
Eur. Phys. J. B (2014) 87: 253
DOI: 10.1140/epjb/e2014-50303-2

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Statistical description of the system electrons on the liquid
helium surface

Bohdan I. Lev1, Vyacheslav P. Ostroukh2, Vitalii B. Tymchyshyn1,a, and Anatolii G. Zagorodny1

1 Bogolyubov Institute for Theoretical Physics, National Academy of Science, Metrolohichna St. 14-b, 03680 Kyiv, Ukraine
2 Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska St., 01601 Kyiv, Ukraine

Received 12 May 2014 / Received in final form 31 July 2014
Published online 1 November 2014 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2014

Abstract. System of electrons on the liquid helium surface is considered. General methods for obtaining
free energy functional for the systems in mean field approximation are developed. These methods applied
for treating systems with particles arranged in a lattice. Thus obtained functional of free energy is analyzed.
The localization distance for electron and conditions for existing square or triangular lattices as well as
phase transition between them are obtained.

1 Introduction

Particle systems with Coulomb interaction (Coulomb-like
systems), such as plasmas, colloidal particles, electrolyte
solutions, electron on the helium surface, etc., are widely
presented both in nature and under laboratory conditions.
An interest to this systems is generated by its applications
to the studies of a variety of peculiar phenomena in various
fields of science [1–3].

One of the challenges here is a statistical description
of Coulomb-like systems with high concentrations of in-
teracting particles [4]. Such effects as formation of various
crystal structures, transitions between different phases are
observed when concentration increases.

Considerable attention is attracted to the special case
of electrons on the surface of a dielectric substrate [5,6].
A possibility of creating a two-dimensional system on the
surface of a dielectric medium was predicted by [5–7] and
a year later [8] first experiments were carried out. More-
over, the first experimental realization of the Wigner solid,
predicted in well-known article [9], was made in an elec-
tron system on liquid helium [10]. Studies of these sys-
tems are not only of academic interest but can also have
some practical applications. For example, it is proposed
to use the electrons on a dielectric surface for quantum
computations [11].

Electrons located on a dielectric surface have two de-
grees of freedom only [3,12] and can exist in forms of fluid
or Wigner crystal [9,10,13]. It was theoretically and exper-
imentally shown, that electrons on the liquid helium sur-
face can undergo a phase transition, which appears in their
ordering stage [10,14] (liquid-to-solid transition). Besides,
it is known, that electrons are “floating” above helium sur-
face at quite large distance about 76 Å due to quantum
effects [3]. Thus in electron “layer” self-organization stud-
ies presence of helium is treated just as “correction” of
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interelectron potential without consideration of separate
helium atoms [3,15–17], which makes this system attrac-
tive for theoretical studies. In reference [15] the struc-
tural transition of a Wigner lattice from triangle to square
was investigated. Moreover, in reference [16] it was shown
and later experimentally confirmed [17] that homogeneous
distribution of electron density is not always stable, and
there are critical parameters when spatial structures, es-
pecially periodic deformations and multi-electron dimples,
are formed. But this structures can be treated separately
from Wigner crystallization, because characteristic length
of such structures is much larger than the period of the
Wigner lattice.

Modern research in the field of low-dimensional elec-
tron systems is based mostly on the quantum field the-
ory [18] and the scaling theory [19]. For example, elec-
tron transport properties in heterostructures and electron
structures on the liquid-helium surface can be studied us-
ing quantum field theory methods [20]. As regards the
scaling theory, it was worked out in reference [21]. Never-
theless, these models are complicated for the analysis and
require a lot of calculations. Therefore, it would be highly
desirable to introduce simpler quasi-classical models of the
type [4,22], which could be efficient for the description of
the properties of the low-dimensional electron systems.

Another interesting side of studying electrons on liq-
uid helium is that this system is a representative of
class of systems with long-range interaction resembling
Coulomb one. Dusty plasmas, systems of colloidal par-
ticles, electrolyte solutions significantly differ from each
other by physical properties, but due to their inter-
particle interaction formation of similar structures is
observed, concerning the formation of stable periodical
structures [4,23–29]. Thus, we can expect that methods
applicable to two-dimensional electron systems also can
be useful for description of other systems of mentioned
type.
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In the present contribution we study the influence of
new details of the electron interaction related to such ef-
fects. We take into account both direct Coulomb repul-
sion and polarization interaction as well as the interaction
due to the deformation of the helium surface [7,15]. Pro-
posed simplified approach is suggested by the fact that the
forces, governing self-organization, act on a length scale
which is larger than the molecular size; as a consequence
many specific details of the molecules of interest are not
necessary for studying general features of phases.

We look at the electrons on the liquid helium surface in
a way typical for the systems with long range interaction
developing necessary formalism of the statistical descrip-
tion of such systems in terms of the mean field approxi-
mation [4,30]. The main goal of the present contribution
is to work out a model for the description of electrons on
a helium surface in the presence of the external electric
field applied perpendicularly to the surface. We use it to
explore square to triangular lattice transition and Wigner
crystallization. In order to do this we employ the concept
of the effective interaction energy. For the case of electrons
on a cryogenic liquid substrate, distortion of the surface
introduces additional physical effects [7,15].

Article is organized as follows. We always adhere prin-
ciple “from general to concrete”. So we start with general
description of the interacting particle system in mean-field
approximation Section 2. Obtained result can be applied
to the wide variety of systems. So we apply obtained equa-
tions to the system of Fermi-particles in two-dimensional
space Section 2.1. In Section 3 we add assumption about
particles arrangement in a lattice. Some general Bravais
lattice is analyzed. It can be seen from Section 3 that it
is convenient to work in inverse lattice space with proba-
bility distribution function for single particle ρSP . Later
in Section 4 we introduce effective interelectron potential
and do some assumptions about ρSP . And in Section 5 we
finish our research by obtaining explicit expression for free
energy of triangular and square lattices. This expression
is approximated and analytically analyzed.

2 Statistical description of interacting
particles system

We begin with a brief calculation for inhomogeneous sys-
tem of interacting particles [22]. In this section we would
not specify our system and interaction to keep generos-
ity and extendability of presented theory. As far as we
know, stable states of the system minimize its free energy,
so with following calculations we aim to get some general
expression for it.

In our model macroscopic states of the system are de-
scribed by a set of occupation numbers. For a wide number
of systems Hamiltonian can be written in form:

H(n) =
∑

s

εsns +
1
2

∑

s,s′
Vss′nsns′ .

