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Abstract. We use the time-dependent Ginzburg-Landau (TDGL) equation with thermal noise to calculate
the transverse thermoelectric conductivity αxy describing the Nernst effect and magnetization Mz in type-II
superconductor in the vortex-liquid regime. The nonlinear interaction term in dynamics is treated within
self-consistent Gaussian approximation. The expressions of the transverse thermoelectric conductivity and
magnetization including all the Landau levels are presented in explicit form which are applicable essentially
to the whole phase. Our results are compared to recent simulation data on high-Tc superconductor.

1 Introduction

The observation of large Nernst signal (eN ) in cuprates at
temperatures much greater than Tc [1] has drawn much
attention to the Nernst effect over the past decade. The
transverse electric field is induced in a metal under mag-
netic field by the temperature gradient ∇T perpendicular
to the magnetic field H, which is a phenomenon known
as Nernst effect [2]. In the normal state and in the vortex
lattice or glass states it is typically small [3], while in the
mixed state the Nernst effect is larger due to vortex mo-
tion. Since then, an extensive investigation on the subject
has been done, both experimentally [1,4–7] and theoreti-
cally [2,8–12], producing different proposals on the origin
of the phenomenon. Most of these competing interpreta-
tions focus on the dynamics of either vortices [1,2,4,8–12]
or quasiparticles [13].

In recent years, much attention has been paid to the
anomalously enhanced positive Nernst signal observed
well above Tc in La2−xSrxCuO4 in a wide range of dop-
ing x [1,4,5]. Wang et al. [1,4] argued that the large Nernst
signal supports a scenario [14] where the superconducting
order parameter does not disappear at Tc but at a much
higher (pseudogap) temperature. Theory of the Nernst
effect based on the phenomenological TDGL equations
with thermal noise describing strongly fluctuating super-
conductors was developed long time ago [2,15,16]. Recent
theoretical investigations of the Nernst effect in fluctuat-
ing superconductors include the analysis of Gaussian fluc-
tuations above the mean-field transition temperature [8]
and a Ginsburg-Landau (GL) model with interactions be-
tween fluctuations of the order parameter [9]. These mod-
els are good in agreement with experiments on thin amor-
phous samples [7] and with cuprate data in overdoped and
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optimally doped samples. More recently, there are some
closely related theoretical studies of the strong supercon-
ducting fluctuations in the 2-dimensional cuprates based
on: Quantum Monte Carlo simulations [17], renormal-
ization group scaling [18], diagrammatic expansion [19].
Podolsky et al. [10] numerically simulated the two dimen-
sional TDGL equation with thermal noise and obtained
results of the transverse thermoelectric conductivity αxy

and the diamagnetic response Mz in 2D at low T and an-
alytic results at high T , and found the ratio |Mz|/Tαxy

reaches a fixed value at high temperatures. However, the
result of the transverse thermoelectric conductivity αxy [8]
was only lowest Landau level contribution and the simu-
lation of this system, even in 2D, is not easy and it was
one of our goals to supplement it with a reliable analytical
expression including all Landau levels in the region of the
vortex liquid.

In this paper we obtain explicit expressions for the
transverse thermoelectric conductivity αxy and the mag-
netization Mz in 2D by using TDGL equation with ther-
mal noise. The interaction term in dynamics is treated
within self-consistent Gaussian approximation sufficient
for description of the vortex liquis. Our results summing
all Landau levels in an explicit form are compared with
recent simulation data in the cuprates.

2 Relaxation dynamics and thermal
fluctuations in 2D

We can start with the GL free energy in 2D:

FGL = s′
∫
d2r

{
�

2

2m∗ |DΨ |2 + a|Ψ |2 +
b′

2
|Ψ |4

}
, (1)

where s′ is the order parameter effective “thickness”, the
covariant derivatives are defined by D ≡ ∇ + i(2π/Φ0)A,
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where the vector potential describes constant and homo-
geneous magnetic field A = (−By, 0) and Φ0 = hc/e∗ is
the flux quantum with e∗ = 2 |e|. For simplicity we assume
a = αTmf

c (t− 1), tmf ≡ T/Tmf
c , this critical temperature

Tmf
c depends on UV cutoff, τc, of the “mesoscopic” or

“phenomenological” GL description, specified later. The
two scales, the coherence length ξ2 = �

2/(2m∗αTc), and
the penetration depth, λ2 = c2m∗b′/(4πe∗2αTc) define the
GL ratio κ ≡ λ/ξ, which is very large for high-Tc supercon-
ductors. In this case of strongly type-II superconductors
the magnetization is by a factor κ2 smaller than the ex-
ternal field for magnetic field larger than the first critical
field Hc1 (T ), so that we take B ≈ H .

