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Abstract. Three different metastable nonergodic states of a dispersed nonwetting liquid (water) in the
Fluka 100 C8 and Fluka 100 C18 disordered porous media, as well as transitions between these states
under variation of the temperature and the degree of filling, have been qualitatively described. It has
been shown that the appearance of such states is due to spatial variations of the number of the nearest
neighbors because of the broadening of the pore size distribution function f(R), fluctuations of various
local configurations of neighbors in the system of pores, and fluctuations of a configuration of a pore and
its environment consisting of filled and empty pores on a percolation cluster. These states and transitions
are caused by the competition between the effective repulsion of the nonwetting liquid from the wall of
the pore, which is responsible for the “extrusion” of the liquid from the pore, and the effective collective
multiparticle attraction of the liquid cluster in the pore to clusters in the neighboring connected pores.
The theoretical dependences obtained make it possible to qualitatively describe experimental data.

1 Introduction

A stepwise transition from almost complete extrusion to
complete entrapment at a small change in the degree of
filling Δθ ∼ 0.05 near the critical value θ = 0.9 (disper-
sion transition) was observed in a system consisting of a
nonwetting liquid (water) and a disordered nanoporous
medium (hydrophobized silica gel Libersorb 23 (L23)) [1].
This means that the nonwetting liquid transits to a “wet-
ting” state at a certain degree of filling. The critical be-
havior of the system is also observed under variation of the
temperature. With an increase in the temperature, com-
plete entrapment changes to almost complete extrusion at
Tc ≈ 293 K. Systems of this type with strong nonlinear
response to changing external conditions are interesting
for fundamental science and applications. They can ex-
hibit a nonergodic behavior [2] and can be used, e.g., for
controlled release, for example, medicines under variation
of the temperature, passive fire protection systems, and in
materials with controlled penetrability for liquids or gases.

It was shown in reference [1] that a dispersed nonwet-
ting liquid (water) in the disordered nanoporous medium
L23 can be in two wetting states. According to [3], one
of these states at temperatures above the critical value
T > Tc is due to the breaking of paths for the extrusion
of the liquid at the decomposition of the infinite perco-
lation cluster of filled pores. The other state of the dis-
persed liquid is metastable and is separated by a finite
potential barrier from the state of the empty medium im-
mersed in the liquid. In this work, these two states were
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observed for another system consisting of the disordered
nanoporous medium Fluka 100 C18 and water. For porous
media Fluka 100 C8 and Fluka 100 C18, we also revealed
another state of the dispersed liquid at T < Tc for which
the fraction of the dispersed liquid (θ2) in the nanoporous
medium is proportional to the degree of filling θ.

It is known [4–15] that the intrusion of a nonwet-
ting liquid into a porous medium requires excess pressure,
which can be estimated as the Laplace pressure. When
the excess pressure vanishes, the non-wetting liquid should
flow out of the porous medium. However, it is known that,
for many porous media and liquids such as water, aque-
ous solutions of salts and organic materials, and liquid
metals [4–11,16–18], a part of a liquid or the entire liquid
after complete filling can remain in the porous medium
after the removal of excess pressure. The entrapment
of a nonwetting liquid during the experiment time was
observed when studying the hysteresis of the intrusion-
extrusion of the liquid in disordered porous media such
as modified silica gels PEP300, PEP100, C8 (C18), C8W
(Waters), KSK-G, Libersorb 23, Fluka 60 C8, and Fluka
100 C8 [4–8,10,15–18], as well as ordered porous zeolites,
MCM-41, and porous glasses CPG and Vycor [10–14].

The volume fraction of the liquid remaining in the
porous medium can be from 1% to 100% and this vol-
ume can remain unchanged in the observation time from
several hours to several months for some systems [16].
However, the dependence of the volume of the liquid
remaining in the porous medium on the observation
time was revealed in other experiments [18]. According
to [19,20], such systems can be considered as nonergodic.
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The entrapment of the nonwetting liquid was observed for
disordered porous materials with various porosities, wide
and narrow pore size distributions, and various surface
energies of the liquid and interfaces between the liquid
and the frame of the porous medium. The volume of the
trapped liquid depends on the temperature [6].

The authors of [21,22] assumed that entrapment is due
to the existence of configurations of pores that consist of,
e.g., a large pore surrounded by smaller pores connect-
ing with the large pore in a disordered porous medium.
Then, after the filling of the porous medium and the sub-
sequent reduction of excess pressure (for estimate, Laplace
pressure), small pores become empty and the liquid can-
not flow out of the large pore because possible paths for
its flow are broken. An increase in the volume of the liq-
uid (mercury) trapped in a silica gel with an increase in
the size of granules is attributed to the existence of such
configurations of neighboring pores [21,22]. The authors
of [21,23] introduced a lattice Hamiltonian, which con-
tains two sets of the occupation numbers, to describe the
intrusion-extrusion hysteresis and entrapment after the
complete filling. One set describes the occupation of a
site of the lattice by either a pore or a frame. The other
set corresponds to an empty or liquid-filled pore. In the
performed Monte Carlo studies of entrapment with the
Glauber-Kawasaki algorithm, it was also assumed that
the liquid flows from a filled pore to a neighboring empty
pore through vapor transport. The performed calculations
qualitatively describe the observed increase in the volume
of mercury trapped in pores for CPG and Vycor glasses
with the reduction of the experiment time. However, it is
noteworthy that the assumption made in references [21,23]
of transport through gas diffusion contradicts the observed
liquid extrusion rate after the removal of excess pres-
sure in the experiments with water and the L23 porous
medium [24].

The stepwise dependence of the fraction of the liquid
trapped in the porous medium on the degree of filling
revealed in reference [1] means that this phenomenon is
associated with the interaction between liquid clusters in
neighboring pores. The surface energy of two clusters in
connected neighboring pores is lower than the surface en-
ergy of two clusters separated by empty pores by the sur-
face energy of the liquid-gas interface absent in the mouth
of the throat connecting the neighboring filled pores. The
decrease in the surface energy of two liquid clusters in
neighboring pores can be treated as the negative energy
of their interaction, i.e., as the effective “attraction” be-
tween clusters, which can result in their “condensation”
and the appearance of a metastable state of a liquid in
a disordered nanoporous medium. Consequently, possible
explanation of the dependence of the degree of entrapment
of the liquid in the disordered porous medium on the de-
gree of filling can be found by rejecting assumptions of
intrusion-extrusion in individual “noninteracting” pores
according to the Laplace equation and various its modi-
fications [10,21,25,26]. For this reason, it can be thought
that the existence of the critical degree of filling and the
critical temperature means that liquid clusters in neigh-

boring pores exhibit collective properties characteristic of
strongly interacting systems of particles. The inclusion of
the correlation interaction between liquid clusters allows
the description of thermal effects and temperature depen-
dence of the pressure of intrusion and extrusion of the
nonwetting liquid in the disordered porous medium [27].

A model for the description of the dispersion transi-
tion in the disordered porous medium with a narrow pore
size distribution was proposed in references [2,3]. In this
model, the entrapment of the liquid in the porous medium
is due either to the breaking of extrusion paths or to the
dependence on the temperature and the degree of filling of
the average potential barrier for extrusion. States appear-
ing because of the breaking of the infinite cluster can be
considered as nonergodic because they are separated from
the ground state by an infinite potential barrier within the
considered extrusion model through the system of filled
pores. States with a finite potential barrier are metastable
and (or) quasi-nonergodic [28]. The height of this barrier is
determined by the multiparticle interaction between liq-
uid clusters in neighboring pores that is averaged over
variations of configurations of filled and empty pores with
various sizes in the space of the disordered medium. This
barrier is equal to the difference between the energy of
the multiparticle interaction between liquid clusters in the
configuration and the energy of the interaction of a cluster
with the frame of the medium in pores on the shell of the
infinite percolation cluster of filled pores. The equality of
these energies is a condition of the spontaneous extrusion
of the liquid from the nanoporous medium. This approach
makes it possible to calculate, within the analytical per-
colation theory, and to describe the experimental depen-
dences of the fraction of the trapped liquid θ2 on the de-
gree of filling θ1 and the temperature T for the L23-water
system.

However, significantly different dependences of the vol-
ume of the trapped liquid on the degree of filling θ1 are
discussed in this work for systems consisting of distilled
water and hydrophobized silica gels Fluka 100 C8 and
Fluka 100 C18 close in parameters (Sect. 2). In particu-
lar, the stepwise dependence of the fraction of the trapped
liquid θ2 on the degree of filling θ1 is not observed for the
Fluka 100 C8-water system in the temperature range un-
der study. In contrast to the L23-water system, a new state
of the trapped liquid that is characterized by a linear in-
crease in θ2 with an increase in the degree of filling θ1 was
observed. The Fluka 100 C18-water system has two crit-
ical temperatures Tc1 ≈ 330 K and Tc2 ≈ 340 K. Above
Tc1, a transition occurs from the state of the system in
which θ2 ∼ θ1 to the state in which the dispersion tran-
sition occurs at θ1 = θc ≈ 0.5 (T ≈ 330 K). Above Tc2,
this state changes to the state of small entrapment inde-
pending of the temperature and the degree of filling θ1.
This behavior qualitatively differs from the behavior of
the previously studied L23-water system [1].

Although the behaviors of all three systems under
study are significantly different, these observed effects can
be qualitatively described with allowance for features of
the multiparticle interaction between liquid clusters in the
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disordered nanoporous medium with a wide pore size dis-
tribution and percolation nature of extrusion (Sect. 3).

To describe three different observed states of the non-
wetting liquid in disordered porous media under study, a
wide pore size distribution characteristic of them should
be taken into account within the theory developed in ref-
erence [2]. The wide distribution requires the inclusion of
the main property of a disordered nanoporous medium,
i.e., spatial variations of the number of nearest neighbors.
As a result, not only the distribution of pores over sizes
and variations of the number of neighbors of filled and
empty pores on the shell of the percolation cluster, but
also variations (fluctuations) of the number of neighbors
around a filled pore in the space of the porous medium
were taken into account when calculating the averaged
potential barrier for extrusion.