Here εs is the additive part of particle energy (usually it is
kinetic energy, but it can be particle’s energy in external

field as well), s indicates particle state, Vss′ is interaction
energy between particles in states s and s′, ns is the oc-
cupation number of state s. Most systems mentioned in
introduction, including electrons on liquid helium surface,
are essentially classical so we neglect any quantum corre-
lations.

Partition function for this kind of system will be:

Z =
∑

{ns}
exp(−βH)

=
∑

{ns}
exp

[
−β

(
∑

s

εsns +
1
2

∑

s,s′
Vss′nsns′

)]
.

In order to perform formal summation in this equation,
we use the well-known properties of Gaussian integrals
over auxiliary fields, i.e. Hubbard-Stratonovich transfor-
mation [31,32]:

exp

⎛

⎝ ν2

2ϑ

∑

s,s′
ωss′nsns′

⎞

⎠

=

∞∫

−∞
Dϕ exp

(
ν
∑

s

nsϕs − ϑ

2

∑

s,s′
ω−1

ss′ϕsϕs′

)
,

with Dϕ =
∏

s dϕs/
√

det(2πβωss′ ). We can avoid second-
order dependence on occupation numbers, carrying it to
introduced field. Now partition function can be written as
follows1:

Z =
∫

Dϕ exp

⎡

⎣
∑

s

(iϕs − βεs)ns − 1
2β

∑

s,s′

(
V −1

ss′ ϕsϕs′
)
⎤

⎦ .

Let us consider canonical ensemble. We will fix number of
particles using Cauchy equation

1
2πi

∮
ξ
∑

s ns−N−1dξ = 1.

We get partition function for N -particle system:

ZN =
1

2πi

∮
dξ

∫
Dϕ exp

[
− 1

2β

∑

s,s′
V −1

ss′ ϕsϕs′

− (N + 1) ln ξ

]
∏

s

∑

{ns}
[ξ exp(iϕs − βεs)]

ns .

Now summation over occupation numbers can be per-
formed according to the type of statistics. As a result we
will get

ZN =
1

2πi

∮
dξ

∫
Dϕ exp[−βF (ϕ, ξ)],

1 In future infinite limits of integration will be omitted.
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with effective free energy:

βF (ϕ, ξ) =
1
2

∑

s,s′
V −1

ss′ ϕsϕs′

+ δ
∑

s

ln
(
1 − δξe−βεs+iϕs

)
+ (N + 1) ln ξ.

(1)

Variable δ indicates type of statistics under consideration.
It equals to +1 for Bose-Einstein statistics, 0 for Maxwell-
Boltzmann statistics and −1 for Fermi-Dirac statistics.

Last equation we have obtained is an expression for the
free energy in auxiliary field representation. Chemical ac-
tivity of particles can be presented as follows ξ = exp(βμ).
Equation (1) contains the same information as the orig-
inal partition function with summation over the occupa-
tion numbers, i.e. all information about probable states of
the system. The partition function represented in terms of
the functional integral over auxiliary field corresponds to
the sequence of probable equilibrium states with regard to
their weights. Extension to the complex plane makes pos-
sible to apply saddle-point method and find an asymptotic
value of partition function. This helps us avoid using per-
turbation theory.

Dominant contribution is made by states satisfying ex-
trema condition:

δβF

δϕ
=

δβF

δξ
= 0.

Varying (1) we obtain equations for saddle-point states:

1
β

∑

s′
V −1

ss′ ϕs′ − iξe−βεs+iϕs

1 − δξe−βεs+iϕs
= 0; (2a)

∑

s

ξe−βεs+iϕs

1 − δξe−βεs+iϕs
= N + 1. (2b)

We can see from (2b), that expression

fs =
ξe−βεs+iϕs

1 − δξe−βεs+iϕs
(3)

can be treated as an average occupation number for a cer-
tain state. Using presented system we can obtain saddle-
point states. They can be interpreted as thermodynami-
cally stable distributions.

As is seen, equation (2a) contains inverse matrix.
We should either find explicit expression for this ma-
trix as was done for certain interaction potentials in ref-
erences [22,33,34], or somehow rewrite equations with-
out inverse operators. First approach appears as quite
challenging mathematical problem. Besides, the latter is
preferable since we don’t want to specify potential at this
point. Thus we will use (3) and perform inverse transfor-
mation to obtain equations without inverse matrix

ϕs = iβ
∑

s′
Vss′fs′ ,

1
2β

∑

s,s′
V −1

ss′ ϕsϕs′ = −β

2

∑

s,s′
Vss′fsfs′ .

Then free energy can be rewritten

βF [f, ξ] = −β

2

∑

s,s′
Vss′fsfs′ − δ

∑

s

ln(1 + δfs)

+ (N + 1) ln ξ(f). (4)

Since we are working in terms of canonical ensemble it
would be convenient to rewrite equations without chemical
potential. We can obtain it from (3)

ln ξ(f) ≡ βμ = β(εs + Es) + ln fs − ln(1 + δfs),

with
Es =

∑

s

Vss′fs′ . (5)

Nevertheless we consider chemical potential to be a con-
stant over the whole system, but it is useful for calculation
to find its average over all states

ln ξ(f) =
1
N

∑

s

fs [β(εs + Es) + ln fs − ln(1 + δfs)] .

Last expression can be substituted into free energy (4) and
thus we get

βF [f ] = β
∑

s

fsεs +
β

2

∑

s,s′
Vss′fsfs′

+
∑

s

[fs ln fs − (fs + δ) ln(1 + δfs)] . (6)

Equation (6) can be easily interpreted. First two terms
are kinetic and potential energy respectively. Third term
is a contribution of entropy. This contribution should be
equal to zero if T = 0.

Before finishing this part let us check the compliance
of our theory to the classical results. If we consider grand
canonical ensemble with fixed chemical potential we can
get from (3) generalization of the well-known distribution

fs =
1

eβ(εs−μs) − δ
, (7)

with a generalized chemical potential

μs = μ − Es.

It is obvious that the saddle point approximation is equiv-
alent to the mean field approximation in this case. If we
consider ideal gas (μs ≡ μ) classical statistical distribu-
tions can be obtained.

