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Abstract. Perceptrons are one of the fundamental paradigms in artificial neural networks and a key pro-
cessing scheme in supervised classification tasks. However, the algorithm they provide is given in terms
of unrealistically simple processing units and connections and therefore, its implementation in real neural
networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s com-
putation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with
coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of
the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the
classical artificial system can be used to learn a particular problem, its solution can be directly implemented
in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in
a wide range of frequencies and system parameters, while keeping robust to noise and error.

1 Introduction

Artificial neural networks have shown to be a powerful tool
to theoretically understand the basic functionality princi-
ples of neural biological systems and, in particular, neural
computation. The perceptron model [1], with its associ-
ated backpropagation algorithm for learning [2], and the
Hopfield model of associative memory [3] are fundamen-
tal and paradigmatic building blocks in this field. One
of the strengths of these models is the use of simplified
descriptions for neurons, synapses, structure and dynam-
ics. These simplifications allow modelers to apply differ-
ent methods to disentangle the roots of the computational
power they achieve and to use these models for particular
computational tasks [4].

On the other hand, detailed models of biological neu-
ral components, including the classical model of neuronal
excitability due to Hodgkin and Huxley [5], are focused
on the precise description of the biophysical aspects of
neurons and synapses. These models are relevant to ana-
lyze delicate aspects of neural systems dynamics and their
influence on cognitive function; for example, synchroniza-
tion and oscillatory properties [6,7], stimuli encoding as
different spiking sequences [8], and the diverse character-
istic firing behaviors across neurons [9], to name a few.
However, these studies are generally not oriented to study
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the computational properties that emerge from a connec-
tionism point of view.

The construction of artificial neural networks with el-
ements based on more realistic descriptions has been the
natural continuation in the field, aimed to understand the
computational abilities of real neural systems [10]. In this
direction, Hopfield-like models with phase oscillators as
processing units [11], instead of spins, have been exten-
sively studied [12–15]. Moreover, the use of oscillators as
computing elements in feedforward perceptron networks
has been also considered by one of the authors [16]. Cur-
rent efforts also include the elucidation of the link between
those foundational processes in artificial neural networks
research and their counterparts in biologically realistic
spiking networks; for example, the learning rule in feed-
forward networks has been analyzed in spiking networks
with simple or detailed physiological descriptions [17,18].

In this work, we extend previous studies on biologi-
cally inspired feedforward networks with computational
capacities. In particular, we assume that a perceptron has
evolved by learning and, by a proper design of computing
elements and connections, we construct a biologically re-
alistic neural system on top of which classical perceptron
can be expressed. The biological realism of this system
must be seen in terms of synthetic biology [19] and not
as a description of a real system. This work continues one
of the author’s previous theoretical study on perceptrons
made by phase oscillators [16] and, as before, it is aimed

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2014-50322-y


Page 2 of 11 Eur. Phys. J. B (2014) 87: 236

to resolve a computational task (e.g., classification), now
with neurophysiologically-based dynamical properties. We
use realistic models of neurons and synapses, and combine
them in a proper network architecture to construct the
computational function. As a result, we explicitly obtain
a spiking neural system able to work with the weights,
thresholds and main architecture of a classical perceptron
feedforward network. As an extension of the perceptron,
this model naturally is capable to solve binary settings,
and adds functionality regarding operation at different fre-
quencies and noise levels.

The work is organized as follows. In the second section
we present the spiking perceptron model and the inter-
connection between processing units. In the third section
we carry out a detailed numerical study of this model and
its operation, construct a feedforward network capable to
solve the XOR logic problem, and describe its extension
to any perceptron processing scheme. Finally, in the last
section we discuss about our findings and present our con-
cluding remarks.

2 Model

We propose a model in which the information is encoded
as the neural activity on a binary basis. Under this def-
inition, the neuron is active if it is spiking; otherwise, it
is inactive. Activation indicates that a neuron is spiking
with a mean frequency similar to that of some reference
neuron. When its frequency is much smaller (e.g. an or-
der of magnitude less than the frequency of the reference
neuron), the neuron is considered inactive.

All neurons in the network evolve according to a con-
ductance-based neural dynamics, similar to the Hodkgin-
Huxley model. In particular, the neuron model we use has
been proposed by Wang and Buzsáki to describe the in-
trinsic neural dynamics in a hippocampal network and, as
detailed in the Appendix, it is based on two gating dynam-
ics relative to spike-initiation currents [20]. This neuron
model has been extensively used, for example, to study
synchronization properties of inhibitory or inhibitory/ex-
citatory populations of neurons [20–22], the generation of
rhythms in hippocampal networks [23,24], the modulation
of synchrony by competition in recurrent networks and its
influence on attentional response functions [25,26], stim-
uli encoding in neuron models [27], to name a few studies.
Regarding its encoding capabilities [27], this model corre-
sponds to a type I neuron class and presents a saddle-node
bifurcation with respect to the input current, in contrast
to the Hodgkin-Huxley model which presents a Hopf bifur-
cation from quiescent to spiking regime and, therefore, it
is classified as a type II neuron. We selected this model in
order to avoid bistability with respect to the input current,
and then, to directly extend the results and be compati-
ble with our previous theoretical model [16]. Moreover, we
present a detailed analysis of our election in the numerical
study section.