The volume of the trapped liquid at an arbitrary de-
gree of filling was calculated within the analytical perco-
lation theory for the ground state of the system with the
infinite percolation cluster of filled pores in the disordered
porous medium with the connected structure of pores. In
this state, extrusion from any pore belonging to the infi-
nite percolation cluster of filled pores is ensured (Sect. 3).
States of the nonwetting liquid, which is dispersed in the
disordered porous medium, are related within the pro-
posed model to the properties of disordered media such
as pore size distributions, local configurations of pores in
the porous medium and their characteristics such as the
number of nearest neighbors because of the wide pore size
distribution (Sect. 3). The volume of the trapped liquid
independent of the degree of filling at the “break” of extru-
sion paths is calculated in Section 3. The resulting quali-
tative dependences are compared to experimental data.

2 The data under study

2.1 Materials and methods

The entrapment of the nonwetting liquid, distilled wa-
ter, was observed in the experiments with two disordered
nanoporous media Fluka 100 C8 and Fluka 100 C18.
These hydrophobized media have the same material of
the frame and are produced by Sigma-Aldrich. The Fluka
100 C8 medium was obtained in one of two produced
variants and it is Silica gel 100 C8, Reversed phase
# 60759-50G (Sigma-Aldrich), whose surface is modified
with 8-alkylsilane. The Fluka 100 C18 medium (Silica gel
100 C18 – Reversed phase # 60756-50G, Sigma-Aldrich)
is modified with 18-alkylsilane.

The characteristics of the porous media: specific vol-
ume of pores Vp, average radius 〈R〉, and porosity (ϕ) are
briefly presented in Table 1. Also in Table 1 character-
istics of the L23 silica gel similarly hydrophobized and
previously studied in reference [1] are included. Accord-
ing to Table 1, Fluka 100 C8 and Fluka 100 C18 have the
same average radius of pores, but volume of pores, and
porosity for the Fluka 100 C18 medium are smaller than
the respective quantities for Fluka 100 C8. The porosity
(ϕ) of these media is smaller than that for L23.

Fig. 1. Pore size distributions for three nanoporous media
under investigation obtained by the BJH method.

Table 1. Characteristics of porous media.

Fluka 100 C8 Fluka 100 C18 L23

Vp, cm3/g 0.56 ± 0.02 0.46 ± 0.02 0.66 ± 0.02

〈R〉, nm 3.9 ± 0.2 3.9 ± 0.2 4.9 ± 0.2

ϕ 0.49 ± 0.02 0.42 ± 0.02 0.66 ± 0.02

The pore size distribution functions f(R) for the
porous media, determined from nitrogen desorption
isotherms by the BJH method [29,30], are shown in Fig-
ure 1 in comparison with the narrower pore distribution
for the L23 medium. According to [29], the dependences
f(R) shown in Figure 1 can be discussed as those provid-
ing only a qualitative representation of these distributions.
Within this approach, according to Figure 1, both media
under study have the same average radius corresponding
to the maximum of the distribution function, whereas the
number of pores with sizes R 〈R〉 and smaller for the
Fluka 100 C8 medium is slightly larger than that for Fluka
100 C18. According to [31–33], this qualitative difference
between the distribution functions can be attributed to
the different lengths of the modifier molecules of alkylsi-
lane and, as a result, to a larger blocking of small pores
by long molecules (C18) and to a close, but larger rela-
tive number of large pores. As will be shown in Section 3,
the mentioned differences between the parameters of the
porous media under study make it possible to propose
an explanation of the properties of various detected “wet-
ting” states of the dispersed liquid in the Fluka 100 C8
and Fluka 100 C18 media.

In our experiments, it was determined the dependence
of the volume fraction of pores filled with the trapped
liquid on the volume fraction of pores previously filled with
the liquid. The method of study was similar to the method
used in mercury [29] or water [5,26] porometry and more
detailed measurement procedure and high-pressure bench
was described in references [1,5].
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2.2 Results

Figure 2 shows the dependences of the volume fraction of
pores θ2 filled with the trapped liquid on the degree θ1
of preliminary filling of pores in the (a) – (Fluka 100 C8-
water) system at temperatures of 293, 313, and 333 K
and (b) – (Fluka 100 C18-water) system at temperatures
of 293, 303, 313 323, 333, and 343 K. As can be seen
in Figure 2a, the volume fraction of pores filled with the
trapped liquid increases linearly with the degree of filling.
At temperatures of 293 and 313 K, the amount of the
trapped liquid is equal within the measurement error to
the amount of the liquid intruded into pores. An increase
in the temperature to 333 K does not change the linear
dependence θ2(θ1), but a tendency to a decrease in the
volume of the trapped liquid can be seen.

The dependences θ2(θ1) for the (Fluka 100 C18-water)
system are shown in Figure 2b for six temperatures 293,
303, 313, 323, 333, and 343 K. The dependences θ2(θ1) for
the temperatures of 293, 303, and 313 K are linear within
the measurement error and are similar to those obtained
for the (Fluka 100 C8-water) system. An increase in the
temperature from 313 to 323 K changes this dependence
from linear at 313 K to “stepwise” at 323 K. At the lat-
ter temperature, the volume fraction of pores filled with
the trapped liquid changes stepwise at the degree of pre-
liminary filling θ1 = θcr ≈ 0.63. The same singularity is
observed in the dependence θ2(θ1) at T = 333 K. An in-
crease in the temperature from 323 K to 333 K results in
an increase in the critical degree of filling θcr from 0.63 to
0.73. With a further increase in the temperature by 10 K
to 343 K, another change in the shape of the dependence
θ2(θ1) is observed. The quantity θ2 becomes practically
independent of the degree of filling and is θ2 ≈ 0.1 within
the measurement error.

Thus, the (Fluka 100 C8-water) system in the temper-
ature range under study exhibits one state of the trapped
nonwetting liquid for which the linear law θ2 = c θ1
(c = const.(T )) is valid throughout the entire range of
the degree of filling of the disordered porous medium
with the liquid. The (Fluka 100 C18-water) system in the
same temperature range exhibits three different states of
the dispersed liquid. One of them at low temperatures
T < 323 K is similar to that found for the (Fluka 100 C8-
water) system. The dispersed liquid in this system transits
to the second state at a temperature of T = 323 K and
the degree of filling θ1 = θcr ≈ 0.63. At smaller degrees
of filling θ1 < θcr, the linear law θ2 = c θ1 changes to the
law θ2 = const. in the temperature range where this state
is observed. The third state of the dispersed liquid was
observed at T > Tcr ≈ 338 K. The volume of the trapped
liquid in this state is independent of the degree of initial
filling of pores for all θ1 values under study. The second
and third states of the dispersed liquid trapped in the dis-
ordered porous medium were previously revealed in the
experiments with the (L23-water) system [1].

For comparison, Figure 3 shows the dependences
θ2(θ1) for the (Fluka 100 C18-water) and (L23-water) sys-
tems at the temperatures of 333 and 286 K, respectively.
It can be seen that the volume fraction of pores in these

(a)

(b)

Fig. 2. Dependence θ2(θ1) for the (a) (Fluka 100 C8-water)
system at temperatures of 293, 313, and 333 K; (b) (Fluka
100 C18-water) system at temperatures of 293, 303, 313 323,
333, and 343 K. Points – experimental data. The solid lines are
trends of the dependences.

systems at respective temperatures changes stepwise. This
indicates the appearance of the second described state in
these systems.

According to the pore size distribution functions F (R)
shown in Figure 1, the radius 〈R〉 corresponding to the
maximum of the distribution function is the same for both
Fluka 100 C8 and Fluka 100 C18 media, whereas the pore
size distribution for the former medium is wider than that
for the latter medium. The FWHM of the distribution
is δR/R ∼ 0.9 for Fluka 100 C8 and is δR/R ∼ 0.75
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Fig. 3. Dependences θ2(θ1) in the (Fluka 100 C18-water) and
(Libersorb 23-water) systems. Points – experimental data. The
solid lines are trends of the dependences.

for Fluka 100 C18. The most probable radius 〈R〉 for the
L23 medium is larger and the FWHM of the distribu-
tion δR/R ∼ 0.3 is several times smaller than the re-
spective values for the Fluka 100 C8 and Fluka 100 C18
media. These qualitative differences in the parameters of
the porous media under study, as will be shown in Sec-
tion 3, make it possible to propose the explanation of the
properties of the detected different “wetting” states of the
liquid dispersed in media.

3 Discussion of the experimental data

A model that provides the explanation of the dispersion
transition experimentally detected in reference [1] in a
narrow range of the degree of filling θ and in a narrow
temperature interval when the nonwetting liquid becomes
“wetting” was developed in references [2,3]. The proposed
description of this phenomenon is based on analytical
methods of percolation theory and the inclusion of the
“multiparticle interaction” of a liquid cluster in a filled
pore with liquid clusters in neighboring pores. The tran-
sition of some nanoclusters of the nonwetting liquid to
the “wetting” state is associated with a decrease in the
surface free energy owing to the collective interaction be-
tween liquid clusters. To describe the dispersion transition
in the L23 porous medium with the narrow pore distribu-
tion with the relative width ΔR

R ∼ 0.3, it was assumed
in reference [3] that ΔR

R � 1. At the same time, porous
media studied in this work have a wide pore size distri-
bution with the relative width ΔR

R ∼ 1 (Fig. 1). For this
reason, the model developed in references [2,3] was gen-
eralized to the case of wide pore size distributions. This
allows the explanation of the several wetting states of the
nonwetting liquid in the porous medium observed in this
work.

