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Abstract General analytical expressions for the observ-
ables in d A-scattering reaction have been derived in the
diffraction approximation. The resulting formulas describe
the cross section and polarization states of the deuteron
when it scattering by nuclei with zero spin in the ground
state. The tabulated distributions of the target nucleus density
and the realistic deuteron wave functions calculated on the
basis of Nijmegen nucleon-nucleon potentials were used. The
nucleon-nucleus phases were calculated in the framework of
Glauber formalism and making use of the double-folding
potential. The calculated cross sections and analyzing pow-
ers in elastic scattering of deuterons by 16O and 40Ca nuclei at
700 MeV are compared with the corresponding experimental
data.

1 Introduction

The scattering of deuterons by complex nuclei is of particu-
lar interest from the point of view of studying the structure
and interaction of the simplest composite nucleus with other
nuclei. The peculiarity of deuteron scattering from nuclei
is determined by the features of its bound state. Since the
deuteron spin is equal to unity, the corresponding spin matri-
ces are three-row, so their complete set can be represented
by five independent components [1]. Hence it follows that
d A-scattering will be characterized by a variety of polar-
ization observables. The next feature of the deuteron is the
non-sphericity of its spatial shape, which manifests itself in
the presence of a D-state to its wave function. Finally, the
deuteron is a weakly bound system that is reflected in the long
tail of its density distribution, and this feature clearly mani-
fests itself, for example, in direct nuclear reactions involving
deuterons [2,3]. Since polarization effects are mainly periph-
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eral, the asymptotic behavior of the deuteron wave function
also becomes crucial for correct calculations.

The modern approach to describing collisions of light ions
with atomic nuclei reflects the intention to create a unified
theory that includes both a realistic model of target nuclei and
the microscopic optical potential of nucleus-nucleus interac-
tion [4]. For this purpose, the folding model is most often used
(see, e.g., [5–7]), as well as its various variants developed
within the framework of the Glauber-type eikonal approxi-
mation ([8–11] and references therein). In [12], the formula
for the eikonal phase was generalized for using of realistic
nuclear density distributions, that were expanded in the full
Gaussoid basis. Together with the Gaussian expansions of
the wave functions under the integral sign in the expression
for the reaction amplitude, this made it possible to perform
analytical integration and obtain general expressions for reac-
tion observables in the form of multiple sums with elementary
functions. This approach is due to the fact that the general for-
mulas for the cross section and polarization in the problems
of diffraction d A-scattering are quite inconvenient for direct
numerical calculations, therefore, for practical purposes, they
are usually modified by introducing additional simplifica-
tions and restrictions (e.g., the nucleus is opaque and non-
diffuse; the deuteron radius is much smaller than the target
one; and so on). Notice that, in diffraction approximation,
the reaction density matrix is a five-fold integral only for-
mally, because the profile functions, which the density matrix
depends on, are also expressed in terms of multiple integrals.
Therefore, generally speaking, we have rather a complicated
computational problem. Nevertheless, the final formulas for
the cross section and analyzing powers can be reduced to
algebraic expressions if the integrands are expanded into a
series of the form

�(x) =
N∑

j=1

a j |ψ j 〉 =
N∑

j=1

a j exp (−b j x
2). (1)
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Since the basis |ψ j 〉 is complete, any square-integrable
function in some region can be expanded in the same region
with an arbitrary degree of accuracy. It should be noted
that a similar approach is used often enough: in the vari-
ational method for obtaining the energy levels of a bound
system [13–15], for the parametrization of nuclear charge
densities in the ground state of nucleus [16,17], in problems
dealing with scattering [18], deuteron stripping [12,19,20],
and fragmentation of light nuclei [21,22].

The structure of the paper is as follows. Section 2 is
devoted to the description of formalism applied while cal-
culating the d A-scattering observables. In Sect. 3, the results
of numerical calculations for the differential cross sections
and analyzing powers are discussed and compared with the
corresponding experimental data. Section 4 contains conclu-
sions. The most important auxiliary formulas used to simplify
the formalism description are given in appendices.