With these equations we can wind up general consider-
ation of interacting particles system and move on to some
more specific cases. As main results of this subsection we
should point out equation (6) (will be used in next sec-
tions) and (7) that can be used to obtain particles distri-
bution in grand canonical ensemble.
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2.1 Two-dimensional system of Fermi particles

Formalism developed in Section 2 is rather general and
can be applied to various systems with different dimen-
sionality. But since we are interested in certain system
some specification of presented equations is needed. In this
subsection we aim obtaining free energy of 2-dimensional
Fermi particles system basing on results from Section 2.

Let us use equation (6) to obtain the free energy of such
system. For Fermi particles we use δ = −1. Dimensionality
of the system is d = 2. Using continual approach we can
write

βF [μ] =
∫

d2p d2r

(2π�)2
βp2

2m

1
eβ(p2/(2m)−μ(r)) + 1

+
β

2

∫∫
d2p d2r

(2π�)2
d2p ′ d2r ′

(2π�)2
V (|r − r ′|)

× 1
eβ(p2/(2m)−μ(r)) + 1

1
eβ(p ′2/(2m)−μ(r ′)) + 1

+
∫

d2p d2r

(2π�)2

(
1

eβ(p2/(2m)−μ(r)) + 1

× ln
1

eβ(p2/(2m)−μ(r)) + 1
1

e−β(p2/(2m)−μ(r)) + 1

× ln
1

e−β(p2/(2m)−μ(r)) + 1

)
. (8)

We can integrate this expression over the momentum. It is
necessary to notice that performing integration in the case
of the Bose statistics we will loose the Bose-condensation
effects. In our case we do not have this problem. Using
integral form of dilogarithm definition (Li2, polylogarithm
of the second order) we get (Appendix A)

βF [μ] =
m2

8π2�4β

∫∫
d2r d2r ′V (|r − r ′|)

× ln
(
1 + eβμ(r)

)
ln
(
1 + eβμ(r ′)

)

+
m

2π�2β

∫
d2r

[
Li2

(
1

1 + eβμ(r)

)
− π2

6

+
1
2

ln2
(
1 + eβμ(r)

)]
. (9)

Now let us step aside from expression for free energy and
look for connection between chemical potential μ(r) and
particles density ρ(r). Expression we will obtain can be
used later to simplify (9).

As a first approximation we can suppose that disper-
sion relation has quadratic form

εs = ε(p) = p2/(2m). (10)

Of course it will be slightly different in the presence of
an external field, but looks quite reasonable, since the
gas of Fermi particles under consideration is highly de-
generated [3]. Introducing dimensional constant – thermal
length

λT =
√

2π2�2β/m, (11)

and using (7) we get what follows

ρ(r) =
∫

d2p

(2π�)2
1

eβ(p2/(2m)−μ(r)) + 1

=
π

λ2
T

ln
(
1 + eβμ(r)

)
.

Last equation can be applied to (9)

F [ρ] =
1
2

∫∫
d2r d2r ′V (|r − r ′|)ρ(r)ρ(r ′)

+
π

βλ2
T

∫
d2r

[
Li2
(
e−π−1λ2

T ρ(r)
)
− π2

6

]

+
λ2

T

2πβ

∫
d2rρ2(r). (12)

This functional can be easily used to determine thermo-
dynamically stable states, that have to minimize it. We
obtain such states directly in the form of the particle den-
sity and no additional mathematical transformations are
needed.

With equation (12) we have achieved the goal of this
subsection. It should be mentioned that presented method
allows to find analogous expressions for different number
of dimensions. Free energy for Bose-statistic can be found
as well, but with precautions mentioned above (we are
loosing Bose-condensation).

3 Fermi particles arranged in a lattice

In Section 2, we have discussed general features of the
system of interacting particles. Adhering “from general to
concrete” principle we will narrow a set of possible sys-
tems to the ones with periodical particles arrangement.
This section will provide some general discussion of such
systems.

For the sake of simplicity it is highly desirable to treat
system as infinite. This will simplify all following equa-
tions. On the other hand to do so we need to switch from
calculation of all system’s energy to calculation of single
particle energy in a lattice. It does not change anything
fundamentally in analysis, but avoids us from obtaining in-
finite values for system’s energy (obviously infinite system
will have infinite energy). From the mathematical point of
view this change will be reflected in integration limits (12).
To avoid possible misconceptions we will write these limits
explicitly in following equations.

For more convenience we will split general expres-
sion for free energy (12) into few parts and treat them
separately

Fint =
∫∫

S

+∞∫∫

−∞
V (|r − r ′|)ρ(r)ρ(r ′)d2r ′ d2r, (13a)

Fs =
∫∫

S

∫∫

S

V (|r − r ′|)ρ(r)ρ(r ′)d2r ′ d2r, (13b)
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Eur. Phys. J. B (2014) 87: 253 Page 5 of 13

F
(1)
ent =

π

βλ2
T

∫∫

S

[
Li2
(
e−π−1λ2

T ρ(r)
)
− π2

6

]
d2r, (13c)

F
(2)
ent =

λ2
T

2πβ

∫∫

S

ρ2(r)d2r, (13d)

F [ρ] =
1
2
Fint − 1

2
Fs + F

(1)
ent + F

(2)
ent. (13e)

Here F
(1)
ent and F

(1)
ent are contributions caused by entropy.

S is a symbol for designating integration over one subset of
exact cover of R

2 with similar polygons (relative position
of the particle supposed to be the same in every polygon).
For example Wigner-Seitz cells provide this kind of cov-
ering. But since Wigner-Seitz cell may have complicated
shape we should find some workaround to make integra-
tion limits in (13) as simple as possible.

The other feature of (13) is separation of interaction
energy into two parts (13a) and (13b). This was done be-
cause we should omit somehow particles self-interaction
for certain types of potential. Reader may think about
analogy with discrete case. For example, while calculating
Coulomb energy we write

∑
i�=j eiej/rij . So we need to in-

tegrate over R
2 \ S that is analogous to i �= j for discrete

case.
One way is directly integrate over R

2 \S. But it seems
more convenient to use equation

∫∫
R2\S

=
∫∫

R2 −
∫∫

S
.