In the presence of thermal fluctuations, which on the
mesoscopic scale are represented by a complex white
noise [20,21], dynamics of the order parameter (called
TDGL) reads:

�
2γ′

2m∗DτΨ = − 1
s′
δFGL

δΨ∗ + ζ, (2)

where Dτ ≡ ∂/∂τ − i(e∗/�)Φ is the covariant time deriva-
tive, with Φ = −Ey being the scalar electric potential de-
scribing the driving force in a purely dissipative dynamics.

The variance of the thermal noise, determining the
temperature T is taken to be the Gaussian white noise:

〈ζ∗(r, τ)ζ(r′, τ ′)〉 =
�

2γ′

m∗s′
kBTδ(r− r′)δ(τ − τ ′). (3)

The total heat current density in GL model [2,8,15,16] is:

Jh = − �
2

2m∗

〈(
∂

∂τ
+ i

e∗

�
φ

)
Ψ∗

(
∇ + i

2π
Φ0

A
)
Ψ

〉
+ c.c.

(4)
Throughout most of the paper we use the coherence
length ξ as a unit of length, Hc2 = Φ0/2πξ2 as a unit
of the magnetic field, τGL = γ′ξ2/2 as a unit of time,
EGL = Hc2ξ/(cτGL) as a unit of electric field. After
rescaling by x → ξx, y → ξy, s′ → ξs, τ → τGLτ, B →
Hc2b, E → EGLE , T → tmfTmf

c , Ψ2 → (2αTmf
c /b′)ψ2,

the dimensionless Boltzmann factor (1) in these units is:

FGL

T
=

s

ωt

∫
d2r

{
1
2
|Dψ|2 − 1 − tmf

2
|ψ|2 +

1
2
|ψ|4

}
,

(5)
and equation (2) can be written as:

(
Dτ − 1

2
D2

)
ψ − 1 − tmf

2
ψ + |ψ|2ψ = ζ. (6)

Here the covariant time derivative is Dτ = ∂
∂τ + iEy,

the covariant derivatives are defined by Dx = ∂
∂x − iby,

Dy = ∂
∂y . The Langevin white-noise forces ζ are correlated

through
〈
ζ
∗
(r, τ)ζ(r′, τ ′)

〉
= 2ωtmfδ(r − r′)δ(τ − τ ′)

with ω =
√

2Gi2Dπ, where the Ginzburg number is
defined by:

Gi2D =
1
2
(8e2κ2ξ2kBT

mf
c /c2�2s′)2.

The dimensionless heat current density along x-direction
is Jh

x = Jh
GLj

h
x where

jh
x = −1

2

〈(
∂

∂τ
− iEy

)
ψ∗

(
∂

∂x
− iby

)
ψ

〉
+ c.c., (7)

with Jh
GL = �cHc2/(2πe∗ξκ2τGL) being the unit of the

heat current density. Consistently the transverse ther-
moelectric conductivity will be given in units of αGL =
Jh

GL/EGL = �c2/(2πe∗ξ2κ2).

3 The self-consistent Gaussian approximation
for vortex-liquid phase

The cubic term in the TDGL equation (6) will be treated
in the self-consistent Gaussian approximation [22] by
replacing |ψ|2ψ with a linear one 2

〈|ψ|2〉ψ
(
Dτ − 1

2
D2 − b

2

)
ψ + εψ = ζ, (8)

leading the “renormalized” value of the coefficient of the
linear term:

ε = −ah + 2
〈|ψ|2〉 , (9)

where the constant is defined as ah = (1 − tmf − b)/2.
The relaxational linearized TDGL equation with a

Langevin noise, equation (8), is solved using the retarded
(G = 0 for τ < τ ′) Green function (GF) G(r, τ ; r′, τ ′):

ψ(r, τ) =
∫
dr′

∫
dτ ′G(r, τ ; r′, τ ′)ζ(r′, τ ′). (10)

The GF satisfies
{
Dτ − 1

2
D2 − b

2
+ ε

}
G(r, r′, τ − τ ′) = δ(r− r′)δ(τ − τ ′).