Hereafter, the elemental unit in our model is called
the processing unit and it consists of a circuit of two neu-
rons, as shown in Figure 1a. This irreducible unit has a

Fig. 1. (a) Neural circuit as spiking perceptron. This circuit
comprises a processing neuron A and a reference neuron R.
They are connected by two chemical synapses, one inhibitory
(red square arrow) and one excitatory (black triangular ar-
row). The efficiency of these synapses, or weight, is modulated
by input signals provided by the neural network, zIA(t) and
zEA(t), and external inputs, JIA(t) and JEA(t), through exci-
tatory axo-axonic heterosynapsis. The reference neuron R has
an independent input current IR that regulates its activity.
The output signal of the processing neuron has a postsynap-
tic effect characterized by the function sEA(t). (b) Equivalent
circuit where neurons have only one type of output synapse.
In this case, neuron R is exclusively excitatory, and connects
to an inhibitory neuron I (red square arrow) and an excitatory
neuron E (black triangular arrow).

processing neuron A and a reference neuron R; whereas
neuron A is independent for each unit, neuron R may be
shared among them (but not limited to) and therefore be
a global reference. These neurons are connected from R
to A by two chemical synapses with opposite effects, one
inhibitory and one excitatory. The distinctive feature of
this processing unit is that while it is synaptically and
exclusively driven by the reference neuron, it also pro-
cesses signals coming from either other neurons’ outputs,
zαA(t), or external sources, JαA(t), by modulating the ef-
ficiency of the synapses (note the subindex alpha in the
signals, representing the modulation to either an excita-
tory or an inhibitory synapse, α = E, I, respectively) via
an axo-axonic heterosynaptic synaptic mechanism. This
kind of synaptic mechanism is well known in neural sys-
tems [28–32], as it modulates the pre/post synaptic func-
tion by a third participant (heterosynapsis) and is involved
in fast neural processing (electrical axo-axonic coupling).
Additionally, this concerted mechanism has been concep-
tually used in artificial neural networks with high-order
connections [33,34]. As discriminated in the notation, the
signals to be processed are generally time-dependent and
are originated from two sources: by the activity of other
neurons in the system, via zαA(t), or from external inputs,
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through JαA(t). For the sake of simplicity, we consider
that these input signals only excite those synapses they
impinge on. Thus, zIA(t) and JIA(t) facilitate the corre-
sponding inhibitory synapse, whereas zEA(t) and JEA(t)
facilitate the excitatory one.

The reference neuron R fires periodically with a fre-
quency νR, fixed by the input current IR. This neuron has
two output synapses, one excitatory and one inhibitory.
Although this kind of dual behavior is not habitual in real
neurons, we can consider this circuit as a minimum effec-
tive representation. In effect, as shown in Figure 1b, an
equivalent circuit can be obtained with all neurons pre-
senting a single synaptic behavior. The operation of these
two circuits is essentially equivalent, except for delays not
considered in this work.

The total input current IA arriving to the process-
ing neuron A is given by the summation of the synap-
tic input currents IEA (excitatory) and IIA (inhibitory).
Synaptic currents are modelled as conductance-based de-
scriptions [22], with a maximal conductance given by the
modulation in the axo-axonic connection; in detail,

IαA = Gα

(
zαA(t), JαA(t)

)
(Vα − VA) sαR(t). (1)

In this expression, VA is the potential of the postsynaptic
neuron A and Vα is the reverse potential of the synapse
under analysis, given by α = I, E (inhibitory and exci-
tatory, respectively). Numerical values of the parameters
and model details are given in the Appendix. The function
sαR(t) is the signal coming from the presynaptic neuron
R and it is commonly modelled as the difference of two
exponential functions with different time constants (see
Appendix for details). In contrast with traditional models
and following our previous work (see Ref. [16]), the weight
of the synapse Gα(zαA(t), JαA(t)) is a function of the in-
coming signal zαA(t) (from other processing units) and
JαA(t) (from an external source). This mechanism corre-
sponds to an axo-axonic synapse and it is a key feature
in our work. We consider these two signals as separate
streams only for the sake of clarity since, in effect, both
inputs have the same nature. The function of the signal
JαA(t) is to bring information to the system (neural net-
work) from the outside environment.

The input signal zαA(t) due to the activity of other
nodes of the system is collected by a processing unit A as
the summation of mEA excitatory and mIA inhibitory out-
put signals generated by those connected preceding units.
Since the output signal of a processing unit, R+A, is that
signal generated by its processing neuron A, we use the
same index to refer to the processing unit or, indistinc-
tively, to its corresponding processing neuron. Each signal
is given by:

zαA(t) =
mαA∑

j=1

wα
AjsEj(t). (2)

In this expression, the constant wα
ij weights the modula-

tion of the axo-axonic synapse of kind α, due to the unit j,
on the synapse between the neuron A and its reference

neuron R. The function sEj(t) is the postsynaptic excita-
tory signal generated by the preceding neuron j. Finally,
we define

Gα

(
zαA(t), JαA(t)

)
= W gαzαA(t) + JαA(t), (3)

where the constants gα are factors added to compensate
excitatory and inhibitory effects, and the constant W is an
amplification factor valid for all input neural signals. Note
that the weight function Gα(zαA(t), JαA(t)) must return
values with units of mS/cm2. However, for the sake of clar-
ity, we consider all input signals and factors as dimension-
less. The correct units can be achieved by a multiplicative
unitary factor with the proper units.