So we can integrate over R
2 (13a) and compensate self-

interation with additional summand (13b).
By certain types of potential we mean that, for exam-

ple, Coulomb potential should be compensated this way,
because there is no additional term in free energy if there
were only one particle in a system. On the other hand, ef-
fective potentials caused by particles interaction through
medium should be uncompensated, because even in ab-
sence of other particles medium will influence this one.
Surface distortion is a good example. If particle has dis-
torted a surface it has already done some contribution to
system’s free energy independently on other particles. Of
course it interacts with distortions created by other parti-
cles. But at the same time it interacts with “its own” sur-
face distortion that may be treated as “self-interaction”.
So question about which part of effective potential should
be compensated by (13b) must be postponed till we know
physical background of considered potential.

Now let us consider (13a) more carefully. All 2D
Bravais lattices (i.e. oblique, rectangular, centered rectan-
gular (rhombic), hexagonal, and square) can be treated as
constructed from parallelograms. We will use this property
and simplify integration region S to parallelogram. For ex-
ample let us illustrate this for hexagonal lattice (Fig. 1).

Supposing, that some probability distribution function
for a single particle (ρSP (r)) is already known, we can
easily compute Fs, F

(1)
ent and F

(2)
ent from equations (13).

This is possible because integration in this expressions is
performed over S, so we can just substitute ρSP instead
of ρ. But computation of Fint needs knowing of probability
distribution function for the whole system. We will try

Fig. 1. Hexagonal lattice. Parallelograms show sufficient exact
cover. With gray color one Wigner-Seitz cell is shown.

to find some relation between Fint and ρSP (r) that may
simplify our equations.

Basing on the inverse lattice vectors (B.1) we will pro-
vide following decomposition for probability distribution
function ρ(r)

ρ(x; y) =
∞∑

n,m=−∞
ρn,mfn,m(x; y) (14a)

ρn;m =
1

ab sin(α)

∫∫

S

fn,m(x; y)ρSP (x; y)d2r (14b)

fn,m(x; y) = e2πiϕn,m(x;y) (14c)

ϕn,m(x; y) =
n

a
(x − y cot(α)) +

m

b
y csc(α). (14d)

It may be shown that presented series are actually Fourier
series for ρSP and ρ is periodic along vectors a and b
(Appendix B). So we may treat ρ(x; y) as function on R

2

“composed” from single particle distributions “arranged
in a lattice”. This principle is demonstrated by Figure 3.
Since ρ has the same symmetry as the lattice and locally
is a good approximation for ρSP it will be treated as prob-
ability distribution function for the whole lattice.

If we use equations (14) we can express (13a) in terms
of ρSP (Appendix C)

Fint = F
(0)
int + F ′

int, (15a)

F
(0)
int = 2πρ̄

∞∫

0

V (r)rdr, (15b)

F ′
int =

1
ρ̄2

∞∑

n,m=−∞
n2+m2 �=0

|ρn,m|2 Vn,m, (15c)

Vn,m = 2πρ̄

∞∫

0

J0(rλn,m)V (r)rdr, (15d)

λn,m =
2π

sin(α)

√
n2

a2
+

m2

b2
− 2

mn

ab
cos(α), (15e)

where ρ̄ is mean particle density and J0 is Bessel function
of the first kind.

http://www.epj.org
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We should mention that F
(0)
int is dependent on mean

particle density, but not on their distribution. So it will not
influence any minimization process if mean charge den-
sity does not change (this assumption was introduced in
Sect. 2).

Moreover, comparing two systems with equal mean
charge we can ignore F

(0)
int . This is a very useful obser-

vation since we may work with “catastrophic” potentials
like Coulomb where F

(0)
int is infinite. In this cases we will

neglect it due to mentioned reasons.
With these equations we have achieved the goal of the

present section. Before we move further let us glance over
obtained results again. We started with equation (12) and
separated summands (13). Then we assumed we already
have an expression for probability distribution function
for one particle (it will be presented in following sections).
This means that F

(1)
ent and F

(2)
ent can be calculated directly

from (13c) and (13d) if we substitute ρSP instead of ρ.
Much sophisticated is calculation of Fint. But it can be
done using (15) and (14) if we substitute known parame-
ters and calculate them one by one.

Last thing to mention in this section are possible gen-
eralizations and extensions. If we add some δx and δy to
the equation for ϕn,m (14d) it is possible to calculate inter-
action between current particle and a different sublattice.
So it is possible to treat some quasi-periodical cases as
well.

4 Electrons on the liquid helium surface

4.1 Potential

The main goal of this subsection is to introduce the ex-
plicit form of potential in order to use it further. We will
find Vn,m for introduced potential as well.

According to [3,17,35] the interelectron potential in the
presence of liquid helium film on the substrate is:

V (ee)(r) =
e2

r
− εē2

√
r2 + (2d)2

,

ε =
εs − εHe

εs + εHe
.

(16)

Here εs and εHe are substrate and the liquid helium di-
electric constants respectively, r is the distance between
electrons, d is the helium film thickness. The first term
is related to the ordinary Coulomb interaction, the sec-
ond one is the result of the liquid helium and substrate
polarization. These two terms describe direct interaction
between electrons. Notice, that the second term is differ-
ent from that one used in reference [15] and takes into
account polarization of substrate and provides additional
attraction.

An effect of surface-buckling instability can be in-
terpreted using the idea of competition between the at-
tractive and the repulsive interactions. But polarization

attraction is rather weak comparing to direct Coulomb in-
teraction. To enhance it we should involve another attrac-
tive force between electrons. In our model it will be effec-
tive attraction produced by helium surface deformation.

In the presence of an external field electrons can be
pressed against the helium surface with the force that
exceeds gravitational one by many orders. On the other
hand, they cannot just go through this surface as be-
ing pushed out due to quantum effects [3,17,35,36]. So it
should be considered with imminence that electrons can
act on the liquid helium surface with significant force.

In the introduction it was assumed that the system un-
der consideration is two-dimensional. But taking helium
surface deformations into account “electron layer” deflec-
tion should be considered as well, which means that third
dimension is also active and should in some way be in-
cluded in calculation.

This problem is solved by adding to (16) effective capil-
lary interaction. The lateral capillary interaction between
two electrons on the helium surface was calculated in ref-
erence [15]. It can be presented in the form:

V (cap)(r) = − ē2E2

2πσ
K0(r/l0). (17)

Here eE is the actual force that acts on each electron
by the external field (in our case it is electrical clamp-
ing field), σ is the surface tension of liquid helium, r is
the distance between particles, K0 is the modified Bessel
function, and l0 =

√
σ/gρHe [15] is the capillary length

that depends on the fluid properties only.
As result of all previous calculations we get potential

of electron-electron interaction

V (r) =
ē2

r
− εē2

√
r2 + (2d)2

− ē2E2

2πσ
K0(r/l0) (18)

and from Appendix D

Vn,m =
2πē2ρ̄

(
1 − εe−2dλn,m

)

λn,m
− ē2E2

σ

l20ρ̄

1 + l20λ
2
n,m

. (19)

Equations (18) and (19) are aimed result of this section.
But we should mention that some extensions for other
physical systems are possible. It is convenient to work with
potentials that can be integrated with J0.