2 Formalism

All of the calculations that follow were made in the center-
of-mass system using the system of units h̄ = c = 1, the
Coulomb interaction was not taken into account. To describe
the observables, we will use the formalism of the density
matrix. Let us expand the density matrix of the system ρ in
terms of the complete orthogonal set of spin tensors TIM [1]

ρ = 1

3

2∑

I=0

I∑

M=−I

〈T †
I M 〉TIM , (2)

where TIM values are expressed in terms of the components
of the deuteron spin operator S in the Cartesian coordinate
system as follows [23]

T00 = 1, T10 =
√

3

2
Sz, T11 = −

√
3

2
(Sx + i Sy),

T20 = 1√
2

(3S2
z − 2),

T21 = −
√

3

2
[(Sx + i Sy)Sz + Sz(Sx + i Sy)],

T22 =
√

3

2
(Sx + i Sy)

2, Ti− j = (−1) j T †
i j . (3)

The polarization state of the scattered deuteron is com-
pletely described by the average values of the spin tensors

〈TIM 〉 = Tr (ρ TIM )

Tr ρ
, (4)

where ρ = Fd F
†
d is the density matrix, Fd is the deuteron-

nucleus scattering amplitude.
In the Cartesian coordinate system, the z-axis of which

coincides with the quantization axis (field direction), the
polarization of the incident deuteron beam is described by

two non-zero quantities [24]: pz and pzz . Let N0, N+, N−
are the numbers of deuterons with zero, up, and down spin
projections, respectively. Then the beam polarization asym-
metry along the direction of the quantization axis is called
the vector polarization and is described as

pz = N+ − N−
N+ + N− + N0

. (5)

The beam polarization asymmetry in the plane perpendicular
to the quantization axis is called the tensor polarization and
is defined as follows

pzz = N+ + N− − 2N0

N+ + N− + N0
. (6)

In a spherical coordinate system, the vector and tensor polar-
izations are related to the quantities (5), (6) by the formulas

t10 =
√

3

2
pz, t20 = 1√

2
pzz . (7)

According to the Madison convention [25], measured
polarization is defined in the right-handed frame of refer-
ences with the z-axis in the direction of the incident momen-
tum k and the y-axis in the direction of k × k′, where k′ is
the momentum of the scattered particles (Fig. 1).

Transition to a new coordinate system whose quantization
axisP is determined by the rotation angles β and φ, somewhat
complicates the expression for the cross section, which will
also depend on these angles. Using the polarization compo-
nents (7), the differential cross section can be written as [24]

σ(θ, φ) = σ0(θ)(1 + G11 + G20 + G21 + G22),

G11 = √
2 sin β cos φ 〈iT11〉 t10,

G20 = (3 cos β2 − 1)/2 〈T20〉 t20,

G21 = √
3/2 sin 2β cos φ 〈T21〉 t20,

G22 = −√
3/2 sin β2 cos 2φ 〈T22〉 t20, (8)

where σ0(θ) is the scattering cross section for unpolarized
particles, and 〈iT11〉, 〈T20〉, 〈T21〉, 〈T22〉 are quantities (4).

Formulas (8) are general. Usually, the experiment geom-
etry is chosen in such a way that β = π/2, φ = 0 (see, for
example, [26,27]), then

σ(θ) =σ0(θ)

[
1 + √

2 〈iT11〉 t10 − 1

2
〈T20〉 t20

−
√

3

2
〈T22〉 t20

]
. (9)

Introducing

Ay = 2√
3
〈iT11〉, Ayy = − 1√

2
〈T20〉 − √

3〈T22〉, (10)

where Ay = Ay(θ), Ayy = Ayy(θ) are the polarizations (the
analyzing powers) of outgoing particles, expression (9) can
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Fig. 1 The quantization axisP and the right-handed coordinate system
as defined by the Madison convention [25]

be written as

σ(θ) = σ0(θ)

[
1 +

√
3

2
Ay(θ) t10 + 1√

2
Ayy(θ) t20

]
.