3 Numerical study

In this section we numerically study the main properties
of this model and construct an explicit example of a feed-
forward network able to solve the XOR logic problem with
the proposed processing units. All numerical simulations
are carried out using a Runge-Kutta integration algorithm
of second order with Δt = 0.01 ms. Unless otherwise spec-
ified, the spiking frequency of any neuron is defined as
the inverse of the interspike intervals observed during a
10 000 ms window.

3.1 Spiking perceptron versus classical perceptron

In order to study the relationship between the classical
perceptron model and the proposed model for an equiv-
alent spiking perceptron, we firstly study the response of
the processing unit with respect to constant external sig-
nals JαA, neglecting any other input activity from other
processing units (zαA(t) = 0).

To that purpose, we consider the processing unit il-
lustrated in Figure 1a with IR = 1 mA/cm2. Driven by
this stimulation, the reference neuron fires with a con-
stant frequency of νR ≈ 60 Hz. In Figure 2a we present
the frequency of the processing neuron νA as a function
of the external input signal JEA. The figure shows several
curves corresponding to different values JIA of a simulta-
neous inhibition. According to equation (3), the synapse
between R and A is being strongly modulated by input
signals and therefore, the processing unit needs an exter-
nal signal JEA �= 0 to present some activity and start to
spike. This behavior is due to the saddle-node bifurcation
of the neuron model used for the units, with a threshold at
(constant) current IT = 0.161 mA/cm2. Additionally, as
a consequence of the bifurcation structure, the processing
neuron starts to spike with a very low frequency (formally
zero). As the initial frequency is very low, we need to in-
crease JEA in order to get a measurable frequency. As
shown in Figure 2a, by increasing JIA the same behavior
is found, but curves are shifted towards the right.

This mutual interaction can be observed in Figure 2b,
where it is shown the minimum input signal JEA required
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Fig. 2. (a) Mean frequency of the processing neuron as a func-
tion of the excitatory input JEA, for different values of a si-
multaneous inhibitory input JIA. The reference neuron has an
input current IR = 1 mA/cm2, which sets its frequency to
νR ≈ 60 Hz. (b) Minimum value of the signal JEA necessary
to produce a measurable response in the processing neuron, as
a function of the signal JIA.

to make the processing neuron to fire with a low measur-
able frequency as a function of the input signal JIA. These
JEA values correspond to the threshold of the curves in
Figure 2a. Both magnitudes are related by a lineal de-
pendence with slope different from unity, indicating that
the excitatory effect is stronger than the inhibitory one
(JEA = 0.36JIA + 0.04). Additionally, we observe that
for JIA = 0, a signal JEA = 0.04 is necessary to activate
minimally the processing neuron.

This model of two neurons coupled by an axo-axonic
mechanism behaves in analogy to a classical perceptron
with a sigmoid activation function. In effect, when the
input signals JEA and JIA verify that JEA > 0.36JIA +
0.04, the system is set in the upper region in Figure 2b and
the processing neuron is activated or “on”. In the opposite
case, when JEA < 0.36JIA + 0.04 the processing neuron
has no activity, so it is “off”.

The previous relationship indicates that the effect of
the excitatory signal is stronger than the inhibitory one
and, therefore, the ratio given by its slope can be used
to rescale normalization constants gE and gI in equa-
tion (3). We take these constant values as gE = 0.36 and
gI = 1; this election ensures that the effect of the input
signals due to the neural activity of the network is equiva-
lent despite the kind of synapse (excitatory or inhibitory).
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Fig. 3. (a) Frequency νA of the processing neuron (mean and
dispersion) as a function of the input signal JEA (JIA = 0).
(b) Frequency νV (t) of the compound signal V (t) = VR(t) +
VA(t) (mean and dispersion) as a function of the input signal
JEA. Each point corresponds to a 20 000 ms-long simulation.

Additionally, with this definition we simplify the mean-
ing of the weights, since an excitatory and an inhibitory
synapse with the same weight values have equivalent but
opposite synaptic effects.

Note that the selected neuron model allows us to have
a step-like activation function, analogously to the situ-
ation we have previously analyzed with phase oscillators
(Ref. [16]). In that work, the strenght of the synaptic mod-
ulation by the input signals is controlled by a factor α.
In particular, we have shown that for |α| > 1 the system
presents only one stable attractor of the dynamics. On the
other hand, the case with |α| < 1 corresponds to a system
with bistability, similarly to the Hodkgin-Huxley neural
model. Clearly, in this last situation, the evolution of the
system may depend on the initial conditions, a regime that
we do not address in the present study.

3.2 Synchronization properties

Synchronization properties of this system of two neurons
are important to understand the information processing
in networks constructed with these elements. To this end,
we use the system represented in Figure 1a with the set of
parameters defined in the previous subsection (Sect. 3.1).