(11)
The GF is a Gaussian

G (r, r′, τ ′′) = C(τ ′′)θ (τ ′′) exp
[
ib

2
X (y + y′)

]

× exp
[
−X

2 + Y 2

2β
− νX

]
, (12)

with

X = x− x′ − ντ ′′, Y = y − y′, τ ′′ = τ − τ ′.

θ (τ ′′) is the Heaviside step function, C and β are
coefficients.
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Substituting the ansatz (12) into equation (11), we ob-
tain following conditions:

ε− b

2
+
ν2

2
+

1
β

+
∂τC

C
= 0, (13)

∂τβ

β2
− 1
β2

+
b2

4
= 0. (14)

Equation (14) determines β, subject to an initial condition
β(0) = 0,

β =
2
b

tanh
(
bτ ′′

2

)
, (15)

while equation (13) determines C:

C =
b

4π
exp

{
−

(
ε− b

2
+
ν2

2

)
τ ′′

}
sinh−1

(
bτ ′′

2

)
. (16)

The normalization is dictated by the delta function term
in definition of the Green function equation (11).

The thermal average of the superfluid density (density
of Cooper pairs) without electric field can be expressed
via the Green functions〈

|ψ(r, τ)|2
〉

= 2ωtmf

∫
dr′

∫
dτ ′′ |G(r, r′, τ ′′)|

=
ωtmfb

2π

∫ ∞

τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh(bτ ′′)
. (17)

Substituting it into the “gap equation”, equation (9), the
later takes a form

ε = −ah +
ωtmfb

π

∫ ∞

τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh(bτ ′′)
. (18)

In order to absorb the divergence into a renormalized
value ar

h of the coefficient ah, it is convenient to make
an integration by parts in the last term for small τc

b

∫ ∞

τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh(bτ ′′)

= −
∫ ∞

0

dτ ′′ ln[sinh(bτ ′′)]
d

dτ ′′

[
exp {− (2ε− b) τ ′′}

cosh(bτ ′′)

]

− ln(bτc). (19)

Then equation (18) can be written as:

ε = −ar
h − ωt

π

∫ ∞

0

dτ ′′ ln[sinh(bτ ′′)]

× d

dτ ′′

[
exp {− (2ε− b) τ ′′}

cosh(bτ ′′)

]
− ωt

π
ln(b), (20)

where

ar
h = ah +

ωtmf

π
ln(τc) =

1 − b− T/Tc

2
,

t = T/Tc and ω =
√

2Gi2Dπ, where

Gi2D =
1
2

(
8e2κ2ξ2kBTc/c

2
�

2s′
)2
,

(Tmf
c is now replaced by Tc after renormalization). The

formula is cutoff independent.

4 Theoretical calculation and comparison

4.1 The transverse thermoelectric conductivity

The heat current density, defined by equation (7), can be
expressed via the Green functions as:

jh
x = −1

2

∫
dr′

∫
dτ ′

(
∂

∂τ
− iEy

)
G∗ (r, r′, τ − τ ′)

×
(
∂

∂x
− iby

)
G (r, r′, τ − τ ′) + c.c., (21)

where G (r, r′, τ − τ ′) as the Green function of the lin-
earized TDGL equation (6) in the presence of the scalar
potential.

Substituting the full Green function (12) into expres-
sion (21), and performing the integrals in linear response
to electric field, we obtain:

jh
x =

ωtb

2πs
E

∫ ∞

0

dτ ′′
exp {− (2ε− b) τ ′′}

cosh2
(

bτ ′′
2

) . (22)

In physical units the current density reads:

Jh
x = αGLE

ωtb

2πs

∫ ∞

0

dτ ′′
exp {− (2ε− b) τ ′′}

cosh2
(

bτ ′′
2

) . (23)

By an Onsager relation, αxy can be obtained from the
heat and magnetization currents response to an electric
field [2,8,23]

αxy =
1
T

(
Jh

x

E
+ cMz

)
. (24)

Magnetization Mz will be shown in the following section.