3.1 Physical picture of transitions of the nonwetting
liquid to a dispersed state of the disordered porous
medium with a wide pore size distribution

We consider a porous medium formed by a rigid frame in-
side which pores constitute the spatial structure of over-
lapping spheres with various sizes. This model of the
porous medium is a generalization of the model of ran-
domly distributed spheres that is widely used to describe
porous media [34]. In the model of randomly distributed
spheres, a unit pore is a spherical void with cuts (throats).
In this model, a “quantum” of the change in the volume
of the liquid in the medium at intrusion (extrusion) is
intrusion-extrusion for one pore. It is suggested that the
volume of throats is negligibly small as compared to the
volume of pores. When the liquid is intruded into a pore
and is extruded from it, menisci of the liquid are formed
in these throats. Pores can be filled only when they are
connected to each other through throats and to the sur-
face of the porous medium. This is the case if the poros-
ity of the medium is such that the system of pores in
it is above the percolation threshold ϕ > ϕc. For various
models of the porous medium, the percolation threshold is
ϕc = 0.16 ÷ 0.3 [35,36] and is characteristic of the porous
medium. The interconnection of pores is a result of the
appearance of an infinite (geometric) cluster consisting of
such pores at ϕ = ϕc. At a given pressure, only pores
whose radii are larger than a certain value can be filled;
therefore, the filling of the disordered porous medium at
ϕ > ϕc is the filling of the percolation cluster consisting
of interconnected pores with various radii.

The extrusion of the liquid from a pore becomes pos-
sible under the following two conditions.

(i) Its extrusion should be energetically favorable. Neg-
ative work should be spent on the extrusion of the
liquid from the pore owing to the change in the en-
ergy of the (porous medium-liquid) interface and to
the formation of menisci in the throats of neighboring
pores.

(ii) Since the liquid can flow only through a connected
system of filled pores, geometric paths for the extru-
sion of the liquid from a given pore should exist.

For this reason, the extrusion of the liquid from the pore
in this medium at the reduction of excess pressure can be
considered as the depletion of the pore belonging to the
percolation cluster of connected pores with various sizes
filled with the liquid.

We consider a change in the state of the (liquid-porous
medium) system at the extrusion of the liquid from the
pore surrounded by empty and filled pores at partial fill-
ing. These surrounding pores are connected to the pore un-
der consideration through throats in the mouths of which
a meniscus appears if one of two connected pores is not
filled with the liquid. According to the statistical theory
of fluctuations [37], the probability w of the change in the
state of the system in unit time at the extrusion of the
liquid from the pore under consideration under the action
of fluctuations in the system is given by the expression
w ∼ exp(ΔS), where ΔS is the change in the entropy
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of the system ΔS at the extrusion of the liquid from the
pore. We suggest that the change in the temperature of the
system can be neglected in this process. This corresponds
to the experimentally observed small thermal effect [38].
Then, the probability can be written in the form

w = w0 exp(−δA/T ). (1)

Here, w0 is the pre-exponential factor taking into account
the extrusion dynamics of the liquid from the porous
medium and δA is the isothermal work that should be
spent on the extrusion of the liquid from the pore. This
work serves as a potential barrier for extrusion in the case
under consideration. According to equation (1), the en-
trapment of the liquid in this medium can be due, first, to
the geometric reason, when the porous medium contains
clusters with a finite number of filled pores for which paths
for extrusion are absent (see Fig. 4) and, second, to the en-
ergy reason associated with the change ΔS. The quantity
δA in equation (1) should include the work pV done by
the system for an increase in its volume by the volume V
of the pore at the pressure p and the change in the surface
energy ΔE of the liquid in the pore. In the initial state,
the surface energy Ei of the liquid in the pore consists of
the energy Eisl of the (solid (frame)-liquid) interface and
the surface energy Eilg of the liquid-gas interface summed
in all mouths of the throats connecting the pore under
consideration with surrounding empty pores. We assume
that the state of the liquid in surrounding pores remains
unchanged at the extrusion of the liquid from the pore un-
der consideration. Consequently, the surface energy Ef in
the final state consists of the energy Efsg of the solid-gas
interface and the energy Eflg of the liquid-gas interface,
which appears in the mouths of the throats connecting
the empty pore under consideration with the surrounding
filled pores. We represent the work δA spent on an in-
crease in the volume of the system and on the change in
the surface energy in the form of the difference between
the energy of the interface in the pore near the surface
of the frame and the difference between the total surface
energy of menisci in the mouths of all throats connecting
the pore with the neighboring pores in the final and initial
states after and before extrusion. In this case,

δA = pV +ΔE, ΔE = ΔEs +ΔEl

ΔEs = Efsg − Eisl, ΔEl = Eflg − Eilg . (2)

The local characteristics of the disordered porous medium
at intrusion-extrusion of the liquid change randomly be-
cause of various spatially inhomogeneous geometric con-
figurations of pores and their environment.

Figure 4 shows the schematic of a change in the state
of a fragment of the disordered porous medium and the
number of menisci in the pore (a), (c), (e) before and (b),
(d), (f) after its depletion at various degrees of filling.
Filled and empty pores are given in black and white, re-
spectively, and the frame of the porous medium is shaded.
The arrows in Figures 4a–4d indicate menisci and their
number. It can be seen in Figures 4a and 4b that the ex-
trusion of the liquid from a pore in the completely filled

Fig. 4. Schematic of the change in the state of the porous
medium and the number of menisci for a pore before and after
the depletion of the pore at the degree of filling of the porous
medium (a, b) θ1 = 1 and (c, d) θ1 < 1; (e, f) schematic of the
cluster of filled pores 3 in the absence of paths for the extrusion
of the liquid; z is the number of nearest neighbors; and n is
the number of menisci for the pore filled with the liquid in the
partially filled porous medium.

porous medium (θ1 = 1, Fig. 4a) is accompanied by the
formation of menisci whose number is equal to the num-
ber of nearest neighbors z (Fig. 4b) of this pore. If the
degree of filling is θ1 < 1, the initial number of menisci n
(Fig. 4c) after the extrusion of the liquid from the pore
changes to z − n (Fig. 4d). Figure 4f shows the formed
cluster of filled pores 3 from which extrusion is impossible
because the connection with the infinite cluster of filled
pores 1 is broken after the extrusion of the liquid from the
pore 2.

Spatial inhomogeneity is responsible for the formation
of various configurations of empty and filled pores in the
disordered porous medium.

Let z be the number of neighboring pores for a given
pore before extrusion including n filled pores and z − n
empty pores (see Fig. 4); therefore, the number of menisci
in the mouths of throats is z − n. After extrusion, the
number of menisci becomes equal to the number n of filled
neighboring pores. The number of menisci n depends on
the configuration of the pore and its environment. Let W
be the difference between the numbers of menisci after and
before the extrusion of the liquid from the pore divided
by the number of nearest neighbors and averaged over all
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local configurations:

W =
〈

2n− z

z

〉
conf

. (3)

Here, 〈. . .〉conf means averaging over all local configura-
tions of the pore and its environment. Then, the quantities
ΔEs and ΔEl are given by the expressions

ΔEs = (σsg − σsl)(s− Sm) = −δσ(s− Sm),

ΔEl = σ 〈 sm(n− (z − n)) 〉conf

= σSm

〈
(2n− z)

z

〉
conf

= σSmW. (4)

Here, δσ = |σsg − σsl| is the change in the specific energy
of the surface of a solid (frame of the porous medium)
at the extrusion of the liquid. For the nonwetting liquid,
σsg < σsl; s, Sm, and sm = Sm

z is the area of the surface
of pores, the area of the surface of menisci in the mouths
of throats of pores, and the area of the surface of one
meniscus, respectively; obviously, Sm < s.

According to equations (2) and (4), the potential bar-
rier for extrusion decreases with a decrease in the pres-
sure p. The fraction of the trapped liquid in the described
experiments were determined after the removal of excess
pressure, i.e., at p = 0. In this case, the potential bar-
rier δA(p = 0) is the sum ΔEs + ΔEl; since σsg < σsl

and Sm < s, ΔEs < 0 and ΔEl changes sign when
the average relative number of filled neighboring pores is〈

n
z

〉
conf

= 1/2. At
〈

n
z

〉
conf

< 1/2 and, according to equa-
tion (3), at ΔEl < 0, the potential barrier for extrusion is
negative and the nonwetting liquid flows out of the porous
medium after the removal of excess pressure. If the aver-
age relative number of filled neighboring pores is larger
than half,

〈
n
z

〉
conf

> 1/2, the potential barrier for extru-
sion can be both positive and negative, depending on the
relation between ΔEs and ΔEl. Thus, the dispersed state
of the nonwetting liquid in the porous medium at p = 0 is
possible if the change in the energy ΔEl of the liquid in
the mouths of throats connecting the pore with neighbors
at extrusion is larger than the change in the energy |ΔEs|
of the wall boundary of the frame in the pore.

At δA = 0, the spontaneous extrusion of the nonwet-
ting liquid should occur under the action of thermal fluc-
tuations in the system. This condition can be used to esti-
mate the critical degree of filling θcr above which the state
appears in which the nonwetting liquid can remain in the
porous medium at excess pressure p = 0.

The degree of filling θ1 in the mean field approximation
is the fraction of filled pores in the macroscopically small
volume of the porous medium. In this approximation, un-
der the assumption that all local configurations appear
with the same probability, the critical average fraction
(
〈

n
z

〉
conf

) of filled neighboring pores for the pore under
consideration can be estimated as

〈
n
z

〉
conf

≈ θcr, and the
condition δA(p = 0) ≈ 0 with allowance for equation (3)
can be represented in the form

δσ
(
1 − zsm

s

)
= σ

zsm

s
(2θcr − 1). (5)

We introduce the cosine of the wetting angle, | cosψ| =
δσ/σ, and the parameter η = zsm

s determining the geo-
metric connectivity of pores through the mouths of neigh-
boring pores. To estimate the number of neighboring pores
in the disordered porous medium, we use the model of
randomly distributed overlapping spheres [34,39]. In this
model, pores are represented in the form of randomly dis-
tributed overlapping spheres with the same radius R. The
area sm of the mouths of the throats connecting two neigh-
boring pores and the average number z of the nearest
neighbor pores in this model depend on the porosity ϕ
and are given by the formulas [34,39]

z = −8 ln(1 − ϕ), sm =
9π2

256
R2. (6)

Condition (4) for the critical degree of filling can be writ-
ten in the form

θcr =
1
2

(
1 + | cosψ|

(
1 − η

η

))
. (7)

The porosity of the system under study is ϕ ≈ 0.5 and,
according to equations (6), the number of the nearest
neighbors is z = 7 and the area of the mouths of pores
is sm = 13 nm2. Using the method developed in refer-
ence [27], we obtain | cosψ| ≈ 0.1. Then, according to
equation (7), the critical degree of filling at which the
nonwetting liquid can be trapped in the porous medium
at zero excess pressure is θcr = 0.6. This value is consis-
tent with the value θcr ∼ 0.65 experimentally observed at
T = 333 K (see Sect. 2).