Figure 3a shows the mean frequency of the process-
ing neuron νA and its standard deviation as a function of
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the input signal JEA, in the absence of inhibition. Mean
and standard deviation are calculated from correspond-
ing properties in the set of interspike intervals observed
in a fixed temporal window and the inverse relationship
that relates both quantities. As shown, there are sev-
eral plateaus, whether noisy or not, where the process-
ing neuron follows integer multiples of the frequency of
the reference neuron (νR ≈ 60 Hz). This situation corre-
sponds to frequency locking between the neurons. When
0.19 < JEA < 0.45, the processing neuron has a periodic
firing with 1:1 frequency locking and small dispersion. For
larger values of JEA, the frequency of the processing neu-
ron can be 1:2 or 1:3 frequency locked to the reference
neuron, as shown in Figure 3a. In these cases, the incom-
ing signal is periodic and the dispersion observed arises
from the presence of irregular interspike periods in the
processing neuron.

In order to study the phase synchronization between
the processing and reference neurons, we define a com-
pound signal V (t) = VA(t) + VR(t) and measure its mean
frequency and dispersion, which are shown in Figure 3b
as a function of the excitatory signal JEA. For any value
of JEA, firing frequency of the processing neuron presents
a large dispersion, except for JEA ≈ 0.225 where a small
deviation is observed. In general, both neurons do not fire
simultaneously due to the time course of sER(t), since
there are no instantaneous connections between reference
and processing neurons, and this is the cause of the irreg-
ularity observed in the interspike periods of V (t).

This irregularity can better appreciated in Figure 4,
where we present the histograms d(T ) for the interspike
intervals of the signal V (t) (left panels) and the individ-
ual signals VR(t) and VA(t) (right panels), for different
representative values of JEA. For JEA = 0.225, Figures 4a
and 4b, we observe that the interspike interval presents a
distribution with two very close peaks (see Fig. 4a). This
is clear in Figure 4b where the signals of both neurons
are shown. For this input signal both neurons fire at the
same frequency but with a phase difference almost half of
the period. Since this phase difference is not exactly in the
middle, we find two peaks in the histogram. For larger val-
ues of JEA and up to JEA = 0.425, both neurons still fire
at the same frequency, but the phase difference between
the signals is steadily reduced; at JEA = 0.425 both neu-
rons spike with a small phase difference and, therefore, a
large dispersion for the frequency of the compound signal
(see Figs. 4c and 4d). A further increase in JEA disrupts
the 1:1 frequency locking and the processing neuron in-
creases its own frequency.

A similar situation is found is the second plateau, when
the frequency of the processing neuron doubles that of
the reference neuron. Figures 4e and 4f account for this
situation, as JEA = 0.75. In this case, the processing
neuron exhibits certain interspike interval and, since fre-
quencies are 1:2 locked, spikes from the reference neuron
form two phase differences with previous spikes; there-
fore, two additional peaks appear in the histogram (see
Fig. 4e). As shown in Figure 3a, at JEA = 0.75 the disper-
sion of the compound signal’s frequency presents a local
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Fig. 4. Left column: histograms of the interspike periods of the
potential V (t) = VR(t)+VA(t). The histograms are normalized
to unity, with binwidth of 0.2 ms. Right column: temporal evo-
lutions of the potentials VR(t) (reference neuron, dashed red
curve) and VA(t) (processing neuron, black continuous curve).
Different rows correspond to different values of input signal
JEA: JEA = 0.225 (a) and (b), JEA = 0.425 (c) and (d),
JEA = 0.750 (e) and (f), JEA = 1.10 (g)–(h), JEA = 1.45
(i) and (j), and JEA = 1.60 (k) and (l).

minimum. As before, as input external signal increases
(up to JEA = 1.1), signals still are 1:2 frequency locked,
but the first spike of the processing neuron’s doublet (per
period of the reference neuron spiking) is activated ear-
lier and therefore, it is closer to the spike produced by
the reference neuron. Additionally, since external signal is
stronger, both spikes of the processing neuron are closer
each other. As a consequence, the three peaks in the his-
togram spread and the frequency becomes noisier (see
Figs. 4g and 4h).

A further increase in the external signal JEA sets the
system in a non frequency locking regime, as it is shown
in Figures 4i and 4j for JEA = 1.45. Although there are
some clear main frequencies (periods) (see Fig. 4i), the
system evolves now in a quasi-periodic fashion. Finally,
when the processing neuron has three times the frequency
of the reference neuron, they produce a third plateau
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Fig. 5. (a) Network of spiking processing units able to solve
the XOR logic problem. All elemental units share a single ref-
erence neuron R; for the sake of clarity, we repeated it for each
processing unit. (b) Classical feedforward neural network able
to solve the same problem. The XOR problem consists of solv-
ing the following input-output relationships [(JE1, JE2) → ν5]:
(“off”, “off”) → “off”, (“on”, “off”) → “on”, (“off”, “on”) →
“on”, and (“on”, “on”) → “off”.

with 1:3 frequency locking and different phase differences,
which depends on the input signals JEA (see, for example,
Figs. 4k and 4l).

In conclusion, the neurons composing the elemental
processing unit develops frequency locking synchroniza-
tion for different ranges of JEA, where their frequencies
are related by integer ratios. As shown, in these regimes,
phase differences between both signals depends on JEA.
When both signals are not frequency locked, the system
behaves in a quasi-periodic, but irregular, way.