(11)

Thus, the scattering cross section depends on the analyzing
powers of the reaction and on the polarizations of the incident
beam, which are specified by the experimental conditions.

In the Glauber approximation, the amplitude of d A-
scattering defined as [28]

Fd(q) = ik

2π

∫
db exp(iqb)

∫
dr ϕ

†
0(r)(�1 + �2 − �1�2)ϕ0(r), (12)

where q is the momentum transfer, b is the impact param-
eter of deuteron center of mass, ϕ0 is the wave function of
deuteron ground state, �n are the neutron-nucleus (n = 1)

and proton-nucleus (n = 2)profile functions, which are oper-
ators

�n(rn) = ωn(bn){1 + γn exp(iδn)σ n((k/2)×∇n)}. (13)

The quantities γn and δn in (13) are the parameters of the spin-
orbit interaction, σ n are the Pauli matrices, ∇n ≡ ∂/∂rn .

As ϕ0(r) in (12), we use the deuteron wave function [1]

ϕ0(r) = ϕS(r) + ϕD(r)S12(r,S), (14)

where ϕS, ϕD are the radial components that describe the
S- and D-states of the deuteron, S12 = 6(Sr)2/r2 − 2S2 is
the nucleon-nucleon spin operator, S = (σ 1 + σ 2)/2 is the
deuteron total spin.

The amplitude (12) and the average values of the spin-
tensor components (4) can be calculated using the micro-
scopic approach described in [12]. As the radial components
of ϕ0(r), we use their tabulated values for Nijmegen poten-
tials [29], which we expand in series of Gaussoid basis func-
tions

ϕ0(r) =
N∑

j=1

g j exp(−λ j r
2) + h jr

2 exp(−μ j r
2)S12(r,S).

(15)

We calculate ωn in (13) using the eikonal approximation (see
Appendix A) and also expand them in the same way as in (15):

ωn(bn) =
N∑

j=1

αnj exp(−b2
j/dnj ), dnj = R2

rms/j,

(16)

where Rrms is the root-mean-square radius of the target
nucleus.

The integral (12) with the functions (15), (16) is calculated
analytically, so that the final result (the cross section σ0 and
the values of 〈TIM 〉) can be presented as multiple sums.

Now, substituting (13), (15), (16) into (12), we obtain (see
also [1]):

σ0 = 1

3
Tr(Fd F

†
d ) = |A|2 + 2

3
|B|2 + 2

9
|C |2 + 2

3
|D|2,

(17)

〈T10〉 = 1

3
Tr(Fd F

†
d T10) = 0, (18)

〈iT11〉 = 1

3
Tr(Fd F

†
d iT11) =

√
2

3σ0
Re

(
A − 1

3
C

)
B∗, (19)

〈T20〉 = 1

3
Tr(Fd F

†
d T20)

=
√

2

3σ0

{
Re A(C − 3D)∗ + ReCD∗

− 1

2
|B|2 − 1

6
|C |2 + 1

2
|D|2

}
, (20)

〈T21〉 = 1

3
Tr(Fd F

†
d T21) =

√
2

3σ0
Im BD∗, (21)

〈T22〉 = 1

3
Tr(Fd F

†
d T22)

= 1√
3σ0

{
Re A(C + D)∗ − 1

3
ReCD∗

−1

2
|B|2 + 1

6
|C |2 − 1

2
|D|2

}
. (22)

The values of A, B, C , and D are the result of integration
in (12) and are defined as follows:
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A = ikπ3/2

2

{
A1 − 4A2 + 2A3 − 64A4 + 3q2A5

− 384[γ1 exp(iδ1) + γ2 exp(iδ2)]A6

}
, (23)

B = qk2π3/2

4

{
B1 − B2 + √

2q2B3

− 2[γ1 exp(iδ1) + γ2 exp(iδ2)]
(
B4 − 8B5 − √

8B6
)}

,

(24)

C = 3iqk2π3/2

16

{
C1 − 12C2 − 16

√
2
(
C3 − 6C4

)}
, (25)

D = 12ikπ3/2
{
D1 − √

8D2

+ [γ1 exp(iδ1) + γ2 exp(iδ2)]
(
6D3 + 3

√
8D4

)}
. (26)

Thus, the complete set of observables (17)–(22) is defined
by 20 functions in the expressions (23)–(26) (see Appendix
B).

