)
u

∫ u

0

xαdxdudv

+2α−1

∫ ∞

0

vα

(∫ ∞

v

p(u′)
u′ du′

)∫ ∞

0

p(u)
u

∫ u

0

dxdudv

=
2α−1

α + 1
Mα(p)

∫ ∞

0

∫ ∞

v

p(u′)
u′ du′dv

+ 2α−1

∫ ∞

0

vα

∫ ∞

v

p(u′)
u′ du′dv

=
2α−1

α + 1
Mα(p) +

2α−1

α + 1
Mα(p) =

2α

α + 1
Mα(p),

so that T [p] satisfies (13).
Setting α = 1, the above inequality becomes an equal-

ity, and we obtain that M1(T [p]) = M1(p), so that T [p]
satisfies (12).

We define the following metric on the set Pα,w, where
we now assume α ∈ (1, 2).

p, q ∈ Pα,w ⇒ dα(p, q) .= sup
s>0

|L[p](s) − L[q](s)|
sα

.

The finiteness of dα,w(p, q) is ensured whenever 1 < α < 2,
see [22], Lemma 2.3.

We use the following key estimate:

Lemma 3. If 1 < α < 2, w > 0, p, q ∈ Pα,w, then

dα(T [p], T [q]) ≤ 2
α + 1

· dα(p, q).

Proof. Recalling (9), we have:

L[T [p]](s) = (L[S[p]])2

=
(

1
s

∫ s

0

p̂(s′)ds′
)2

=
(∫ 1

0

p̂(su)du

)2

,

hence, since |p̂(s)|, |q̂(s)| ≤ 1,

|L[T [p]](s) − L[T [q]](s)|
sα

=
1
sα

∣∣∣∣
(∫ 1

0

[p̂(su) − q̂(su)]du

) (∫ 1

0

[p̂(su) + q̂(su)]du

)∣∣∣∣
≤ 2

(∫ 1

0

uα |p̂(su) − q̂(su)|
(su)α

du

)

≤ 2dα(p, q)
∫ 1

0

uαdu =
2

α + 1
dα(p, q),

and taking the supremum over s > 0 we obtain the result.

Since α > 1 implies 2
α+1 < 1 the above lemma implies

that T is contracting with respect to the metric dα, and, by
the argument given in reference [17,22], this implies that
that the iterates pt converge to pw in the metric dα, and
hence in the cumulative probability sense of Theorem 2,
concluding the proof of the theorem.

5 The mixed model

We now discuss another model proposed in [9], which is
a “mixture” of the Immediate Exchange model discussed
above with a model of unidirectional wealth transfers.

In the unidirectional model, when two agents interact,
one agent is randomly assigned to be the “loser” and the
other the “winner”. The loser gives the winner a random
fraction ε of its wealth. Thus if j is the winner then

x′
i = (1 − ε)xi, x′

j = xj + εxi,

where ε ∼ Uniform([0, 1]). This model has recently been
studied by Mart́ınez-Mart́ınez and López-Ruiz [16] who
called it the Directed Random Market. They showed that
in the infinite population limit the evolution of the wealth
distribution is given by:

pt+1 = TD[pt], (14)

where

TD[p](x) =
1
2

∫ x

0

pt(x − u)
∫ ∞

u

1
v
pt(v)dvdu

+
1
2

∫ ∞

x

1
u

pt(u)du. (15)

In reference [17] it was shown that the corresponding equi-
librium distribution is the Gamma distribution with shape
parameter 1

2 :

pw(x) =
1√

2wπx
e−

x
2w ,

and convergence of the iterations (14) to the equilibrium
distribution was proved.

The mixed model proposed in [9] combines the Imme-
diate Exchange model and the Directed Random Market
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model as follows: for a fixed parameter μ ∈ [0, 1], when two
agents interact, with probability μ a unidirectional money
transfer (as in the Directed Random Market model) is
carried out, and with probability 1− μ a bidirectional ex-
change (as in the Immediate Exchange model) is carried
out.

In reference [9] the mixed model was investigated by
simulations, and it was observed that the resulting wealth
distribution is very well fitted by a Gamma distribution
with shape parameter α = 21−2μ. However the authors did
note some deviations from the Gamma distribution. In the
extreme cases μ = 0, μ = 1, where the model reduces to
the Immediate Exchange and to the directed random mar-
ket models, respectively, we indeed have the equilibirium
distributions with shape parameter α = 21−2μ, as proved
above and in reference [17]. However, as we will show be-
low, for μ ∈ (0, 1) the equilibrium distribution is not a
Gamma distribution.

The evolution of the wealth distribution for the mixed
model will be given by pt+1 = TM [pt], with

TM [p] .= μTD[p] + (1 − μ)T [p],

where T is defined by (6) and TD by (15). To find the equi-
librium distributions we need to solve TM [p] = p, that is:

p = μTD[p] + (1 − μ)T [p]. (16)

In reference [17] it was shown that, setting p̂(s) = L[p](s),
we have:

L[TD[p]](s) =
1
2s

[p̂(s) + 1]
∫ s

0

p̂(s′)ds′

and in Section 3 we showed that

L[T [p]](s) =
(

1
s
·
∫ s

0

p̂(s′)ds′
)2

,

hence applying the Laplace transform to both sides of (16)
gives

p̂(s) = μ
1
2s

[p̂(s) + 1]
∫ s

0

p̂(s′)ds′

+ (1 − μ)
(

1
s

∫ s

0

p̂(s′)ds′
)2

. (17)

To solve the functional equation (17), we define

h(s) =
1
s

∫ s

0

p̂(s′)ds′,

so that
p̂(s) = [sh(s)]′ = sh′(s) + h(s), (18)

and (17) becomes

sh′(s) + h(s) = μ
1
2

[sh′(s) + h(s) + 1]h(s)

+ (1 − μ)(h(s))2,

or, after rearrangement,

h′(s) =
2 − μ

s

[h(s) − 1] h(s)
2 − μh(s)

. (19)

This separable differential equation can be solved, but
only in implicit form:

(1 − h(s))2−μ = Cs2−μ(h(s))2. (20)

(20) and (18) define p̂(s), from which the equilibrium den-
sities p(x) are obtained by Laplace inversion. However, ex-
cept in the cases μ = 0, 1, one cannot solve (20) for h(s)
in a reasonably explicit form.