3.3 Multilayer feedforward perceptron network

In this subsection, we construct an explicit example of a
multilayer feedforward network using our previously de-
signed processing units. The system shown in Figure 5a is
the equivalent to a classical system, shown in Figure 5b,
capable to solve the XOR problem by the proper set of
weights {w} [35], which play the role of an adjacency ma-
trix of the network. In order to translate this classical
system to our model, we construct the set of inhibitory
weights {wI} from those negative weights {w:w < 0} in
the classical model (where wI is the absolute value of w),
and the set of excitatory weights {wE} from the corre-
sponding positive weights {w:w > 0}. With these two sets
of connections we link our processing units as equation (3)
indicates. An excitatory weight wE

ij connects the output of
the processing unit nj to the excitatory input of the pro-
cessing unit ni. Conversely, an inhibitory weight wI

ij con-
nects the output of the processing unit nj to the inhibitory
input of the processing unit ni (compare both networks in
Fig. 5). Finally, a processing unit ni in the first layer only
can have an input external signal JEi different from zero
(external drive is always positive; therefore, signal JIi is
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Fig. 6. The XOR problem resolution in action. Potentials
of the neurons as function of time. Potentials have been
shifted according to Vi(t) = Vi(t) + 100(i − 1) in order to
improve visualization. The frequency of the reference neuron
is νR ≈ 44.1 Hz (iR = 0.7 mA/cm2) (a), νR ≈ 59.7 Hz
(iR = 1.0 mA/cm2) (b), νR ≈ 71.4 Hz (iR = 1.25 mA/cm2)
(c). System parameters are gE = 0.36, gI = 1, W = 20, and
JIi = 0. The external input signals are JE1 = 0 and JE2 = 0 for
0 < t < 250 ms, JE1 = 0.35 and JE2 = 0 for 250 < t < 500 ms,
JE1 = 0 and JE2 = 0.35 for 500 < t < 750 ms, and JE1 = 0.35
and JE2 = 0.35 for 750 < t < 1000 ms. Dotted vertical black
lines show these intervals.

zero), without inputs from other units. In our architecture,
all the processing units have the same reference neuron R.

In Figure 6 we present the temporal evolutions of the
potentials of the neurons composing the network shown
in Figure 5a. To demonstrate the ability of the system to
operate at different frequencies, we have used three dif-
ferent values of IR to stimulate the reference neuron. In
order to span all possible combinations of logic inputs, we
have changed input signals each 250 ms during a 1000 ms-
period. The XOR problem consists of solving the follow-
ing input-output relationships [(JE1, JE2) → ν5]: (“off”,
“off”) → “off”, (“on”, “off”) → “on”, (“off”, “on”) →
“on”, and (“on”, “on”) → “off”.

During the first 250 ms, both input external signals
are zero (JE1 = JE2 = 0) and therefore, all neurons in
the network are silent. Between 250 ms and 500 ms, we
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set JE1 = 0.35 and JE2 = 0; under this input configura-
tion, only neurons n1, n3 and n5 spike. Between 500 ms
and 750 ms the symmetric situation is presented, JE1 = 0
and JE2 = 0.35, and, correspondingly, neurons n2, n4 and
n5 are activated. The most interesting situation appears
during the last 250 ms, when both external input signals
are active, JE1 = 0.35 and JE2 = 0.35. Now both neurons
in the first layer present activities, which are cancelled
each other out in downstream neurons n3 and n4; con-
sequently, output neuron n5 does not spike. The proper
resolution of the XOR problem for three different frequen-
cies of the reference neuron exemplifies the robustness of
proposed model (see Figs. 6a–6c), since information is en-
coded in a binary scheme just as the activity state of the
neurons.

3.4 Network operation with different reference
frequencies and noise

In the previous subsection, we have seen that the process-
ing neurons can work properly with different frequencies
of the reference neuron. Following, we conduct a more ex-
tensive study regarding the sensitivity of the network op-
eration with respect to this parameter and analyze the
effects of noise applied to neuron potentials. As a proto-
typic network, we consider the system shown in Figure 5a.

In Figure 7 we present the frequency of the process-
ing neurons νi as a function of the frequency νR of the
reference neuron (i = 1, . . . , 5). In this first study, we
do not consider noise effects and dispersion in frequency
data arises exclusively from irregular interspike intervals.
We study two logic cases, (JE1, JE2) = (0.35, 0) and
(JE1, JE2) = (0.35, 0.35), since the other two ones are
either uninteresting because of the absence of any dy-
namical feature, (JE1, JE2) = (0, 0), or do not represent
a new configuration, (JE1, JE2) = (0, 0.35). Figure 7 re-
ports only results regarding the first case, because for the
case (JE1, JE2) = (0.35, 0.35) the cancellation of activ-
ity in downstream neurons does not give any interesting
picture.