3 Calculation results and discussion

The formalism described in the previous section was applied
to analyze experimental data obtained for the polarized
deuteron scattering from the 16O and 40Ca nuclei at projectile
energy of 700 MeV in the laboratory frame [27,30]. Descrip-
tion of the experimental setup is given in [26], according to
which the polarizations (7) were defined as

t10 = 1√
6
PV , t20 = 1√

2
PT , (27)

where PV , PT are the degrees of vector and tensor polariza-
tion of a polarized deuteron beam, the numerical values of
which are given in [27,30].

The spin-orbit interaction parameters in (13) were approx-
imately determined from the experiments [31–33] on mea-
suring the polarization of protons acquired by them upon
scattering from 16O and 40Ca nuclei. As is known [34], the
angular dependence of the nucleon polarization P(θ) at inter-
mediate energies is described by the Fermi formula, from
which it follows that δ = arcsin P(θmax), where θmax is the
scattering angle of maximum polarization; γ = (kqmax)

−1,
where k is the nucleon momentum, qmax is the momentum
transfer at θ = θmax. From the data of works [31–33], it fol-
lows that the parameters δ = δ1,2 and γ = γ1,2 are equal
to 0.77 and 0.31fm2, respectively, for the 16O target nucleus,
and to 0.64 and 0.34fm2, respectively, for 40Ca.

Figure 2 shows the calculation results of the observables
in the reaction of polarized deuteron scattering from 16O and
40Ca nuclei at 700 MeV.

When expanding the wave function ϕ0(r) in series (15),
tabulated data [29] for the S- and D-component of deuteron

wave function obtained with the help of realistic NN -
potentials Nijm I, Nijm II, Nijm 93, and Reid 93 were used.
The curves corresponding to these potentials lie inside the
dark gray bands (see Fig. 2). The profile functions ωn(bn)
in (13), before a series expansion (16), were first calculated
in the eikonal approximation making use of the tabulated
nuclear density distributions for the 16O and 40Ca nuclei
taken from [16]. The number of expansion terms in (15),
(16) was N = 12.

Analysis of the behavior of the curves presented in Fig. 2
leads to the conclusion that the strong absorption model with
one parameter NW (see Appendix A) is capable of describ-
ing cross sections only in the first diffraction maximum (at
scattering angles θ < 6◦). At that, the polarization data are
satisfactorily described for θ < 16◦. Therefore, to improve
the description of experiments, a semi-microscopic approach
[5] was used. The real part of the nucleon-nucleus potential
was added to the expression for the eikonal phase (A.2) in
the form

V (r) = V0

[
1 + exp

(r − RV

aV

)]−1
. (28)

The depth of potential (28) was given by the relation V0 =
ᾱNNW0, where ᾱNN is the nuclear isospin-averaged ratio of
the real to the imaginary part of the amplitude for nucleon-
nucleon scattering at zero angle. The values of ᾱNN were
taken from [35], the numerical values of (rV ; aV ) were equal
to (0.98; 0.15) for the 16O target nucleus, and (1.08; 0.15)

for 40Ca. The corresponding results of calculating observ-
ables [27,30] for the eikonal phase with the addition of poten-
tial (28) are presented in Fig. 3.

As follows from Fig. 3, for both target nuclei:

(i) experimental differential cross sections are satisfacto-
rily described in the first three maxima and minima;

(ii) experimental values of Ay are satisfactorily described
in the first two maxima;

(iii) experimental values of Ayy are described both qualita-
tively and quantitatively.

For comparison, in Fig. 3 shows the results of works by
other authors, where experiments [27,30] were also analyzed
(solid black curves). In particular, to describe the scatter-
ing of deuterons by 16O nuclei [27], an optical model with
nine parameters was used, and for 40Ca, a relativistic fold-
ing model with a phenomenological parametrization of the
NN -interaction [36] was used.