4.2 Magnetization

In order to calculate magnetization, we substitute expres-
sions (10) and (12) into (5), the Boltzmann factor can be
written as:

f =
FGL

T
= −ωtb

2

4πs

∫ ∞

τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh2(bτ ′′)

+
ωtb2

8πs

∫ ∞

τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh2( bτ ′′
2 )

− 1 − t

2
ωtb

2πs

∫ ∞

τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh(bτ ′′)

+
(
ωtb

2πs

∫ ∞

τc

dτ ′′
exp {− (2ε− b) τ ′′}

sinh(bτ ′′)

)2

. (25)

To extract the divergent part, one can make an integration
by parts for small τc, the Boltzmann factor (25) becomes

f = F1(ε, b) − F2(ε, b) − 1 − t

2
F0(ε, b) +

ωt

2πs
F 2

0 (ε, b)

− ωt

8πs
1
τc

+
1 − t

2
ln (τc) − ωt

2πs
ln2 (τc) , (26)
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where

F1(ε, b) = −ωtb

4πs

∫ ∞

0

dτ ′′
1

sinh(bτ ′′)

× d

dτ ′′

[
exp {− (2ε− b) τ ′′}

cosh(bτ ′′)

]
, (27)

F2(ε, b) = −ωtb

4πs

∫ ∞

0

dτ ′′
1

sinh( bτ ′′
2 )

× d

dτ ′′

[
exp {− (2ε− b) τ ′′}

cosh( bτ ′′
2 )

]
, (28)

F0(ε, b) = −ωtb

2πs

∫ ∞

0

dτ ′′ ln [sinh(bτ ′′)]

× d

dτ ′′

[
exp {− (2ε− b) τ ′′}

cosh(bτ ′′)

]
− ln (b) . (29)

Magnetization can be obtained by taking the first deriva-
tive of free energy (26) with respect to magnetic field b

Mz = − Hc2

2πκ2

∂f

∂b

= − Hc2

2πκ2

[
∂F1(ε, b)

∂b
− ∂F2(ε, b)

∂b
− 1 − t

2
∂F0(ε, b)

∂b

+
ωt

πs
F0(ε, b)

∂F0(ε, b)
∂b

]
. (30)

4.3 Discussion and comparison with simulation

The analytical expressions (24) and (30) are the main
result of the present paper. We compare the transverse
thermoelectric conductivity equation (24) and the ratio
|Mz| /Tαxy with the simulation results in the same model
of Podolsky et al. [10] on underdoped La2−xSrxCuO4 with
Tc = 28 K. The comparison is presented in Figures 1
and 2. The parameters we obtained from the fit are:
Hc2(0) = 70 T (corresponding to ξ = 21.7 Å), κ = 62,
s′ = 7 Å. The value Hc2 (T ) does match the result of
of Podolsky et al. [10]. With these values, our caculation
gives good agreement with numerical simulation in the
same model [10] as one would expect. The simulation of
this system, even in 2D, is difficult and our expressions are
supplemental with simulation results only when necessary.

5 Conclusion

We calculated the transverse thermoelectric conductiv-
ity αxy and the magnetization Mz in 2D under magnetic
field in the presence of strong thermal fluctuations on
the mesoscopic scale in linear response. Time dependent
Ginzburg-Landau equations with thermal noise describ-
ing the thermal fluctuations is used to study the vortex-
liquid regime. The nonlinear term in dynamics is treated
using the renormalized Gaussian approximation. We ob-
tained the analytically explicit expressions for the trans-
verse thermoelectric conductivity αxy and the magnetiza-
tion Mz including all Landau levels, so that the approach

Fig. 1. Points are the transverse thermoelectric conductivity
for different temperatures in reference [10]. The solid lines are
the theoretical values of the transverse thermoelectric conduc-
tivity calculated from equation (24) with fitting parameters
(see text).

Fig. 2. Points are the ratio |Mz| /Tαxy for different tempera-
tures in reference [10]. The solid lines are the theoretical values
of the ratio |Mz| /Tαxy calculated from equations (24) and (30)
with same fitting parameters.

is valid for arbitrary values of the magnetic field not too
close to Hc1(T ). Our results were compared to the simu-
lation data on underdoped La2−xSrx CuO4. The compari-
son is in good qualitative and even quantitative agreement
with simulation data.
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