In Figure 7a we observe that the neuron n1 in the first
layer spikes always with the same frequency as the ref-
erence neuron, and neuron n2 does not spike at all since
JE2 = 0. In the second layer (see Fig. 7b), the neuron n3

can follow precisely the frequency of the reference neuron
up to νR ≈ 86 Hz. Note that below this point the disper-
sion is zero, indicating that both reference and processing
neurons are frequency locked. For higher values, process-
ing frequency increases more than linearly with respect to
the frequency of the reference neuron; also, dispersion in
the interspike intervals indicates that the frequency lock-
ing state cannot be maintained. Finally, in Figure 7c we
show the frequency of the output neuron n5. This neuron
follows initially the reference frequency up to νR ≈ 14 Hz;
after that, a small dip in the linear relationship is observed
up to νR ≈ 64 Hz, when it recovers again the tight locking
to νR. For higher values, n5 maintains 1:1 frequency lock-
ing to the reference neuron up to νR ≈ 80 Hz; from then
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Fig. 7. XOR network operation for different reference frequen-
cies. Frequencies νi of the processing neurons as a function of
the frequency νR of the reference neuron, for the input config-
uration JE1 = 0.35 and JE2 = 0. (a) Frequencies ν1 and ν2 for
neurons in the first layer. (b) Frequencies ν3 and ν4 for neu-
rons in the second layer. (c) Frequency ν5 of the output neuron.
Each point corresponds to frequency data obtained from the
interspike intervals collected on a 4000 ms temporal window,
after a 1000 ms transient.

on, frequency ν5 behaves similarly to ν3, with a supra-
linear increase with respect to νR and the development
of irregular interspike intervals. In the second case (not
shown), defined by JE1 = 0.35 and JE2 = 0.35, neurons
belonging to the second and third layers are not active,
indicating that incoming signals to the neurons n3 and n4

are compensated, as shown previously (see Fig. 6), for any
reference frequency.

Behaviors exhibited across the network in these two
meaningful cases show that the system can operate prop-
erly for a broad range of reference frequencies. Since we
encode the information as the state of activation or rest
of the neurons, the dispersion of the interspike intervals
of the output neurons and the sub- or supra-linear depen-
dence of the processing frequency with respect to νR do
not degrade the accurate recognition of the logic values.

As shown in the preceding paragraphs, neurons in the
network maintain the desired logic input/output relation-
ships for different frequencies. However, network opera-
tion robustness should also be demonstrated under noisy
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Fig. 8. Frequencies of the neurons composing the XOR-solving
network as a function of the reference frequency νR, under
the effect of noise. (a)–(c) Logic case defined by JE1 = 0.35
and JE2 = 0. (d)–(f) Logic case defined by JE1 = 0.35 and
JE2 = 0.35. Noise intensity is T = 0.5.

conditions. To that purpose, we study the effects on the
network operations of an independent additive noise ap-
plied to input currents. In particular, we have used a
Gaussian white noise ξi(t), defined by 〈ξi(t)〉 = 0 and
〈ξi(t1)ξj(t2)〉 = δijδ(t1 − t2) (i, j = 1, . . . , N), added to
the input current to neuron Vi and scaled by the noise
intensity T (see the Appendix). For these simulations, we
have used a stochastic Runge-Kutta algorithm of second
order with Δt = 0.01 as the temporal step.

Similarly to Figures 7 and 8 shows the frequency of
the processing neurons as a function of the reference fre-
quency, in noisy conditions. In the left column of Figure 8
(Figs. 8a–8c), we present results for the input combination
JE1 = 0.35 and JE2 = 0. Even with a small added dis-
persion, we clearly observe that mean frequencies are the
same as in the case without noise (Fig. 7). The smaller dis-
persion exhibited by neuron n4 in comparison to n2 results
particularly interesting; this is due to the fact that neuron
n4 has a strong inhibitory input from n1 and therefore, it
maintains a large gap to reach the threshold which dis-
courages spiking. Finally, we observe that noise increases
for successive layers, as expected from an accumulative
effect.

In the right column of Figure 8 (Figs. 8d–8f), we
present results for the last logic case with JE1 = 0.35 and
JE2 = 0.35. In this situation, we observe that now both
input neurons present dispersions on their frequencies due

to the noise (both response functions are superimposed in
Fig. 8d). As expected for this logic case, neurons in the
second layer present activities with a very low frequency,
which are driven by their intrinsic noises and the imper-
fect cancellation of the noisy inputs from the preceding
layer (Fig. 8e). Finally, in Figure 8f we observe that the
output neuron has a very small processing frequency with
a large dispersion, which increases as the frequency of the
reference neuron does. This rising of the noise effect with
the frequency can be understood by taking into account
the effect of the function sER(t). In effect, when the ref-
erence neuron has a high frequency sER(t) does not de-
cay to zero before a new spike arrives, and this situation
generates a continuous baseline that opposes to the can-
cellation designed by the connections (details about the
function sER(t) are given in the Appendix). In this condi-
tion, equation (1) behaves similarly to a normal chemical
synapse with a constant weight. Despite this noise effect,
it is clear that the activity of the output neuron is much
smaller than the reference neuron and, in consequence, we
can recognize the logic level properly. In general, we ob-
serve that the network can operate with a high level of
noise. The main reason for this well-behaved operation is
that the natural state of the neurons without input cur-
rent is far from the threshold needed to excite the neu-
rons, and even afterwards the spiking activity starts with
a very low frequency due to the saddle-node bifurcation
of the Wang-Buzsáki neuron model.