From the analysis of the calculation results presented in
Fig. 3, it follows that:

(i) the optical model [27] provides the best description
of the experiment; in our opinion, this is achieved
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Fig. 2 Cross sections
σ = σ(θ), relative to Rutherford
one σR = σR(θ), and analyzing
powers Ay(θ), Ayy(θ) in
scattering reaction of polarized
deuterons by 16O (a,c,e) and
40Ca (b,d,f) nuclei at 700 MeV
in the laboratory frame.
Experimental data were taken
from [27,30]. See text for details

by increasing the number of parameters of the optical
model;

(ii) the semi-microscopic formalism presented in this paper
and Dirac’s microscopic formalism [36] lead to qualita-
tively identical results; it should be noted that agree-
ment with experiment in [36] improved significantly
only when the multiple scattering effects were taking
into account.

4 Conclusions

The paper describes spin-dependent observables in the reac-
tion of polarized deuteron scattering by spin-zero target
nuclei at intermediate energies. Within the framework of the
Glauber model, general analytical expressions are obtained
for the reaction cross section and average values of the spin-
tensor components.

The calculations used a semi-microscopic approach, in
which neither the deuteron wave function nor the nucleon-
nucleus profile functions were modeled. This made it pos-
sible to minimize the set of fitting parameters and establish,
firstly, that:

(i) the diffraction model of strong absorption allows to
describe the experimental cross sections only in small
range of scattering angles θ < 6◦;

(ii) introducing the real part of the nucleon-nucleus poten-
tial in Woods-Saxon form (28) into the expression for the
eikonal phase (A.2) slightly expands the model applica-
bility up to θ < 15◦ ÷ 20◦, where the cross sections and
tensor analysing powers can be described; on the other
hand, the vector analysing powers were described qual-
itatively, except the region θ < 10◦; agreement with
these experiments could be improved by using model
profile functions with additional parameters: this is usu-
ally done in an optical model, where the spin-orbit part
of the potential differs from the central one.

Secondly, the diffraction model itself and the limits of
its applicability to the kinematics of the reactions concerned
were verified. The validity of the formula (12) is determined
by the conditions q 
 k (or kR � 1, where R is the radius
of the deuteron-nucleus interaction). If we take for R, for
example, the root-mean-square radius of the 16O nucleus,
which is equal to 2.711 fm [16], then for deuteron energy
of 700 MeV the inequality kR � 1 undoubtedly satisfied.
The inequality q 
 k gives the estimate θ < θmax � 10◦,
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Fig. 3 The same as in Fig. 2,
but for the eikonal phase with
the addition of potential (28).
Solid black curves are the results
of theoretical calculations
performed in [27,36]

which is confirmed by calculations for the diffraction model
of strong absorption. As follows from the results obtained
above, the refraction model extends the applicability domain
of (12) up to θmax � 20◦.

Data Availability Statement This manuscript has no associated data.
[Authors’ comment: Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.]

Code Availability Statement This manuscript has no associated
code/software. [Authors’ comment: Code/Software sharing not applica-
ble to this article as no code/software was generated or analysed during
the current study.]

Appendix A

The radial parts of nucleon–nucleus profile functions were
calculated in the eikonal approximation:

ωi (bi ) = 1 − exp[−φi (bi )], i=1, 2; (A.1)

where

φi (bi ) = −1

v

∫ ∞

−∞
dz W

(√
b2
i + z2

)
(A.2)

is the scattering phase, v the velocity of incident nucleon,
and W (r) the imaginary part of nucleon-nucleus potential.