According to equations (2)–(4), the potential bar-
rier at degrees of filling smaller than θcr is nega-
tive, δA(p = 0) < 0, and the characteristic extrusion
time τ ∼ w−1 is determined by the hydrodynamic time
τ0 ∼ w−1

0 of the motion of the liquid in the porous
medium. The quantity τ0 was determined experimentally
for the systems studied in reference [40] on the intrusion-
extrusion dynamic at almost zero excess pressure and is
τ ≈ 10−1 s. The characteristic potential barrier for the
states studied in this work at the extrusion observation
time texp ∼ 103 s is no less than δA ≈ 0.4 eV.

We now discuss a physical reason for the appearance
and destruction of a metastable dispersed state of the liq-
uid at entrapment. The surface energy of the system of
liquid clusters in completely filled pores is not reduced to
the sum of the surface energies of all independent liquid
clusters. Clusters can contact with each other in neigh-
boring pores connected through throats. The mouths of
these throats are free of the liquid-gas interface if the
pore is connected through throats with neighboring filled
pores. This means that the surface energy of two clus-
ters in neighboring pores is lower than the surface energy
of two independent clusters by the energy of the liquid-
gas interface in the mouth of the throat connecting these
filled pores. A decrease in the surface energy can be con-
sidered as the negative energy of the interaction between
two liquid clusters, i.e., as the effective attraction between
interacting clusters. This is the physical meaning of the
energy ΔEl introduced in equations (2) and (3). It takes
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into account the “multiparticle interaction” of the liquid
cluster in the pore with clusters existing in neighboring
connected pores. The interaction between the liquid clus-
ters can be responsible for the situation where the total
energy of the “multiparticle attractive interaction” at the
degree of filling θ > θcr becomes higher (see Eq. (4)) than
the energy of the liquid-solid interface. In this case, ex-
trusion is energetically unfavorable after the removal of
excess pressure. The probability of extrusion w (1) can
be smaller than the inverse observation time and the sys-
tem of clusters becomes “condensed”. With an increase
in the temperature, σ decreases, whereas δσ and | cosψ|
increase. For this reason, above a certain critical tempera-
ture T > Tcr, the total energy of the “multiparticle attrac-
tion” becomes lower (see Eq. (4)) than the energy of the
liquid-solid interface. In this case, the “condensed” state of
the system of clusters is destroyed and the liquid flows out
of the porous medium. The above analysis and estimates
of θcr show that the appearance of the state of the dis-
persed nonwetting liquid in the porous medium at θ > θcr

and its destruction can be attributed to the formation of
a potential barrier because of the change in the number of
menisci in the mouths of throats connecting neighboring
filled pores and the pore from which the liquid flows at a
temperature above the critical temperature T > Tcr.

The above estimates show that, at these degrees of fill-
ing and the extrusion observation time smaller than the
fluctuation decay time of the “condensed” state of the sys-
tem, a metastable state of the nonwetting liquid appears
in the form of the ensemble of liquid nanoclusters in pores
(dispersed liquid).

The simplified qualitative explanation of the observed
(see Fig. 3) stepwise change in the volume fraction of pores
filled with the trapped liquid as a function of the degree of
filling near θcr ∼ 0.65 for the (Fluka 100 C18-water) sys-
tem was given above. However, the states of small entrap-
ment of the liquid in the system observed for any degree
of filling at increased temperatures (T > 343 K) require
additional discussion. The possibility of the appearance of
states in which the dependences of the volume fraction of
pores filled with the trapped liquid on the degree of filling
θ2(θ1) are linear for the (Fluka 100 C8-water) and (Fluka
100 C18-water) systems, as well as the change of this de-
pendence from linear at 313 K to “stepwise” at T = 323 K
for the (Fluka 100 C18-water) system, should also be ad-
ditionally analyzed.

The above estimates were based on the assumptions
that the disordered porous medium is homogeneous and
isotropic and that the local geometric configuration con-
sisting of the liquid cluster in the completely filled pore
and its nearest environment of liquid clusters in con-
nected neighboring pores is identical throughout the vol-
ume of the porous medium. However, there are several
reasons for which various spatially inhomogeneous geo-
metric configurations consisting of the liquid cluster in
the pore and its environment appear in the disordered
porous medium. Such an inhomogeneity can appear ac-
cording to the model of randomly distributed overlap-
ping spheres at R = const. [34,39] in the case of spatially

nonuniform porosity. According to equation (5), the num-
ber of the nearest neighbor pores and, as a result, vari-
ation of the potential barrier and the probability of ex-
trusion of the liquid from the pore are inhomogeneous in
this case. Another reason can be the dependence of the
connectivity factor η of the pores (see Eq. (6)) on the ra-
dius of the pore if the porous medium contains pores with
different sizes. In this case, for example, a larger pore can
be surrounded by smaller pores or by a smaller number of
neighboring pores. The probability of the appearance of
such local configurations is larger for wide pore size dis-
tributions; consequently, the effect of these configurations
can be significant for such distributions. As a result, spa-
tial variations appear in geometric configurations of the
pore and its environment. This situation appears at vari-
ous initial degrees of filling because larger pores are filled
at smaller degrees of filling requiring lower pressures.

An additional reason for the variation of the local con-
figuration of the pore and its environment [36] is asso-
ciated with the fractal structure of the percolation clus-
ter of filled pores, which has a nonsmooth strongly rough
shell [36]. Because of the roughness of the shell of the
percolation cluster, significant variations of the number of
filled and unfilled pores appear near each pore on the shell
of the percolation cluster; as a result, the local configura-
tion of the pore and its environment and, according to
equation (4), the potential barrier for extrusion are var-
ied. Thus, variations of the local configurations of the pore
and its environment can be taken into account within the
percolation theory and the extrusion of the liquid from the
porous medium can be adequately described. Variations of
the local configurations of the pore and its environment
at the extrusion of the liquid from the porous medium can
result in the breaking of the infinite cluster of filled pores
and in the formation of clusters containing a finite number
of filled pores for which paths for extrusion are absent.

As was mentioned above, disordered porous media
studied in this work are characterized by a wide pore size
distribution with the relative width ΔR

R ∼ 1. Therefore,
to describe states of the liquid in such media, variations
of the number of neighboring pores in various configura-
tions in the porous medium should be taken into account
in the calculations in addition to the theory developed in
references [33,34]. This can be done beyond the framework
of the mean field approximation used for estimates. As a
result, in the case of wide pore size distributions, the en-
ergy of the liquid in the disordered porous medium and
the volume of the liquid remaining in the porous medium
after the removal of excess pressure should be calculated
with allowance for a possible breaking of paths for the
extrusion of the liquid for two above reasons.

3.2 Energy, volume, and possible states
of the nonwetting liquid in the disordered
porous medium

Following [33], we consider a spatially disordered porous
medium consisting of N pores with various random radii
Ri that has the porosity ϕ and is filled to the degree
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of filling θ. Each pore that has the radius Ri and is
located at the point �ri can be either filled or empty. We
introduce the number ni that is unity and zero if the
pore with the radius Ri at the point �ri is filled with
the liquid and is empty, respectively. The phase space of
this system is a 5N -dimensional space of the coordinates
of the pores, their radii, and filling factors ni of all
N pores. Let F (�r1, R1, �r2, R2 . . . �rN , RN , n1, n2 . . . nN )
be the N -particle distribution function of pores in
their coordinates �ri, radii Ri, and filling factors ni.
The function F (�r1, R1, �r2, R2 . . . �rN , RN , 01, 02 . . . 0N )
is the N -particle distribution function of empty pores
and F (�r1, R1, �r2, R2 . . . �rN , RN , 11, 12 . . . 1N) is the dis-
tribution function of pores in the completely filled
porous medium. At θ < 1, various geometric con-
figurations of filled and empty pores can correspond
to the state of the porous medium. Consequently,
for the porous medium filled to the degree of fill-
ing θ, the multiparticle distribution function of
empty and filled pores Fθ(�r1, R1, �r2, R2 . . . �rN , RN )
is degenerate and can be obtained from
F (�r1, R1, �r2, R2 . . . �rN , RN , n1, n2 . . . nN ) by summing
over these configurations, Fθ(�r1, R1, �r2, R2 . . . �rN , RN ) =∑Nθ

k=1 F (�r1, R1 . . . �rN , RN {ni}k
θ). The distribution func-

tion F (�r1, R1 . . . �rN , RN {ni}k
θ) corresponds to {ni}k

θ
configurations of empty and filled pores such that the
total relative volume of filled pores is θ, the index
k = 1 . . .Nθ enumerates these configurations, and Nθ

is the maximum number of degenerate configurations.
In particular, in the case of non overlapping pores, the
multiparticle distribution function of empty and filled
pores Fθ(�r1, R1, �r2, R2 . . . �rN , RN ) for the porous medium
with the degree of filling θ has the form

Fθ (�r1, R1, �r2, R2 . . . �rN , RN )

=
∑

{ni}
F (�r1, R1, �r2, R2 . . . �rN , RN , {ni})