4.2 Probability distribution function for single particle

Nevertheless we have done a lot of calculations, explicit
expression for free energy is still missing. The reason is
absence of equations for ρ(r) and ρn,m, respectively. In
this subsection we will introduce these quantities and use
them to obtain entropy part of the free energy. Obtaining
of interaction energy will be postponed until Section 5.

First of all we suppose that all particles are arranged
in a lattice. This means that particle position is quite de-
termined. But since temperature differs from zero we can
expect that particle position fluctuates near its lattice site.
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y

x�a

�b
α

Fig. 2. One cell from exact cover. Vectors a and b are base
vectors for Bravais lattice. Angle between them is supposed to
be α. Region of integration S is shown with gray. One particle
is shown in the center.

Probability distribution function of finding particle near
lattice site we will assume as follows:

ρSP(r) =
1

2πs2
e−r2/(2s2). (20)

This assumption seems quite reasonable since this is nor-
mal distribution.

Introduced constant s means dispersion of presented
distribution. From physical point of view it can be treated
as localization distance. Later we will find its value and
compare it with localization distance obtained in different
works.

If we substitute (20) into expression for F
(1)
ent and F

(2)
ent

from (13) analytic expression for entropy part of the free
energy can be found. But as reader may see this expres-
sions will be quite complicated. So we will find some ap-
proximate equation.

First of all we suppose that temperature is low and
thus particle position fluctuations are small. This means
that s is smaller then any characteristic distance in the
parallelogram cell, i.e. s � a, s � b (see Fig. 2). So peak
presented in Figure 3 will be quite thin. This means that
we can approximate F

(1)
ent and F

(2)
ent by integrating over R

2

instead of cell S. So we immediately find

F
(2)
ent ≈

λ2
T

2πβ

∞∫∫

−∞
ρ2

SP (r)d2r =
λ2

T

8π2s2β
. (21)

Finding of F
(1)
ent is a bit more sophisticated. We return

once more to the assumption that (20) represents a very
“sharp” Gaussian, i.e localization radius is very small.
This means that we can think about ρSP as small on
distances more than localization radius ρSP (r > s) ≈ 0
and ρSP (r < s) ≈ 1/(4πs2). As result we get following
approximation:

Li2
(
e−π−1λ2

T ρ(r)
)
≈
{

0, r ≤ s;

π2/6, r > s.
(22)

Last assumption can be substituted into (13) and we get
final result

F
(1)
ent ≈ − π4s2

6βλ2
T

. (23)

Fig. 3. Function ρSP (r) defined for S only (on the left figure)
and obtained from (14) ρ(r) (on the right) which is defined for
all R

2.

Now approximation for the whole entropy part can be
explicitly written:

Fent = F
(1)
ent + F

(2)
ent ≈

λ2
T

8π2s2β
− π4s2

6βλ2
T

. (24)

At this point we have finished with free energy part that
is caused by entropy of the system. Now let us return to
the interaction energy. It seems we are still missing ρn,m.
Using again that ρSP (r) is a very “sharp” Gaussian we
expand integration limits in expression for ρn,m from (14)
and write

ρn;m ≈ ρ̄

∞∫∫

−∞
fn,m(x; y)ρSP (x; y)dr. (25)

Last equation can be easily integrated. As result we get

ρn;m ≈ ρ̄e−s2λ2
n,m/2. (26)

Here λn,m is same as in (15e) so we will not write it here
explicitly again.

At this point we already know expression for interac-
tion potential (18). But as we have mentioned in Section 3
there is one compensatory term we need to calculate. This
term will exclude Coulomb self-interaction as was already
discussed. If we omit technical details (see Appendix E)
explicit form of Fs can be obtained

Fs =
1

2s2

∞∫

0

e−r′ 2/(4s2)V (r′)r′dr′, (27)

or substituting Coulomb potential as V

Fs =
√

πē2

2s

(
1 − εed2/s2

erfc
(

d

s

))
. (28)

Here erfc is the complementary error function.
Last equation finishes current section. Once more,

we have introduced probability distribution function for
single particle near lattice site. Basing on this distribu-
tion (20) and assumption of “sharpness” of this distribu-
tion we have calculated entropy part of free energy (24).
Besides, we have calculated compensatory part of the po-
tential (28) and we have enough data to find interaction
part if we know lattice parameters. To do this we should
use (19), (26) and (15).
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5 Triangular vs. square lattice comparison

At this point we already have expression for free energy
that can be applied to any Bravais lattice. But most in-
teresting for us are square and triangular (hexagonal) lat-
tices. In this section we will obtain equations describing
their free energy.

We will start from square lattice, since it is more easy
for analysis. Obviously a = b = L, where L is interelectron
distance (see Fig. 2). Between L and mean particles den-
sity ρ̄ exists simple connection ρ̄ = 1/L2. Angle between
vectors α = π/2. Thus from (15e) we get

λ(s)
n,m =

2π

L

√
n2 + m2. (29)

Here (s) denotes square lattice.
Similar calculations can be provided for triangular lat-

tice. From Figure 1 and geometry we can get α = π/6
(see Fig. 2 as well). In this case we will have a =

√
3 b

(see again Figs. 1 and 2 for geometrical reasoning). Since
we want both lattices to have equal particles density we
should suppose L2 = ab sin(α). Combining all together
and performing some simplification (see Appendix F) we
get

λ(t)
n,m =

2π
4
√

12L

√
3 [m − n]2 + [m + n]2. (30)

For more convenience we will provide here equation com-
bined from (15), (19), (26) and (28) as was mentioned in
Section 4.2

F [ρ] =
λ2

T

8π2s2β
− π4s2

6βλ2
T

+
1
2
F

(0)
int

+ ρ̄

∞∑

n,m=−∞
n2+m2 �=0

e−s2λ2
n,m

(
πē2
(
1 − εe−2dλn,m

)

λn,m

− ē2E2

2σ

l20
1 + l20λ

2
n,m

)

−
√

πē2

4s

(
1 − εed2/s2

erfc
(

d

s

))
. (31)

Here λn,m is substituted from (29) or (30) depending on
lattice type we want to examine.