In the framework of the double folding model, the eikonal
phase can be calculated using the method described in
work [8]. Let the distribution of nuclear density in the
nucleon, ρi (r), and the amplitude of NN -interaction at the
impact parameter plane, f (b), be defined by Gaussian func-
tions:

ρi (r) = ρi (0) exp(−r2/a2
i ), (A.3)

f (b) = (πr2
0 )−1 exp(−b2/r2

0 ), (A.4)

where ρi (0) = (ai
√

π)−3, a2
i = r2

0 = 2r2
NN/3, and

r2
NN

∼= 0.65 fm2 is the mean-square radius of NN -
interaction. If the density distribution (tabulated [16] or
model) in the target nucleus can be expanded in a series of
Gaussoid basis functions,

ρT (r) =
N∑

j=1

ρT j exp(−r2/a2
T j ), a2

T j = R2
rms/j , (A.5)

where Rrms is the root-mean-square radius of the nucleus,
the formula for the eikonal phase from work [8] can be gen-

123



Eur. Phys. J. A (2024) 60 :148 Page 7 of 9 148

eralized [12] to the expression

φi (bi ) = NW
√

π σ̄NN

N∑

j=1

ρT j a3
T j

a2
T j + 2r2

0

exp

(
− b2

i

a2
T j + 2r2

0

)
,

(A.6)

where NW is the normalization factor for the imaginary part
of the double folding potential, and σ̄NN is the isotopically
averaged cross-section of nucleon-nucleon interaction [35].

Formula (A.6) was used directly while calculating pro-
file functions (A.1). Afterwards, they were expanded in the
Gaussoid basis (see (16)).

Appendix B

The quantities included in formulas (23)–(26) are obtained
as a result of analytical integration in (12) and are determined
as follows:

A1 =
N∑

j=1

N∑

�=1

N∑

m=1

(
α1 jβ1 j exp

(
−β1 j q2

4

)

+ α2 jβ2 j exp
(
−β2 j q2

4

))

× g�gm

λ
3/2
�m

exp
(
− q2

16λ�m

)
, (B.1)

A2 =
N∑

i=1

N∑

j=1

N∑

�=1

N∑

m=1

α1 jα2 jβi j g�gm(
β−1
i j + 4λ�m

)
λ

1/2
�m

exp
(
−βi j q2

4

)
,

(B.2)

A3 =
N∑

j=1

N∑

�=1

N∑

m=1

(
α1 jβ1 j exp

(
−β1 j q2

4

)

+ α2 jβ2 j exp
(
−β2 j q2

4

))

× h�hm

μ
7/2
�m

(
15 − 5q2

4μ�m
+ q4

64μ2
�m

)
exp

(
− q2

16μ�m

)
,

(B.3)

A4 =
N∑

i=1

N∑

j=1

N∑

�=1

N∑

m=1

α1 jα2 jβi j h�hm
(
β−1
i j + 4μ�m

)3
μ

5/2
�m

(
30μ2

�m

+5μ�m

βi j
+ 3

8β2
i j

)
exp

(
−βi j q2

4

)
, (B.4)

A5 =
N∑

j=1

N∑

�=1

N∑

m=1

(
γ1α1 jβ1 j exp

(
−β1 j q2

4
+ iδ1

)

− γ2α2 jβ2 j exp
(
−β2 j q2

4
+ iδ2

))

× h�hm

μ
7/2
�m

(
5 − q2

8μ�m

)
exp

(
− q2

16μ�m

)
, (B.5)

A6 =
N∑

i=1

N∑

j=1

N∑

�=1

N∑

m=1

α1 jα2 j h�hm
(
β−1
i j + 4μ�m

)3
μ

3/2
�m

(
3μ�m − 1

4βi j

)

× exp
(
−βi j q2

4

)
, (B.6)

B1 =
N∑

j=1

N∑

�=1

N∑

m=1

(
γ1α1 jβ1 j exp

(
−β1 j q2

4
+ iδ1

)

+γ2α2 jβ2 j exp

(
−β2 j q2

4
+ iδ2

))

× g�gm

λ
3/2
�m

exp
(
− q2

16λ�m

)
, (B.7)

B2 =
N∑

j=1

N∑

�=1

N∑

m=1

(
γ1α1 jβ1 j exp

(
−β1 j q2

4
+ iδ1

)

+ γ2α2 jβ2 j exp
(
−β2 j q2

4
+ iδ2

))