To verify that the equilibrium distribution is not a
Gamma distribution when μ �= 0, 1, we show that the
moments of the equilibrium distribution cannot be equal
to those of a Gamma distribution. The same idea was
used in [13] with regard to the Chakraborti-Chakrabarti
model [12]. We compute the moments of integer order
of the equilibrium distribution p, Mk(p) =

∫ ∞
0

p(x)xkdx.
By (18) we have:

Mk(p) = (−1)kp̂(k)(0) = (−1)k(k + 1)h(k)(0). (21)

Thus h(0) = 1, h′(0) = − 1
2M1(p) = −w

2 . By successively
differentiating (19) and sending s → 0, we recursively
compute the derivatives h(k)(0), 2 ≤ k ≤ 4. By (21) these
computations give:

M1(p) = w, M2(p) =
3

2 − μ
w2,

M3(p) = 3
4 + μ

(2 − μ)2
w3, M4(p) = 5

μ2 + 8μ + 12
(2 − μ)3

w4.

Denoting by q(x) = 1
βαΓ (α)x

α−1e−
x
β the density of a

Gamma distribution, its moments are given by:

Mk(q) = βk
k−1∏
j=0

(α + j). (22)

If we wish that M1(q) = M1(p), M2(q) = M2(p) we need
to take α = 2−μ

1+μ , β = 1+μ
2−μ w. This gives

M3(q) = 3
4 + μ

(2 − μ)2
w3, M4(q) = 3

2μ2 + 13μ + 20
(2 − μ)3

w4.

While we have Mk(p) = Mk(q), 1 ≤ k ≤ 3 (for the first
two this is true by design, while for the third moment
it is an interesting “coincidence”), the fourth moment al-
ready differs (unless μ = 0, 1), proving the equilibrium
distribution is not a Gamma distribution.

Let us note that the Gamma distribution we fitted
above by equating the first two moments gave us shape
parameter α = 2−μ

1+μ , while in [9] the fit α = 21−2μ was
given. If one looks at these two expression in the range
μ ∈ [0, 1], one sees they have very close values. Of course
neither of these expressions yields the true equilibrium
distribution for the mixed model, since, as shown above,
this equilibrium distribution is not Gamma.
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6 Conclusion

The Immediate Exchange model, recently put forward by
Heinsalu and Patriarca [9], is a natural addition to the ex-
isting collection of kinetic exchange models. In this work
we have developed an analytical approach to this model,
by formulating its infinite-population version. This has
enabled us to rigorously prove the fact that the equilib-
rium distribution of the Immediate Exchange model is a
Gamma distribution with shape parameter 2, a result ob-
tained in reference [9] by means of numerical simulation.
We have also proved the convergence of the wealth distri-
bution to this equilibrium distribution, starting from an
arbitrary initial wealth distribution.

As noted in the introduction, there exist kinetic
exchange models, such as the Chakraborti-Chakrabarti
model [12], which produce equilibrium distributions which
are very well fitted by a Gamma distribution, but for
which subsequent analytical study has revealed that the
equilibrium distribution is not precisely Gamma [13], and
indeed no closed form for this distribution is known. By
contrast, for the Immediate Exchange model the fact that
the equilibrium distribution is exactly Gamma is now
established.

We have also studied a more general “mixed” model
proposed in reference [9], in which either bi-directional or
uni-directional wealth exchanges occur, each with a cer-
tain probability. For this model we have proved that the
equilibrium distribution is not Gamma, despite the fact
that it can be closely fitted by a Gamma distribution.

In closing, we make some general remarks on the
analytical study of kinetic exchange models. Such study
has two distinct stages. The first stage involves the
formulation of the infinite-population version of the
model as an iterative process on a space of probability
distributions, hence obtaining a functional equation for
the equilibrium distributions corresponding to the model
(the fixed points of the iterative process). This stage can
always be carried out. The second stage is investigating
the resulting functional equation in order to characterize
the equilibrium distributions. Here there is no guarantee
that an explicit solution of the functional equation can be
found: there is no a priori reason that the equilibrium dis-
tribution will be expressible in terms of familiar functions.
Indeed it appears that an explicit expression is possible
only for a handful of models (such as the Immediate
Exchange model, as shown here). However the fact that
an explicit solution may not exist does not mean that the
equilibrium distribution is not amenable to mathematical
analysis: it may be possible to use the functional equation
directly to derive qualitative and quantitative properties
of the equilibrium distribution’s probability density.
For example in [23] one can find results regarding the
decay of the tail of equilibrium distributions, which apply
to general classes of models. It would be of great interest to

prove mathematically, for particular models for which an
explicit expression for the equilibrium disribution is un-
availlable, that the density of the equilibrium distribu-
tion is smooth, or monotone decreasing, or unimodal. The
mathematical study of equilibrium distributions of kinetic
exchange models in cases when it cannot be represented by
an explicit expression thus seems to offer many challenges
and is a potentially rich field for further developments.
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20. J.L. López, R. López-Ruiz, X. Calbet, J. Math. Anal. Appl.
386, 195 (2012)
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