Last equation can be easily used for lattices compari-
son and finding phase transition between them. Unknown
variable s, which plays role of localization distance should
be found for every lattice by minimization of F [ρ], i.e.
solving

∂F

∂s
= 0. (32)

Nevertheless we are interested in two concrete types of the
lattice results can be extended to any type in an obvious
way.

5.1 Analytical approach

We have already obtained equation for free energy for dif-
ferent lattice types. It is sufficient for computer calcula-
tions and some estimations. But it may seem a good idea

to make some approximations and obtain expression that
is less precise, but does not contain summation. Besides we
aim finding conditions when F (s) < F (t) and F (t) < F (s).
This regions and their borderline may be treated as some
approximation of phase diagram, so we will use this and
related terms refering to obtained plots.

We expect particle density to be ρ̄ = 109 cm−2 . . .
103 cm−2 [3], so L is at most ∼ 10−5 cm. On the other
hand we can expect d ∼ 0.1 cm [17] and l0 ∼ 1.1 cm [15].
Basing on this data we can provide some approximations
of (31) (Appendix G)

F (s)[ρ] =
λ2

T

8π2s2β
− π4s2

6βλ2
T

− πē2√ρ̄

+
εē2

4d
+

ē2E2

8πσ

(
γ + 2 ln

(
2πs

√
ρ̄
))

, (33a)

F (t)[ρ] =
λ2

T

8π2s2β
− π4s2

6βλ2
T

− 4

√
3
4
πē2√ρ̄

+
εē2

4d
+

ē2E2

8πσ

(
γ + 2 ln

(
4
√

12πs
√

ρ̄
))

. (33b)

As a test for obtained equation lets find localization dis-
tance s. So approximately we get

∂F

∂s
= − λ2

T

4π2βs3
− π4s

3βλ2
T

+
ē2E2

⊥
4σπs

(34)

independently on lattice we are considering (e.g. we can
use either F (s) or F (t)). Solving equation ∂F/∂s = 0 we
get

s2 =
3�

2β2ē2E2

4π3σm

(
1 −
√

1 − 16σ2π4

3ē4E4β2

)
. (35)

If temperature tends to be small T → 0 (e.g. β → ∞)

s =

√
2πσ�2

mē2E2
. (36)

This result does not differ from the classical one presented
in reference [3].

If we consider (35) more carefully some interesting
properties may be obtained. For the sake of simplicity we
will consider low densities so that any value of s may be
treated as much lower than interelectron distance L. Then
we may notice that solution for s exists if

E2

T
≥ 4σπ2k√

3ē2
≈ 2100

dyn
cm K

. (37)

Last equation means that there is no lattice if tempera-
ture T is too high, or if field E is too weak. This statement
is in agreement with our physical intuition.

As a practical application of obtained equations let us
compare two lattices and explore if there exist phase tran-
sition between them. To do this we find difference between
their free energies

F (t)−F (s) =

(
1 −
√

3
4

)
πē2√ρ̄− ē2E2

4πσ
ln
(

2
4
√

12

)
(38)
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Fig. 4. Melting of Wigner crystal.

and compare it with zero. Negative sign means that tri-
angular lattice is more beneficial from the energetic point
of view and positive – that square.

Line of phase transition is then described by equation

E2

√
ρ̄

=
4
(
1 −√3/4

)
π2σ

ln
(
2/ 4

√
12
) ≈ 11.4 dyn, (39)

which can be plotted as shows Figure 5.
Obtained plots finish our consideration of square and

triangular lattices started few sections ago. We will make
a short overview of obtained results in the next sec-
tion. Now let us discuss some possible generalizations and
extensions.

In this subsection, we have done many assumptions.
Actually, more precise expressions may be obtained for
free energy, because all functions we use are integrable in
terms of special functions. But even without making (G.1)
more precise, we still can use more precise expressions for
free energy of the square and triangular lattices (e.g. do
not use Taylor series). This means that proposed method
does not stop on “first-order effects” but may be consid-
ered further.

6 Conclusions

Here we present an overview of provided calculations and
list results we have obtained.

We started with a brief calculation for inhomogeneous
system of interacting particles. Without any specification
of the system we have obtained expressions for free en-
ergy (6). This results may be applied to the wide variety
of physical systems.

Aiming to explore system of the electrons on the liquid
helium surface we have applied obtained results to two-
dimensional Fermi-particles system. As result we have got
expression for free energy (12), but without using explicit
form of potential V . It should be mentioned that presented
method allows to find analogous expressions for different
number of dimensions. Free energy for Bose-statistic can
be found as well, but with precautions mentioned above
(we are loosing Bose-condensation).

Triangular lattice

Square lattice

0 2 4 6 8 10
1

2

3

4

5

6

Ρ , �1012 cm � 2

E
,

kV
�

cm

Fig. 5. Phase transition between two types of lattice.

Then we mentioned that our goal is to deal with a very
specific system. So we took into account that electrons are
arranged in a lattice. Starting with equation (12), separat-
ing summands (13) and assuming that we somehow know
probability distribution function for single particle ρSP we
found a way of obtaining free energy of the system. Result
is that F

(1)
ent and F

(2)
ent can be calculated directly from (13)

if we substitute ρSP instead of ρ. Much sophisticated is
calculation of Fint. But it can be done using (14) and (15)
if we substitute known parameters and calculate them one
by one.

Last steps we took to specify our system are obtain-
ing potential (18) and calculating Vn,m (19) to be used
in equation for free energy and distribution (20). Basing
on this distribution and assumption of “sharpness” of the
distribution we have calculated entropy part of free en-
ergy (24). Besides, presented results allow to find inter-
action part if we know lattice parameters. To do this we
should use (19), (26) and (15).

Last section winds up analysis by presenting expres-
sions for triangular and square lattices free energy. This
equations are then approximated and treated analytically.
As result we get expression for localization distance (35)
and may see that for T → 0 it is the same as classic
result (36). Moreover, we have obtained conditions of ex-
istence one of this two lattices. It is perfectly consistent
with our intuition – lattice exists if field is stronger and
temperature is lower then some values (37), Figure 4. And
we have compared energy of square and triangular lat-
tices (39), Figure 5.