× δ

(∑N
i=1 niVi∑N

i=1 Vi

− θ

)
,

where Vi is the volume of the ith pore.
The total thermodynamic potential, which is the en-

ergy of the porous medium filled to the degree of filling θ,
can be represented in the form

E =
∫
dΓ

Nθ∑
k=1

ε
(
�r1, R1, �r2, R2 . . . �rN , RN {ni}k

θ

)

× Fθ

(
�r1, R1, �r2, R2 . . . �rN , RN {ni}k

θ

)
. (8)

We calculate the change δE in the energy of the system at
the extrusion of the liquid from a randomly chosen filled
pore in the porous medium. Let this pore have the ra-
dius R1 and be located at the point �r1. We assume that
the state of the remaining multiparticle system, except for
the chosen pore, does not change in this process. In this
case, the multiparticle distribution function of empty and
filled pores in the porous medium can be represented in

the form

Fθ (�r1, R1, �r2, R2 . . . �rN , RN )
= f (�r1, R1)Fθ (�r2, R2 . . . �rN , RN ) . (9)

Here, f(�r1, R1) is the single-particle distribution function
of filled pores normalized to the total number of filled
pores in the porous medium filled to the degree of filling θ.
In view of equations (8) and (9), the change ΔE in the
energy in equation (2) can be represented in the form

δE =
∫
ΔE(�r1, R1)f (�r1, R1) d�r1 dR1. (10)

Here,ΔE(�r1, R1) is the change in the energy of the system
at the depletion of one pore

ΔE (�r1, R1) =
∫
d�r2 . . . d�rN−1dR2 . . . dRN−1

×ΔE (�r1, R1, �r2, R2 . . . �rN , RN )

ΔE (�r1, R1 . . . �rN , RN ) =
Nθ∑
k=1

ΔE (�r1, R1, �r2, R2 . . . �rN ,

RN {Δn1 = 1, n2 . . . nN−1,}k
θ

)

× Fθ

(
�r2, R2 . . . �rN−1, RN−1 {n2 . . . nN−1}k

θ

)
. (11)

Here, ΔE(�r1, R1 . . . �rN , RN ) is the sum of the energy
ΔEs(�r1, R1 . . . �rN , RN ) of the (porous medium-liquid) in-
terface and the energy ΔEl(�r1, R1 . . . �rN , RN ) necessary
for the formation of menisci in the throats of neighboring
pores. It is assumed that the chemical potential of the liq-
uid remains unchanged at its dispersion. This is valid for
pores with sizes R > 1 nm [41]. With the inclusion of the
work pV spent on an increase in the volume of the sys-
tem V , the expressions for energiesΔEs(�r1, R1 . . . �rN , RN )
andΔEl(�r1, R1 . . . �rN , RN ) can be represented in the form

ΔEs(�r1, R1 . . . �rN , RN )

= pV (�r1, R1) − δσ(1 − η(�r1, R1 . . . �rN , RN ))S(�r1, R1),

η =
Sm(�r1, R1 . . . �rN , RN )

S(�r1, R1)
,

ΔEl(�r1, R1 . . . �rN , RN ) = σδSm(�r1, R1 . . . �rN , RN ). (12)

Here, σ is the surface energy of the liquid; δσ = (σls−σsg)
is the difference between the surface energies of the solid-
liquid and solid-gas interfaces; V (�r1, R1) and S(�r1, R1) are
the volume and surface area of the depleted pore, respec-
tively; Sm(�r1, R1 . . . �rN , RN ), δSm(�r1, R1 . . . �rN , RN) are
the area of menisci in the pore and the change in the area
of menisci at the depletion of the pore, respectively; and p
is the pressure of the liquid in the pore. We accept that the
area of menisci and the change in the area of menisci at
the depletion of the pore are determined only by the near-
est environment of the depleted pore. Effects associated
with the transfer of the liquid to the pores following the
nearest environment of the depleted pore without extru-
sion from the porous medium are neglected. In this case,
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it follows from equations (8)–(12) that ΔE(�r1, R1) can be
represented in the form

ΔE(�r1, R1) = pV (�r1, R1)

− δσ (1 − 〈η (�r1, R1)〉)S (�r1, R1) +ΔEl,

〈η (�r1, R1)〉 =
〈Sm(�r1, R1 . . . �rN , RN )〉

S(�r1, R1)
,

ΔEl(�r1, R1) = σ 〈δSm(�r1, R1 . . . �rN , RN )〉
= σ 〈W (�r1, R1 . . . �rN , RN )

×Sm(�r1, R1 . . . �rN , RN )〉 . (13)

Here,

〈Sm (�r1, R1 . . . �rN , RN )〉 =
∫
Fθ (�r1, R1 . . . �rN , RN )

×
z∑

k=1

sm (�r1, R1, �rk, Rk) d�r2, dR2 . . . d�rN , dRN

=
∫
d�x dR1Sm (�r1, R1, �x,R2) g2 (�r1, R1, �x,R2) (14)

and W (�r1, R1 . . . �rN , RN ) is the change in the number
of menisci at the extrusion of the liquid from the filled
pore. In equation (14), g2(�r1, R1, �x,R2) = g2(�r1, R1, �r1 −
�r2, R2) is the pair correlation function of pores in the
porous medium filled to the degree of filling θ [33];
sm(�r1, R1, �x,R2) is the area of the meniscus of the pores
with radii R1 and R2 that are located at the points �r1
and �r2, respectively; z is the number of pores in the en-
vironment of the depleted pore; and integration is per-
formed over the distances |�x| < R1 +R2 corresponding to
the first coordination sphere. For the spatially isotropic
medium, g2(�r1, R1, �x,R2) = g2(R1, |�r2 − �r1|, R2). The
function g2(�r1, R1, �x,R2) for the model of randomly dis-
tributed spheres was calculated in references [33,42].

The integration of the pair distribution function over
the volume nearest to the depleted pore yields the number
z(R,R1) of the nearest neighbor pores with the radius R1

for the pore of the radius R:

z(R,R1) =
1

ϕV (R1)

∫ |R+R1|

|R−R1|
g2(R,R1, �r) d�r. (15)

Here, V (R1) is the volume of one pore with the radius R1

and ϕ is the porosity. Averaging equation (15) with the
normalized pore size distribution function f(R1), we ob-
tain the average number of the nearest neighbors of the
depleted pore with the radius R:

z(R) =
∫ ∞

0

dR1 f(R1) z(R,R1). (16)

According to equation (16), the number of nearest neigh-
bors z(R) depends on the radius of the pore R and the
width of the distribution f(R). The number of nearest
neighbors z(R) as a function of the radius of pores was
calculated by equations (15) and (16) for various widths

of the Gaussian distribution f(R). The calculations show
that z(R) increases with both the radius of the pore and
the width of the pore size distribution f(R). The character
of the dependence of z(R) on the radius of the pore R can
be understood by considering the pore with the radius R
in the disordered porous medium consisting of pores with
various radii. In the approximation of constant porosity,
with an increase in the radius of the pore R, the number
of pores contacting with the given pore increases because
of an increase in the area of its surface at a fixed total
volume of pores in the local configuration. For this rea-
son, the number of the nearest neighbor pores z(R) with
the radius R increases with the radius. The law of this
increase was obtained in references [2,43] in the form

z(R) ∼ Rk, k ∼ 3. (17)

We calculate the change in the energy of the system at the
depletion of one pore. We assume that the liquid flows out
of the pore only when at least one of the neighboring pores
around the depleted pore belongs to the infinite cluster
of filled pores through which the liquid can flow from the
granule of the porous medium. In this case, only the states
with the infinite cluster of filled pores should be retained
in the set of states that is determined by the distribution
function Fθ(�r1, R1, �r2, R2 . . . �rN , RN ). It is assumed that
the remaining states do not contribute to the change in
the number of filled pores. In this case, the quantity W
in equation (13) depends on the probability P (θ) that the
pore belongs to the infinite cluster and the number z of the
nearest neighbors of the depleted pore with the radius R:

W = W (z(R), P (θ)). (18)

The quantity W = W (z(R), P (θ)) is determined as the
difference between the average numbers of menisci before
and after the depletion of the pore per nearest neighbor.
The product of W = W (z(R), P (θ)) by the surface en-
ergy of the liquid in the menisci determines the change
in the energy of the pore at the extrusion of the liquid
from it. The fraction of the trapped liquid in the described
experiments was determined after the removal of excess
pressure, i.e., at p = 0. In this case, according to equa-
tions (11)−(13), the change in the energy of the system
at the depletion of one pore is given by the expression

ΔE(R, θ1) = ΔEs(R) +ΔEl(R, θ1)

ΔEs(R) = −δσ(1 − η(R))4πR2,

η(R) =
〈Sm(R,R1)〉

4πR2
,

ΔEl(R, θ1) = σ 〈WSm〉 = 4πR2σ 〈W (z, θ1)〉 η(R). (19)

Expressions (19) were obtained under the assumption that
the probability W of the change in the number of menisci
is independent of their total area: 〈WSm〉 = 〈W 〉〈Sm〉.
The area of menisci Sm in equations (19) is determined
by the nearest environment of the chosen pore. The coef-
ficient η(R) is determined by the ratio of the total area of
menisci in the pore with the radius R to the area of the
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pore in equations (19) can be represented in the form

η(R) =
1

4πR2

∫ ∞

0

z(R,R1) sm(R,R1) f(R1) dR1. (20)

Here, sm(R,R1) is the area of one meniscus in the throat
of the chosen pore with the radius R connected to the pore
of the radius R1. Thus, to calculate the energy ΔE(R, θ1),
it is necessary to calculate the difference between the av-
erage numbers of menisci before and after the depletion
of the pore per nearest neighbor 〈W (z, θ1)〉 and the con-
nectivity factor η(R).

The quantity ΔEs qualitatively corresponds to the en-
ergy of “extrusion” of the nonwetting liquid from the filled
pore. The quantity ΔEl is the change in the total surface
energy of menisci in the mouths of all throats connect-
ing the pore with neighboring pores at the extrusion of
the liquid from the pore. The difference ΔEl determines
the magnitude and sign of the collective “multiparticle
interaction” of the liquid cluster in the pore with its envi-
ronment and can be both positive and negative.