× h�hm

μ
7/2
�m

(
15 − 17q2

8μ�m
+ q4

32μ2
�m

)
exp

(
− q2

16μ�m

)
,

(B.8)

B3 =
N∑

j=1

N∑

�=1

N∑

m=1

(
γ1α1 jβ1 j exp

(
−β1 j q2

4
+ iδ1

)

+γ2α2 jβ2 j exp

(
−β2 j q2

4
+ iδ2

))

× g�hm
(λ� + μm)7/2 exp

(
− q2

8(λ� + μm)

)
, (B.9)

B4 = A2, (B.10)

B5 =
N∑

i=1

N∑

j=1

N∑

�=1

N∑

m=1

α1 jα2 jβi j h�hm
(
β−1
i j + 4μ�m

)3
μ

5/2
�m

×
(

15μ2
�m + 17μ�m

4βi j
+ 3

8β2
i j

)

× exp
(
−βi j q2

4

)
, (B.11)

B6 =
N∑

i=1

N∑

j=1

N∑

�=1

N∑

m=1

α1 jα2 j g�hm
(
β−1
i j + 2(λ� + μm)

)2
(λ� + μm)3/2

× exp
(
−βi j q2

4

)
, (B.12)

C1 =
N∑

j=1

N∑

�=1

N∑

m=1

(
α1 jβ1 j exp

(
−β1 j q2

4

)
+ α2 jβ2 j

× exp
(
−β2 j q2

4

))h�hm

μ
9/2
�m

(
7 − q2

8μ�m

)
exp

(
− q2

16μ�m

)
,

(B.13)
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C2 =
N∑

j=1

N∑

�=1

N∑

m=1

(
γ1α1 jβ1 j exp

(
−β1 j q2

4
+ iδ1

)

− γ2α2 jβ2 j exp

(
−β2 j q2

4
+ iδ2

))

× h�hm

μ
7/2
�m

(
1 − q2

8μ�m

)
exp

(
− q2

16μ�m

)
, (B.14)

C3 =
N∑

j=1

N∑

�=1

N∑

m=1

(
α1 jβ1 j exp

(
−β1 j q2

4

)
+ α2 jβ2 j

× exp
(
−β2 j q2

4

)) g�hm
(λ� + μm)7/2 exp

(
− q2

8(λ� + μm)

)
,

(B.15)

C4 =
N∑

j=1

N∑

�=1

N∑

m=1

(
γ1α1 jβ1 j exp

(
−β1 j q2

4
+ iδ1

)

− γ2α2 jβ2 j exp
(
−β2 j q2

4
+ iδ2

)) g�hmλ�

4(λ� + μm)7/2

× exp
(
− q2

8(λ� + μm)

)
, (B.16)

D1 =
N∑

i=1

N∑

j=1

N∑

�=1

N∑

m=1

α1 jα2 j h�hm
(
β−1
i j + 4μ�m

)3
μ

5/2
�m

×
( 3

2βi j
+ 14μ�m

)
exp

(
−βi j q2

4

)
, (B.17)

D2 = B6, (B.18)

D3 =
N∑

i=1

N∑

j=1

N∑

�=1

N∑

m=1

α1 jα2 j h�hm
(
β−1
i j + 4μ�m

)3
μ

3/2
�m

×
( 3

2βi j
− 2μ�m

)
exp

(
−βi j q2

4

)
, (B.19)

D4 =
N∑

i=1

N∑

j=1

N∑

�=1

N∑

m=1

α1 jα2 j g�hmλ�
(
β−1
i j + 2(λ� + μm)

)2
(λ� + μm)3/2

× exp
(
−βi j q2

4

)
. (B.20)

Coefficients with double summation indices that appear in
the formulas (B.1)–(B.20), are defined in terms of expansion
coefficients (15), (16) as βi j = d1 j d2 j/(d1 j + d2 j ), λ�m =
(λ� + λm)/2, μ�m = (μ� + μm)/2, where i, j, �,m = 1, N .
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