We suppose that with modern experimental technique
verification of presented results can be provided.

Appendices

In following subsections we aim covering some technical
details. They are necessary since we claim rigorous expo-
sition of presented ideas, but may be omitted if reader
is interested in physical sole rather than “mathematical
tricks” behind the scene.
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Appendix A: Integration over momentum in βF[μ]

We start with (8). First two summands can be easily in-
tegrated if we mention

1
ex + 1

=
e−x

1 + e−x
,

but last summand should be integrated in terms of special
functions, namely dilogarithm [37]

Li(z) = −
z∫

0

ln(1 − z)
z

dz,

if we note that

1
1 + ex

= 1 − 1
1 + e−x

.

As result we get

βF [μ] =
m2

8π2�4β

∫ ∫
d2r d2r ′V (|r − r ′|)

× ln
(
1 + eβμ(r)

)
ln
(
1 + eβμ(r ′)

)

+
m

2π�2β

∫
d2r

[
βμ(r) ln

(
1 + eβμ(r)

)

− β2μ2(r)
2

− Li2
(
−e−βμ(r)

)
− π2

6

]
, (A.1)

but this equation can be simplified. First of all we will use
Landen’s identity

Li2 (1 − z) + Li2

(
1 − 1

z

)
= −1

2
ln2(z),

z ∈ C\] −∞; 0] (A.2)

with z = 1 + e−βμ(r) and expand ln2
(
1 + e−βμ(r)

)
. This

leads to (9).

Appendix B: On the properties of fn,m(x; y)

In (14) we present how to calculate probability distri-
bution function for the whole system basing on single-
particle probability distribution function. It is based on
the decomposition of ρSP using fn,m(x; y) (14c) as basis
functions in inverse lattice space (basis vectors kx and ky)

kx =
1
a

ex − 1
a tan(α)

ey,

ky =
1

b sin(α)
ey, (B.1)

where a = |a|, b = |b| and ex, ey are unitary vectors
along x and y coordinates. Here we add some consider-
ation about connection between Fourier series and pre-
sented one.

Suppose we have a function g(x; y) defined on unit
square S1 ≡ [0; 1] × [0; 1]. This function can be expressed
in terms of Fourier series

g(r) =
∑

k

gke2πi(k·r),

gk =
∫∫

S1

g(r)e2πi(k·r)d2r. (B.2)

Let us consider a bijection s from S1 to S and its inverse
s̄ (see Fig. 2 for geometrical reasoning and Eqs. (B.1) for
connection with inverse lattice)

s(r) = {ax + by cos(α); by sin(α)} ,

s̄(r) = {[x − y cot(α)]/a; y csc(α)/b} , (B.3)

and consider the case g(r) = ρSP (s(r)). Since we know
that ρSP (s(s̄(r))) = ρSP (r) one can immediately write

ρSP (r) =
∑

k

gke2πi(k·s̄(r)). (B.4)

And same way we consider second equation from (B.2)

gk =
∫∫

S

ρSP (s(r))e2πi(k·s̄(s(r))) d2s(r)
∇s(r)

. (B.5)

Now if we mention that ∇s(r) = ab sin(α) we immedi-
ately get from (B.4) and (B.5) equations (14). Moreover,
obtained result means that all properties of Fourier series
can be applied to decomposition (14).

Last thing to mention are periodical properties of pre-
sented series. One may note that we are expanding ρSP

defined on S and then use this series for the whole R
2.

One may see from (14d)

ϕn,m(r + ka + lb) = ϕn,m(r) + kn + lm (B.6)

which means with regard to (14c)

fn,m(r + ka + lb) = fn,m(r) (B.7)

and from (14a)

ρ(r + ka + lb) = ρ(r). (B.8)

Last equation justifies our view of connection between ρ
and ρSP as it is presented in Figure 3.

Appendix C: On the expression for Fint

Let us start with (13a). Inner integral has infinite borders
so we may rewrite this expression as follows:

Fint =
∫∫

S

+∞∫∫

−∞
V (|r ′|)ρ(r)ρ(r + r ′)d2r ′ d2r. (C.1)
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Now we can substitute ρ from (14a) and mention that
fn,m(r +r ′) = fn,m(r )fn,m(r ′) (14c). So if we designate

Vn,m = ρ̄

+∞∫∫

−∞
fn,m(r ′)V (|r ′|)d2r ′ (C.2)

it can be written

Fint =
1
ρ̄

∑

n,m

ρn,mVn,m

∑

k,l

ρk,l

∫∫

S

fn,m(r)fk,l(r)d2r.

Last equation can be simplified if we perform integration.
From Appendix B we expect orthogonality of fn,m func-
tions (this result may be obtained by integration fn,m

from (14c))
∫∫

S

fn,m(r)f∗
k,l(r)d2r = ab sin(α)δn,kδm,l. (C.3)

Mentioning that ab sin(α) = 1/ρ̄, where ρ̄ is mean particle
density (one particle per S, see Figs. 1 and 2 for geomet-
rical reasoning) we get

Fint =
1
ρ̄2

∞∑

n,m=−∞
|ρn,m|2Vn,m. (C.4)

We will split last expression as in (15a) into two parts
where one is with n = 0, m = 0 and other includes the
rest of the sum. So from (C.4) we immediately get (15c).

Now we see from (14d) and (14c) that f0,0(r) ≡ 1. If
we use (C.2)

V0,0 = ρ̄

+∞∫∫

−∞
V (|r|)d2r, (C.5)

and from (14b) we get ρ0,0 = ρ̄. Combining this all to-
gether we get (15b).

Now we can provide some simplification for Vn,m

from (C.2). We will change Cartesian coordinates to polar
in (14c) and (14d) and then use trigonometric identities
to get the following

fn,m(r) = eiλn,mr cos(θ−δθ),

where λn,m is as in (15e) and δθ = cos−1 (a/(nλn,m)).
Now we use that V depends on |r| and integrate (C.2)

over angles in terms of modified Bessel functions of the
first kind. We will use following relation [38]

I0(x) =
1
π

π∫

0

ex cos(θ)dθ, (C.6)

and get

Vn,m = 2πρ̄

∞∫

0

I0(irλn,m)V (r)rdr.

Mentioning that J0(ix) = I0(x) [38] we immediately
get (15d).