The dependence of the connectivity factor η for the
spherical pore with the radius of R on its radius can be
qualitatively estimated from the condition that the aver-
age area of pores in the porous medium is constant. The
dependence η(R) was calculated in references [2,43]. The
result has the form:

η =
(
R0

R

)α

. (21)

Here, R0 is the minimum radius of pores in the porous
medium and α ≈ 0.3 [33]. According to equation (20), the
connectivity factor of pores η depends on the radius of
the pore R and decreases with an increase in the radius of
the pore.

The quantity 〈W (z, θ1)〉, which determines the mag-
nitude and sign of the multiparticle interaction, can be
calculated by averaging over all possible configurations of
filled pores with various radii around the pore with the ra-
dius R. We calculate the change in the number of menisci
at the extrusion of the liquid from the filled pore W . We
consider the configurations of filled pores with close num-
bers of nearest neighbors z and calculate the difference
between the numbers of menisci before and after the deple-
tion of the pore per nearest neighbor W (z, θ1). The quan-
tity 〈W (z, θ1)〉 is obtained by averaging over the number
of nearest neighbors in the disordered porous medium:

W (θ1) = 〈W (z, θ1)〉 = 〈W (z, θ1)〉z .
The number of the nearest neighbors z(R) around the pore
with the radius R, which is determined by equation (16),
increases with the radius of the pore according to equa-
tion (17). Hence, averaging should be performed over the
pore size distribution function taking into account the de-
pendence of the number of nearest neighbors on the radius
of the pore z(R):

W (θ1) =
∫
W (z(R), θ1) f(R) dR. (22)

To calculate the function W (z, θ1), we note that, for the
extrusion of the liquid from the pore, this pore should be
in contact with the infinite cluster of filled pores through
which the liquid can flow. Since such a cluster is formed
at θ1 > θc, W (z, θ1) = 0 at θ1 < θc and the function
W (θ1) at θ1 > θc should be determined as the average
difference between the numbers of menisci after and before
the depletion of the pore according to the sum

W (z, θ1) =
z−1∑
n=0

(1 − θ1)n(P (θ1))z−n z − 2n
z

z!
n!(z − n)!

= (θ1 + P (θ1) − 1)(P (θ1) − θ1 + 1)z−1

+ (1 − θ1)z . (23)

Here, P (θ1) is the probability that the filled pore belongs
to the infinite cluster of filled pores. The first and sec-
ond factors correspond to the probability that an empty
pore is near the infinite cluster of filled pores under the
condition that this pore is surrounded by n empty and
z − n filled pores and, thereby, contains n menisci. The
third factor specifies the difference between the relative
numbers of menisci after (z−n) and before (n) the filling
of the pore. The combinatory factor takes into account
the variants of arrangement of n menisci over the nearest
neighbors of the given pore and corresponds to the de-
generacy of the local geometric state, i.e., the configura-
tions of this pore and filled pores in the first coordination
sphere. Thus, each term in sum (23) describes the change
in the number of menisci at a given relation between the
numbers of filled and empty pores. Summation in equa-
tion (23) includes all possible variants of the mutual loca-
tion of empty and filled pores and makes it possible to take
into account on average variations of the configurations of
pores in the space of the disordered porous medium. Ac-
cording to equation (23), the sign of the function W (z, θ1)
is determined by the competition between terms with the
number of empty pores at n < z

2 and n > z
2 and, therefore,

is sensitive to the number of the nearest neighbors z(R).
Since z(R) depends both on the radius of the pores and
on the width of the pore size distribution f(R) according
to equations (16) and (17), the magnitude and sign of the
function W (θ1) can also depend significantly on the width
of the pore size distribution at least for degrees of filling
near the percolation threshold θ ≥ θc.

Figure 5 shows the dependence W (θ1) calculated by
equations (22) and (23) for various distribution functions
f(R). These dependences present the change in the energy
of the multiparticle interaction of the liquid cluster in the
filled pore at various configurations of its environment un-
der variation of the degree of filling. The calculations were
performed with the dependence P (θ1) taken from [44].

At θ1 → 1, W is positive and approaches 1, corre-
sponding to the change in the number of menisci at the
extrusion of the liquid from one pore in the completely
filled porous medium. The sign of W (θ1) corresponds to
the effective collective attraction of the liquid cluster in
the pore to its environment. A decrease in the degree of
filling results in a decrease in W (θ1) because of a decrease
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Fig. 5. Quantity W (θ1) versus the degree of filling at the
porosity ϕ = 0.45 and various half-widths of the Gaussian

distribution function f(R) ∼ exp(− (R−Rm)2

(ΔR)2
), Rm = 4.

in the number of neighboring filled pores and an increase
in the number of menisci around the filled pore at the
extrusion of the liquid. A further decrease in the degree
of filling is accompanied by a decrease in the number of
menisci after the extrusion of the liquid from the pore
and by the change of the sign of W (θ1) at θ1 = θ0 (see
Eq. (23)), which corresponds to the change of the effec-
tive collective “multiparticle” attraction to the effective
repulsion. When the degree of filling is below the perco-
lation threshold, θ1 < θc, the infinite cluster is absent. In
this case, W (θ1 ≤ θc) = 0 and, according to equations (1)
and (19), extrusion is possible only from individual clus-
ters connected with the boundary of the porous medium.

As can be seen in Figure 5, an increase in the width
of the pore size distribution results in an increase in the
effective multiparticle attraction of liquid nanoclusters in
pores, and a decrease in the width of the pore size dis-
tribution can be accompanied by the change of the sign
of W (θ1) at θ1 = θ0. Since the number of the nearest
neighbors z(R) increases with the width of the pore size
distribution, according to equation (23), an increase in the
width of the distribution ΔR/R leads to an increase in the
number of the nearest neighbors and to the resulting in-
crease in W (θ1) because of the power-law dependence of
W (z, θ1) on z (see Eq. (23)). For narrow pore size distri-
butions, the effective multiparticle attraction of the liquid
cluster in the filled pore to neighboring clusters changes
at a certain degree of filling to their effective repulsion.
Together with the repulsion of the nonwetting liquid from
walls, this can result in the negativeness of the potential
barrier δA(p = 0) in equation (1), and the liquid flows out
of the pore.

Expressions (18) and (23) allow the calculation of the
change in the energy of the system consisting of the non-
wetting liquid and disordered nanoporous medium at the
extrusion of the liquid from an arbitrary pore. This makes
it possible to qualitatively analyze the interval of pores in
which the liquid can remain for the extrusion expectation
time in the performed experiments at various tempera-
tures and various degrees of preliminary filling with the

(a)

(b)

Fig. 6. Change in the energy of the liquid in the pore ΔE(R)
for σ

δσ
= 4 at the degrees of filling θ1 = 1 and θ1 = 0.2 versus

the radius of the pore for (a) the narrow pore size distribution
with the relative width ΔR

Rm
∼ 0.3 and (b) the wide pore size

distribution with the relative width ΔR
Rm

∼ 0.7.

use of the probability of extrusion (1). Figures 6 and 7
show the calculated dependences of the change in the sur-
face energy ΔE at the degrees of filling θ1 = 0.2, 1.0 and
the temperatures T = 290, 300 K and θ1 = 1.0 at the tem-
peratures T = 290, 320 K, respectively. In these calcula-
tions, the pore size distribution was taken in the Gaussian
form with relative widths ΔR

R = 0.3, 0.7 and σ
δσ was taken

to be 4.
According to Figure 6a, the activation barrier ΔE for

the decay of the metastable state of local configurations
can change sign at an increase in the degree of filling from
0.2 to 1 so that complete extrusion at θ1 = 0.2 can change
to the complete entrapment of the liquid for pores with
any sizes in the distribution f(R). An increase in the tem-
perature by 10 K and an increase in the relative width of
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(a)

(b)

Fig. 7. Change in the energy of the liquid in the pore ΔE(R)
for σ

δσ
= 4 at the degree of filling θ1 = 1 for temperatures

T = 290 and 320 K versus the radius of the pore for (a) the
narrow pore size distribution with the relative width ΔR

Rm
∼ 0.3

and (b) the wide pore size distribution with the relative width
ΔR
Rm

∼ 0.7.

the distribution to ΔR
Rm

∼ 0.7 can result in the complete
entrapment of the liquid not only at θ1 = 1, but even at
θ1 = 0.2 (see Fig. 6a).

Figure 7 shows possible scenarios of the formation of
the state of the dispersed liquid when the liquid after pre-
liminary complete filling can be trapped in pores with a
certain size if the activation barrier ΔE changes sign and
becomes negative at R = R∗(θ1, T ), R0 < R∗ < Rmax

(R0, Rmax are the minimum and maximum sizes of pores
in the medium, respectively). According to equations (19)
and (21), it follows from the condition ΔE = 0 that

R∗ (θ1, T ) = R0

(
1 +

σlg

δσ
W1 (θ1)

) 1
α

. (24)

In the case of a narrow distribution with the relative width
ΔR
R ∼ 0.3, the liquid at T = 320 K and θ1 = 1 cannot

flow out of pores with the radius R0 < R < R∗(θ1, T ),
whereas entrapment at T = 290 K and θ1 = 1 is possible

in all pores (see Fig. 7a). For a wider distribution with the
relative width ΔR

R ∼ 0.7, entrapment at θ1 = 1 and T =
320 K is possible in pores with the radius R < R∗(θ1, T )
(see Fig. 7b).