3.5 Effects of the parameters JE and W
on network processing

The parameter JE defines the frequency and phase differ-
ence between the reference neuron and those neurons in
the first layer of the network shown in Figure 5a. Similarly,
the parameter W controls frequencies and phase differ-
ences between the reference and neurons in downstream
layers. Even when, in our binary conception of the process-
ing, only the frequency determines whether the neuron is
behaving as logically designed or not, a neuron needs a
proper phase difference between the spike of the reference
neuron and the presynaptic ones in order to have an ac-
tive response. Moreover, as shown in Figure 4, spike time
phase differences between reference and active neurons de-
pend on couplings (here JE and W ) and are indicative of
different regimes; for example, in Figure 4, multi-peaked
histograms arise when frequency locking is established.
Therefore, it is expected than parameters JE and W com-
mand processing frequency in a non trivial way.

In this subsection, we focus on the frequencies of the
processing neurons composing the network illustrated in
Figure 5a as a function of the parameters JE and W for
a fixed reference frequency νR ≈ 60 Hz, in a noise-free
scenario. In Figures 9a and 9b, we show the frequencies ν3

and ν5 of the corresponding processing neurons for the
logic case defined by JE1 = JE (or “on”) and JE2 = 0
(or “off”). The active neuron in the first layer just follows
the behavior previously analyzed in Figure 3 and it is not
shown here. For neuron n3, we find a rich structure with
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Fig. 9. Frequencies of the processing neurons composing the
XOR-solving network as a function of parameters JE and W .
(a) and (b) frequencies ν3 and ν5 for the logic case defined
by JE1 = “on” and JE2 = “off”. (c) and (d) Frequencies ν3

and ν5 for the logic case defined by JE1 = “on” and JE2 =
“on”. Reference neuron has a frequency νR ≈ 60 Hz. Colorbar
indicates corresponding frequencies measured in Hz.

plateaus at ν3 = 60 Hz, ν3 = 120 Hz and ν3 = 180 Hz, in
different regions of the parameter space (see Fig. 9a). For
neuron n5, the structure is more complex as more neuron
responses shape output frequency (see Fig. 9b).

Figures 9c and 9d show equivalent results when both
input processing units are activated: JE1 = JE2 = JE

(or “on”). Satisfying the XOR operation, we observe that,
along almost the entire parameter space, cancellation be-
tween excitatory and inhibitory synapses work properly

and neurons in the second and third layers do not pro-
duce spikes. However, there are small regions of JE and
W values where these compensations are not perfectly ef-
fective. These regions, where input neurons cannot get fre-
quency locking synchronization to reference neuron, may
be roughly delimited by JE < 0.2 and 0.44 < JE < 0.72.
Obviously, parameters in these regions do not allow to
solve properly the XOR problem and must be avoided.

As shown in this subsection, the proposed system is
robust as it can work in a broad range of coupling param-
eters. It is important to note that the network designed
here has the particularity that all processing units have
the same number of inhibitory and excitatory input con-
nections. This fact allows us to tightly control operation
frequencies and may not be the case in more complex net-
works where the same neuron can have different modu-
lated weight values depending on the logic input signals
and then, different values of frequencies.

4 Discussion and conclusions

In this work, we have presented a neural circuit (process-
ing unit) able to work analogously to a classical percep-
tron. Further, a feedforward network capable to solve the
XOR problem was constructed using these units, where
underlying connectivity mimics the structure of a clas-
sical feedforward XOR-solving network. As shown, we
have designed a system that works properly with different
processing frequencies and exhibits a marked robustness
against noise. The architecture of the processing unit is a
realistic implementation of the model of phase oscillators
previously analyzed by one of the authors in reference [16].
Although in the previous model the information was en-
coded as phase differences and now as neuronal activities,
it is possible to map them by consistently defining equiva-
lent states; for example, while an active (inactive) state in
reference [16] is given by certain fixed point of the dynam-
ics, here it corresponds to a sustained spiking (quiescent)
regime. Importantly, both models share hetero-synapsis as
a key mechanism to process logic states and gate informa-
tion flow according to external inputs or other neuron’s
activity.

A previous model of a spiking feedforward neural net-
work proposed by Bohte et al. [17] has demonstrated that
learning classification tasks by backpropagating errors can
be achieved with threshold neurons and a relatively real-
istic synaptic dynamics. The main difference between this
model and our work is the way to encode information.
Whereas in Bohte model the information is encoded by
the interspike intervals as a time series, in our model the
information is given as the neural activity. Furthermore,
our model can be used consecutively to a classical percep-
tron feedforward model, which is used to learn a particular
task with standard methods (e.g. backpropagating errors
over perceptrons). Once a network topology is so defined,
its translation to our spiking perceptron model by appro-
priately connecting processing units is straightforward. In
general, we can indicate that both models are complemen-
tary to each other.
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The model presented in this work is able to operate
properly in a broad range of system parameters. This fact
allows us to easily translate the network structure from
the classical model to the spiking perceptron. As shown, it
is not necessary a significant effort to finely tune param-
eters W and JE . Additionally, the fact that the system
can work with different references frequencies νR allows
the system to solve the same logic problem with different
operation regimes and, obviously, meaningful information
can also be encoded by this operation frequency. For ex-
ample, solving the XOR problem at 50 Hz can have a very
different meaning from an equivalent operation at 90 Hz.