Appendix D: Calculation of Vn,m for electrons
on the liquid helium surface

To find Vn,m we only need to substitute (18) into (15d)
and provide integration. This is quite technical part of
work, so we will provide only keysteps.

First of all if a > 0 and y > 0 [39]

∞∫

0

xJ0(yx)dx√
x2 + a2

=
e−ay

y
, (D.1)

and we can immediately write Vn,m for direct interelectron
interaction

V (ee)
n,m =

2πē2ρ̄

λn,m
− 2πεē2e−2dλn,m ρ̄

λn,m
. (D.2)

In this equation first term corresponds to Coulomb inter-
action and second to substrate polarization.

On the other hand if a > 0 and b > 0 it is known [39]

∞∫

0

xJ0(ax)K0(bx)dx =
1

a2 + b2
. (D.3)

With this equation we easily obtain Vn,m for capillary in-
teraction part

V (cap)
n,m = − ē2E2

σ

ρ̄

λ2
n,m + 1/l20

. (D.4)

Combining all together we get

Vn,m = V (ee)
n,m + V (cap)

n,m , (D.5)

which is same as (19).

Appendix E: Calculation of Fs

We will start with equation (13b) and assume that ρSP

is a very “sharp” function. With this assumption we can
change integration limits with infinite and this in turn will
allow us perform variable exchange as we did in (C.1)

Fs =

+∞∫∫

−∞

+∞∫∫

−∞
V (|r ′|)ρSP (r)ρSP (r + r ′)d2r ′ d2r. (E.1)

First of all we perform some mathematical transforma-
tions with (20) (in Cartesian coordinate system) and write
the following

ρSP (r)ρSP (r + r ′) =
1

4π2s4
e−[r+r ′/2]2/s2−r′ 2/(4s2).

Now we can substitute this expression into (E.1) and per-
form integration over r. Writing result in polar coordi-
nate system and integrating over angle we immediately
get (27).
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Since we know explicit expression for V (16) we can
substitute it into (27) and perform integration using defi-
nition of the complementary error function [38]

erfc(x) =
2√
π

∞∫

x

e−t2dt. (E.2)

As result we will get (28).

Appendix F: Alternative representation for λ(t)
n,m

Substitution of α = π/6, a =
√

3 b and L2 = ab sin(α)
into (15e) leads to the following

λ(t)
n,m =

4π
4
√

12L

√
n2 + 3m2 − 3mn, (F.1)

where (t) denotes triangular lattice.
But current equation is quite inconvenient for further

manipulations especially for approximation of infinite sum
by Euler-Maclaurin formula (used in Appendix G). Thus
it is highly desirable to find some alternative expression
for λ

(t)
n,m.

We know λ
(t)
n,m is needed for calculation (15c) only.

General view of (15c) is as follows

F
′ (t)
int =

∞∑

n,m=−∞
n2+m2 �=0

f
(
n2 + 3m2 − 3mn

)
, (F.2)

at this point we are not interested in expression for f . If
we suppose n = k + m it can be written

F
′ (t)
int =

∞∑

k,m=−∞
k2+m2 �=0

f

(
3
4

[m − k]2 +
1
4

[m + k]2
)

. (F.3)

Reader should note that k2 + m2 �= 0 ⇔ n2 + m2 �= 0.
Which means we can rewrite λ

(t)
n,m as (30)

Appendix G: Approximation of F′
int

First of all we should mention from assumptions in Sec-
tion 5.1 that l0 � L and we can suppose that l0λn,m � 1.
This means we can neglect 1 in denominator of (31). Anal-
ogous we can think about d and λn,m. Since d � L,
dλn,m � 1 and we can suppose exponent from (31) to
be zero. This leads to the following

F ′
int = ρ̄

∞∑

n,m=−∞
n2+m2>0

e−s2λ2
n,m

(
2πē2

λn,m
− ē2E2

σλ2
n,m

)
. (G.1)

If we mention [40] that erfc(x → ∞) ∼ e−x2
/(x

√
π) we

can as easily estimate Fs

Fs =
√

πē2

2s

(
1 − εs

d
√

π

)
. (G.2)

Equation (G.1) is still too complicated since it contains
sum. To get some simplification we will substitute λn,m

from (29) and (30) into (G.1) and use Euler-Maclaurin
equation to achieve approximation of sum with an inte-
gral. Besides, we note that ρ̄ = 1/L2 for both lattices. We
will use substitution m = ξ cos (ϕ), n = ξ sin (ϕ) for square
lattice and m = ξ cos (ϕ − π/3), n = ξ sin (ϕ − π/6) for
triangular to change coordinate system to polar. After in-
tegration over angle we get

F
′ (s)
int =

2πē2

L

∞∫

1

e−s2ξ24π2/L2
dξ

− ē2E2

2πσ

∞∫

1

e−s2ξ24π2/L2

ξ
dξ, (G.3a)

F
′ (t)
int =

πē2 4
√

12
L

∞∫

1

e−s2ξ2π2√12/L2
dξ

− ē2E2

2πσ

∞∫

1

e−s2ξ2π2√12/L2

ξ
dξ. (G.3b)

Lower limit of presented integrals is caused by the fact we
omit point m = 0, n = 0 (G.1).

If we use definition of the incomplete gamma func-
tion [40]

Γ (a; x) =

∞∫

x

e−tta−1dt, (G.4)

and complementary error function (E.2), we can easily
integrate (G.3) in terms of special functions

F
′ (s)
int =

√
πē2

2s
erfc
(

2πs

L

)
− ē2E2

4πσ
Γ

(
0;

4π2s2

L2

)
,

F
′ (t)
int =

√
πē2

2s
erfc

(
2 4
√

3πs√
2L

)
− ē2E2

4πσ
Γ

(
0;

√
12π2s2

L2

)
.

Reader should note that Jacobian for case F
′ (t)
int is ξ/2,

not ξ as for F
′ (s)
int .

If we note that s � L we can approximate Fint

using equations Γ (0; x → 0) ∼ −γ − ln(x) [38] and
erfc(x → 0) ∼ 1 − 2x/

√
π [40] we can easily simplify

previous equations. After simplification we will use that
L = 1/

√
ρ̄ for both lattices and substitute obtained equa-

tions as well as (G.2) into (31, 13e). As result we immedi-
ately get (33). Reader may notice that we neglected F

(0)
int

due to reasons mentioned in Section 3.
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