We calculate the volume fraction of the liquid in the
metastable state. Let pore size distribution functions be
normalized to the degree of filling of pores in the porous
medium θ1. Then, the volume fraction of the liquid in
the metastable state in the porous medium θm filled to
the degree of filling θ1 is determined by the integral of the
product of the pore distribution function by the volume of
pores in the range from the minimum radius of pores R0

in the porous medium to the critical radius R∗(θ1, T ):

θm =

θ1
R∗(θ1,T )∫

R0

R3f(R) dR

∞∫
R0

R3f(R) dR
. (25)

Expression (25) gives the volume fraction of the liquid in
the porous medium that is in the pores for which the po-
tential barrier average over configurations that separates
the empty porous medium and dispersed liquid is finite
at the extrusion of the liquid from a pore belonging to
the percolation cluster of connected pores with various
sizes filled with the liquid. It follows from equation (24)
that the critical radius R∗(θ1, T ) separating pores in the
metastable state and empty pores in the porous medium
becomes equal to the minimum radius of pores in the
porous medium at a certain degree of filling. This con-
dition corresponds to the disappearance of the metastable
state of the liquid in the porous medium. According to
equation (24) and Figure 5, an increase in the width of
the distribution results in an increase in the effective at-
traction between interacting clusters (see Fig. 5) and, con-
sequently, in an increase in the critical radius R∗(θ1, T ).
With an increase in ΔR

R and, as a result, with an increase
in W (θ1), the potential barrier separating the metastable
state and the state of the porous medium without the liq-
uid increases simultaneously with R∗(θ1, T ) (see Fig. 7).
It can also be seen in Figure 6 that the possibility of the
disappearance of the metastable state of the liquid in the
porous medium depends on the width of the pore size
distribution.

The total volume fraction θ2(θ1) of the liquid remain-
ing in the porous medium filled to the degree of filling
θ1 for a macroscopically long time is determined by the
sum of the terms corresponding to the volume fraction of
the liquid θm(θ1) in configurations corresponding to the
metastable state of the liquid in pores and the volume
fractions of the liquid in pores disconnected from the infi-
nite cluster θs(θ1) for which paths for extrusion are absent
(see Fig. 4):

θ2(θ1) = θm(θ1) + θs(θ1). (26)

This volume fraction is due to the geometry of the space of
pores and is associated with those filled pores that appear
because of the decomposition of the infinite cluster of filled
pores.
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The volume fraction θs of the liquid owing to the ge-
ometry of the space of pores is determined by the fraction
of pores that are in clusters in which the liquid is trapped
because of the absence of possible paths for extrusion. It
is independent of the temperature and energy of the in-
terfaces and is determined by the product of the probabil-
ity that these pores do not belong to the infinite cluster
of filled pores under the condition that the surrounding
pores are empty and includes all possible configurations of
the mutual arrangement of filled and empty neighboring
pores. In reference [2], it was shown that θs(θ1) is deter-
mined by the integral of the difference between the total
degree of filling θ1 and the relative number of filled pores
belonging to the infinite cluster P (θ1). Calculations show
that the quantity θs(θ1) for known dependences P (θ1) [45]
rapidly approaches a constant value and can be treated as
constant already at θ1 ∼ (1.1 ÷ 1.2)θc.

According to the above consideration and equa-
tions (18) and (25), the following states of the nonwetting
liquid in the disordered nanoporous medium are possible.

1. The quantity ΔEs corresponding to the energy of the
“extrusion” of the nonwetting liquid from the filled
pore is larger than ΔEl determining the change in the
total surface energy of menisci in the mouths of all
throats connecting the pore with neighboring pores at
the extrusion of the liquid from the pore for a given
temperature range and for all degrees of filling θ1 (line
for θ1 = 0.2 in Fig. 6a). In this case, the nonwetting
liquid cannot be in the metastable state in the porous
medium and the volume fraction θ2(θ1) of the liquid
remaining in the porous medium filled to the degree of
filling θ1 is determined by the volume fraction θs(θ1)
of the liquid remaining in pores disconnected from the
infinite cluster. In the absence of evaporation, the bar-
rier for the extrusion of the liquid from these pores is
infinite. For this reason, the volume fraction of the liq-
uid θs(θ1) is independent of the temperature and the
decay time of this state is infinitely large. This state
can exist in systems for which W1(θ1) has any sign, in-
cluding systems for which W1(θ1) is sign alternating,
e.g., for systems with a narrow pore size distribution.

2. The quantity ΔEs is smaller than the quantity ΔEl

for a given temperature range and any degree of filling
θ1 (see Figs. 6b and 7b). In this state, the nonwetting
liquid in the porous medium in the given temperature
range is in a metastable state at any degree of filling.
The volume fraction θ2(θ1) of the liquid remaining in
the porous medium is determined by the sum of the
terms corresponding to the volume fraction θm(θ1) of
the liquid in the configurations corresponding to the
metastable state of the liquid in pores and the volume
fractions θs(θ1) of the liquid in pores that are discon-
nected from the infinite cluster and for which paths
for extrusion are absent. The volume fraction θ2(θ1)
of the liquid for this state is θ2(θ1) ∼ θ1 (see Figs. 6b
and 7b) and depends slightly on the temperature in a
given temperature range. The decay time of this state
decreases with an increase in the temperature. This
state can exist in systems for which W1(θ1) > 0, i.e.,

Fig. 8. Fraction of the nonwetting liquid (water) trapped in
the porous medium Fluka 100 C8-water versus the degree of
filling at the temperatures T = 293, 333, and 345 K (solid
lines). Points – experimental data.

for systems with a broad pore size distribution (see
Figs. 6b and 7b).

3. In the given temperature range and in the interval
0 < θ1 < θc of the degree of filling, the quantity ΔEs

is larger than the quantity ΔEl, whereas the quantity
ΔEs in the range θc < θ1 < 1 is smaller than ΔEl (see
Figs. 6a and 7a). Systems in this state will undergo a
dispersion transition at θ1 = θc. The volume fraction
θ2(θ1) of the liquid remaining in the porous medium
is determined at 0 < θ1 < θc by the volume fraction
θs(θ1) of the liquid in pores disconnected from the in-
finite cluster for which paths for extrusion are absent.
At θc < θ1 < 1, the volume fraction is determined
by the sum of the terms corresponding to the volume
fraction θm(θ1) of the liquid in configurations corre-
sponding to the metastable state of the liquid in pores
and the volume fraction θs(θ1) of the liquid in pores
disconnected from the infinite cluster for which paths
for extrusion are absent. The volume fraction θ2(θ1) of
the liquid and the decay time of such a state depend
on the temperature. This state can exist in systems for
which W1(θ1) has any sign.

Calculations with equations (18), (25), and (26) were per-
formed for the qualitative description of the experimental
data obtained. According to equation (1), the liquid in
the experiment time cannot flow out of pores with the
radius determined by the condition ΔE > T . In the pre-
sented qualitative description, it was assumed that the
liquid in the experiment time is trapped in all pores with
the radii R < R∗ determined by the condition ΔE = 0
and equation (24).

Figures 8–10 show the dependences of the fraction of
the nonwetting liquid remaining in the porous body on
the degree of filling at various temperatures calculated
by equations (18), (25), and (26) with the parameters
(ϕ,R) of the porous medium and liquid equal to the values
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Fig. 9. Fraction of the trapped nonwetting liquid for the Fluka
100 C18-water system versus the degree of filling at the tem-
peratures T = 293, 323, and 333 K and T ≥ 343 K (solid lines).
Points – experimental data.

Fig. 10. Fraction of the trapped nonwetting liquid for the L23-
water and Fluka 100 C18-water systems versus the degree of
filling at temperatures T = 286 and 333 K, respectively (solid
lines). Points – experimental data.

obtained in independent experiments (see Sect. 2). The
surface tension coefficient of water and its temperature
dependence were taken from [40,46]. The surface tension
coefficient of water at T = 293 K is 72.9 mJ/m2 [40,46].
The quantity δσ and its temperature dependence were de-
termined in terms of the filling pressure by the method
described in reference [32] for the L23-water system. The
filling pressure for the Fluka 100 C18-water and Fluka
100 C8-water systems was 150 and 130 atm, respectively.
The δσ value estimated from these data at T = 293 K was
20 and 17 mJ/m2for the Fluka 100 C18-water and Fluka
100 C8-water systems, respectively. The distribution func-
tions (Fig. 1) obtained from analysis of the adsorption
dependences for nitrogen were used in the calculations.

Fig. 11. Dependences W1(θ1) for Fluka 100 C8 and Fluka
100 C18.

According to Figures 8 and 9, several states of the
systems under consideration can exist:

– the filled volume fraction θ2 for the Fluka 100 C8-water
system increases almost linearly with the degree of fill-
ing θ1 in the entire time range 293–345 K;

– a linear dependence of the volume fraction of the
trapped liquid on the degree of filling is observed for
the Fluka 100 C18-water system at a temperature
of 293 K. In the temperature range of 323–333 K,
a dispersion transition is observed: the liquid flows
out of pores when the degree of filling is less than
θc1 ∼ 0.6. At a temperature of 343 K, the dispersion
transition disappears and the volume fraction of the
trapped liquid depends slightly on the degree of filling
at T ≥ 343 K.

Figure 10 shows the calculated qualitative dependences
of the fraction of the trapped nonwetting liquid for the
L23-water and Fluka 100 C18-water systems at tempera-
tures T = 286 and 333 K, respectively. It can been seen
that the dispersion transition in the Fluka 100 C18-water
system occurs at higher temperatures as compared to the
L23-water system. Figure 10 indicates that the calculated
dependences qualitatively describe the experimental data
(Fig. 3).

We now analyze the reasons for the appearance of var-
ious states of the systems under study. The dependences
W1(θ1) for Fluka 100 C8 and Fluka 100 C18 are shown in
Figure 11, where it can be seen that W1(θ1) > 0 for these
systems and W1(θ1) for the Fluka 100 C8-water system
is larger than that for the Fluka 100 C18-water system.
The ratio σ

δσ for the Fluka 100 C8-water system is 4.5
at a temperature of T = 293 K and decreases to 3 at
T = 345 K. The average connectivity factor of pores for
this system at a porosity of ϕ = 0.49 is η ∼ z( R0

〈R〉 )
2 ∼ 0.8.