As demonstrated, the spiking perceptron is markedly
robust against noise. The main reason for this behavior
is the fact that neurons are in a state far from the bi-
furcation point; thus, noise must overcome a large gap to
threshold to activate neurons. Additionally, the onset to
spiking for neurons in this model is given with limit circles
of arbitrary low firing rates, so the proper classification as
an “activated” state has to be associated to a large in-
put current. The second important fact is that a neuron
needs particular correlations between the presynaptic (to
the axo-axonic connection) and reference neurons in order
to activate a neuron, due to the time course of the postsy-
naptic effects given by the signals sαi(t). Thus, the spon-
taneous spike of a presynaptic neuron cannot be processed
if the reference neuron does not trigger the corresponding
synapse. That is true for relatively low frequencies νR;
for larger values of νR, the function sER(t) can generate
a significant baseline that continuously drives membrane
potential close to the threshold and the forced synchro-
nization is lost.

Appendix: Neural and synaptic models

A.1 Neurons

All neurons evolve according to the Wang-Buzsáki neuron
model [20]; in detail, dynamics is given by the following
set of equations

C
dV

dt
= Isyn + gNam3

∞(V )h(VNa − V )

+ gKn4(VK − V ) + gL(VL − V )
+ Tξ(t), (A.1)

dh

dt
=

h∞(V ) − h

τh(V )
, (A.2)

dn

dt
=

n∞(V ) − n

τn(V )
, (A.3)

where V is the membrane potential, h is the inactivat-
ing gate of sodium channels, and n is the activating sub-
unit of potasium channels. The constant T defines noise
intensity and ξ(t) represents a Gaussian white noise of
unitary variance. Functions m∞(V ), h∞(V ) and n∞(V ),
and the characteristic times τh(V ) and τn(V ) are given by
x∞(V ) = ax/(ax + bx), τx = 1/(ax + bx) with x = m, n, h.

Particular values are:

am =
−0.1(V + 35)

exp(−0.1(V + 35)) − 1
, (A.4)

bm = 4 exp(−(V + 60)/18), (A.5)

ah = 0.35 exp(−(V + 58)/20), (A.6)

bh =
5

exp(−0.1(V + 28)) + 1
, (A.7)

an =
−0.05(V + 34)

exp(−0.1(V + 34)) − 1
, (A.8)

bn = 0.625 exp(−(V + 44)/80). (A.9)

Time constants are expressed in milliseconds. Numeri-
cal values of the parameters are: gNa = 35 mS/cm2,
gK = 9 mS/cm2, gl = 0.1 mS/cm2, VNa = 55 mV,
VK = −90 mV, Vl = −65 mV and C = 1 μF/cm2.

A.2 Synapses

Synaptic input current to a neuron, Isyn, is modelled ac-
cording to equation (1). Numerical values of excitatory
and inhibitory reverse potentials are VE = 0 mV and
VI = −80 mV. Following Hansel and Mato [22], here we
describe the phenomenological function sβi(t) that models
the dynamical evolution of a synaptic contact. Following
a spike of a presynaptic neuron I at t = 0, post-synaptic
interactions (synaptic processes) are modelled by

fβi(t) =
1

τ1β − τ2β

[
exp

(
− t

τ1β

)
− exp

(
− t

τ2β

)]
Θ(t).

(A.10)
The subindex β can be E or I, depending on the kind of
synapse (excitatory or inhibitory, respectively). The inter-
action process is governed by two characteristic times τ1β

(rise phase) and τ2β (decay phase). Their numerical values
are τ1E = 1 ms, τ2E = 3 ms, τ1I = 1 ms and τ2I = 6 ms.
Θ(t) is the Heaviside function.

The neuron I produces spikes at times tspikes
i . The total

accumulated effect of these spikes on a given post-synaptic
evolution sβi(t) is given by:

sβi(t) =
∑

spikes

fβi(t − tspikes
i ). (A.11)

Numerically, we compute the function sβi(t) by defining
two new variables as follows:

ε̇1βi = − ε1βi

τ1β
+

∑

spikes

δ(t − tspikes
i ), (A.12)

ε̇2βi = − ε2βi

τ2β
+

∑

spikes

δ(t − tspikes
i ). (A.13)
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Then, the function sβi(t) is given by:

sβi(t) =
1

τ1β − τ2β
(ε1βi − ε2βi). (A.14)

When a neuron spikes periodically its function sβj(t) takes
a simple form. Let’s consider that a neuron j with a post-
synaptic effect β and interspike period T has fired its last
spike at time t = 0. Then, the function sβj(t) between
t = 0 and t = T (following spike) reads

sβj(t) =
∞∑

n=0

fβj(t + Tn). (A.15)

In this expression we add the effects of previous spikes at
times −Tn, where n is the spike index. Taking into account
the expression of the function fβj(t) in equation (A.10),
we can write

sβj(t) =
1

τ1β−τ2β

[
e−t/τ1β

1−e−T/τ1β
− e−t/τ2β

1−e−T/τ2β

]
. (A.16)

We observe that sβj(0) is equal to sβj(T ); that is, the
function is periodic with period T . Additionally, the mean
value in a period is νβj , the frequency of the neuron j:

〈sβj(t)〉 =
1
T

= νβj. (A.17)
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