The ratio of the change ΔEl in the energy of the liq-
uid in the mouths of the throats connecting the pore
with neighboring pores at extrusion in the temperature
range under consideration to the change ΔEs in the en-
ergy of the boundary wall of the frame in the pore is
ΔEl/ΔEs ∼ ησW1(θ1)/(δσ(1− η)) ∼ 20W1(θ1). It can be
seen in Figure 11 that 20W1(θ1) > 1 for these systems
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throughout the entire range of the degree of filling above
the percolation threshold θc. Therefore, the changeΔEl in
the energy of the liquid in the mouths of throats at extru-
sion for the Fluka 100 C8-water system at temperatures
293–343 K is larger than the change ΔEs in the energy of
the boundary wall of the frame in the pore at any degree
of filling except for the range near the percolation thresh-
old θc. The system of clusters is in a “condensed” state,
where the critical radius R∗(θ1, T ) separating empty pores
and pores in the metastable state is much larger than the
minimum radius R0 because W (θ1) ≤ 1 for σ

δσ ∼ 4 (see
Fig. 11) and estimates give

R∗(θ1, T ) = R0

(
1 +

σlg

δσ
W1(θ1)

) 1
α

∼ R0

(σlg

δσ
W1(θ1)

) 1
α 
 R0.

Consequently, the integral

R∗(θ1,T )�R0∫
R0

R3f(R)dR ≈
∞∫

R0

R3 f(R) dR

for this state of the Fluka 100 C18-water system is inde-
pendent of the degree of filling, and the volume fraction
of the liquid remaining in the porous medium increases
linearly with the degree of filling

θm =

R∗(θ1,T )�R0∫
R0

R3f(R)dR ≈
∞∫

R0

R3f(R)dR

∞∫
R0

R3f(R)dR
∼ θ1

(see Fig. 10).
We now consider the state of the Fluka 100 C18-water

system. For this system, the ratio σ
δσ is 3.5 at a temper-

ature of T = 293 K, decreases to about 1 at T = 343 K,
and is smaller than unity at temperatures above Tc =
343 K. The average connectivity factor of pores for this
system at a porosity of ϕ = 0.4 is η ∼ z( R0

〈R〉 )
2 ∼ 0.6

(R0 ∼ 1.5 nm, 〈R〉 ∼ 4 nm, z ∼ 4). For this reason, the
ratio of the change ΔEl ∼ ησW1(θ1) in the energy of the
liquid in the mouths of throats at extrusion in the temper-
ature range of 293–343 K to the change ΔEs ∼ δσ(1 − η)
in the energy of the boundary wall in the pore varies from
∼5W1(θ1) at T = 293 K to ∼W1(θ1) at T = 343 K. At
low temperatures T < Tc1, where Tc1 ∼ 330 K, ΔEl is
larger than ΔEs at any degree of filling except for the
range near the percolation threshold θc. Therefore, the
system of liquid clusters in pores at T < Tc1 is in the
“condensed” state, where the critical radius R∗(θ1, T ) sep-
arating empty pores and pores in the metastable state is
much larger than the minimum radius R0. For this reason,
the volume fraction of the liquid remaining in the porous
medium for this state increases linearly with the degree of
filling θm ∼ θ1. In the temperature range Tc > T > Tc1,
the behavior of the system is determined by the competi-
tion between comparable energies ΔEs and ΔEl. In this

case, a dispersion transition occurs at the degree of fill-
ing θc1 for which the change ΔEs in the energy of the
boundary wall in the pore becomes equal to the change
ΔEl in the energy of the liquid in the mouths of throats
at extrusion (see Figs. 9 and 10). According to Figures 9
and 10, θc1 ∼ 0.6, which does not contradict experimental
data. At temperatures above Tc = 343 K, the ratio σ

δσ
for the Fluka 100 C18-water system is smaller than unity.
In this case, the change ΔEs in the energy of the bound-
ary wall in the pore becomes equal to the change ΔEl of
the energy of the liquid in the mouths of throats at ex-
trusion. The critical radius R∗(θ1, T ) becomes about the
minimum radius R0 and θm(θ1) vanishes (see Eq. (24)).
Hence, the volume fraction θ2(θ1) of the liquid remain-
ing in the porous medium at T > Tc = 343 K is deter-
mined by the volume fraction θs of the liquid caused by
the geometry of the space of pores and is independent of
the temperature (see Fig. 11). The appearance of various
states in systems under study is due to competition be-
tween the change ΔEs in the energy of the boundary wall
in the pore and the change ΔEl in the energy of the liquid
in the mouths of throats at extrusion, which correspond
to the effective multiparticle interaction and are given by
equations (19).

4 Conclusions

To summarize, three different states of a dispersed non-
wetting liquid (water) in the Fluka 100 C8 and Fluka
100 C18 disordered porous media, as well as transitions
between these states under variation of the temperature
and the degree of filling, have been qualitatively described
in this work. It has been shown that the appearance of
such states is determined by the width of the pore size
distribution function f(R). Since dependences f(R) ob-
tained from nitrogen desorption isotherms provide only
qualitative representation of these distributions, a qual-
itative description of the revealed states and transitions
between them has been given. The appearance of these
states and transitions is due to the competition between
the effective repulsion of the nonwetting liquid from the
wall of a pore, which is responsible for the “extrusion” of
the liquid from the pore, and the effective collective mul-
tiparticle attraction of the liquid cluster in the pore to
clusters in the neighboring connected pores. This collec-
tive multiparticle attraction appears because the surface
energy of the system of liquid clusters in completely filled
pores is not the sum of the surface energies of all indepen-
dent liquid clusters. Clusters can be in contact with each
other in neighboring pores connected through throats. A
liquid-gas interface is absent in the mouths of these throats
if the pore is connected through throats with neighboring
filled pores. This means that the surface energy of two
clusters in the neighboring pores is lower than the surface
energy of two independent clusters by the energy of the
liquid-gas interface in the mouth of the throat connecting
these filled pores. A decrease in the surface energy can be
considered as the negative energy of the interaction be-
tween two liquid clusters, i.e., as the effective attraction
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between interacting clusters. The interaction between liq-
uid clusters can be responsible for the situation where the
total energy of “the multiparticle attractive interaction”
becomes higher than the energy of the liquid-solid inter-
face. In this case, the system of clusters becomes “con-
densed”. In this state, the entrapment of the liquid in the
porous medium is energetically favorable; i.e., extrusion is
energetically unfavorable.

The magnitude of the effective “multiparticle attrac-
tion” of the liquid cluster in the disordered nanoporous
medium is determined by the energies of interfaces and
depends on the temperature because of the temperature
dependence of the surface tension coefficients σlg, σls, σsg

at the phase interfaces. The sign of the effective “multi-
particle attraction” of the liquid cluster in the disordered
nanoporous medium is determined by the spatially inho-
mogeneous geometric configurations of the liquid cluster in
the pore and its environment. It depends on the degree of
filling of the porous medium and is determined by the pore
size distribution function f(R), variation of the number of
neighbors in the system of pores, and variation of the local
configuration of the pore and its environment consisting
of filled and empty pores on the rough shell of the per-
colation cluster. Depending on the width of this distribu-
tion, various local configurations are possible in the porous
medium; e.g., a pore can be surrounded by smaller pores
or by a smaller number of neighboring pores. For this rea-
son, various configurations of empty and filled pores are
formed in the porous medium and, as a result, the “multi-
particle interaction” between liquid clusters appears with
various magnitudes and signs. Variations of local config-
urations of the pore and its environment at the extrusion
of the liquid from the pore can result in the breaking of
the infinite cluster of filled pores and in the formation of
clusters containing of a finite number of filled pores for
which paths for extrusion are absent. In this state, the
liquid remains in the porous medium because paths for
its extrusion are absent.

The energy of “interaction” in the disordered porous
medium fluctuates because of various spatially inhomo-
geneous geometric configurations of the liquid cluster in
the pore and its environment, leading to the formation of
a random potential relief for the extrusion of the liquid
from different pores. The magnitudes of peaks and dips
in this potential relief determine the set of the configura-
tions of empty and filled pores from which the liquid flows.
If the number of such configurations is macroscopically
large, they form various metastable states of the nonwet-
ting liquid in the form of an ensemble of liquid nanoclus-
ters in pores. The potential barrier between metastable
states has been calculated in this work in the mean field
approximation.

In the described picture, the first of the revealed states
appears if the “effective multiparticle repulsion” between
liquid clusters is smaller than their effective multiparticle
“attraction” for a given temperature range and any de-
gree of filling. In this case, the nonwetting liquid in the
porous medium is in a metastable state in a given tem-
perature range at any degree of filling. The volume frac-

tion of the liquid in this state increases linearly with the
degree of filling and depends slightly on the temperature.
The potential barrier for the extrusion of the liquid in this
metastable or quasi-nonergodic [28] state is finite. The de-
cay time of such a state decreases with an increase in the
temperature.

The second of the revealed states appears if the “effec-
tive repulsion” in a certain range of the temperature and
the degree of filling is stronger than the effective “attrac-
tion”, whereas the “effective repulsion” beyond this range
is weaker than the effective “attraction”. Systems in this
state will undergo a dispersion transition at the critical
degree of filling and the critical temperature, which are
determined from the condition of the equality of the ef-
fective “attraction” and “effective repulsion”. The barrier
for the extrusion of the liquid in this state is finite. This
state is also metastable or quasi-nonergodic. The volume
fraction of the liquid, as well as the decay time of such a
metastable state, is finite and depends on the temperature.

The third state of the liquid remaining in the porous
medium is determined by the volume fraction of the liquid
trapped in pores that are formed because of the breaking
of the infinite cluster of filled pores and are disconnected
from the infinite cluster. The barrier for the extrusion of
the liquid from these pores is infinite. This state is noner-
godic [47]. The volume fraction of the liquid in this state
is independent on the temperature and the decay time of
such a state is infinitely long.
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