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Abstract We construct tables of finite temperature equa-
tion of state (EoS) of hypernuclear matter in the range of
densities, temperatures, and electron fractions that are needed
for numerical simulations of supernovas, proto-neutron stars,
and binary neutron star mergers and cast them in the format of
CompOSE database. The tables are extracted from a model
that is based on covariant density functional (CDF) theory
that includes the full J P = 1/2+ baryon octet in a manner
that is consistent with the current astrophysical and nuclear
constraints. We employ a parameterization with three differ-
ent values of the slope of the symmetry energy Lsym = 30,
50 and 70 MeV and fixed skewness Qsat = 400 MeV for
above saturation matter. A model for the EoS of inhomo-
geneous matter is matched at sub-saturation density to the
high-density hypernuclear EoS. We discuss the generic fea-
tures of the resulting EoS and the composition of matter as a
function of density, temperature, and electron fraction. The
nuclear characteristics and strangeness fraction of these mod-
els are compared to the alternatives from the literature. The
integral properties of static and rapidly rotating compact stars
in the limit of zero temperature are discussed and confronted
with the multimessenger astrophysical constraints.

1 Introduction

The equation of state (EoS) for dense, strongly interact-
ing matter serves as the central input in an array of astro-
physical simulations involving isolated compact objects and
binary systems across various scenarios. The CompOSE
database [1,2] hosts a substantial collection of EoS data.
Nevertheless, while numerous models exist to describe the
composition of mature cold neutron stars, the range nar-
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rows considerably when considering the so-called general-
purpose EoS, which encompass varying temperature, density,
and electron fraction. Moreover, particularly for EoS mod-
els incorporating non-nucleonic degrees of freedom in dense
and hot matter, like hyperons, recent years have imposed
stringent astrophysical constraints, rendering several exist-
ing models incompatible with observations. It is expected
that more constraints will emerge in the future in light of
(multimessenger) observations of binary neutron star (BNS)
mergers, isolated X-ray-emitting neutron stars in our prox-
imity, and radio pulsars. In this context, the necessity of the
inclusion of new EoS into this and other databases allows
us to better cover and quantify the large uncertainties in the
description of dense and hot strongly interacting matter. This
paper describes the generation of general-purpose EoS tables
in the temperature, density, and electron fraction space based
on covariant density functional (CDF) models which include
hyperonic degrees of freedom, for reviews see [3–5]. Specif-
ically, CDFs for finite temperature hypernuclear matter of
the kind that we will employ here have been constructed and
applied to a range of astrophysical scenarios in the past [6–
13].

Our general aim here is to cover the complete parame-
ter space of temperature, density, and electron fraction, that
is required by the simulations of the astrophysical scenarios
mentioned above. We will employ recent new parametriza-
tions of the CDF with density-dependent (DD) couplings [14]
which allow for variations in the slope of the symmetry
energy Lsym and the skewness Qsat. Here, we discuss the
EoS with contributions from baryons, photons, and elec-
trons/positrons to the EoS, the two latter components being
treated as an ideal gas. The case of neutrino-trapped mat-
ter in the high-density range nB/nsat ≥ 0.5, where nsat is
the saturation density has been discussed in Refs. [11,12]
where a different (DDME2) parameterization was used [15].
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We will compare the results from this and other alternative
parametrizations to the present results later on.

We further match the EoS of high-density (homogeneous)
hypernuclear matter to that of low-density (inhomogeneous)
nuclear matter. The low-density EoS corresponds to the one
developed in Ref. [16] and is based on an improved nuclear
statistical equilibrium among nucleons and nuclear clusters.
Note that the hypernuclear matter is described within the
class of CDF models which are consistent with the cur-
rent astrophysical constraints on cold neutron star radii, tidal
deformabilities, and maximum masses - models that emerged
mostly after the 2010 detection of the 2-solar mass compact
star, for a discussion see [5]. The model we employ includes
the full baryon octet, i.e., strangeness 1 and 2 hyperons. It
allows for σ ∗ and φ hidden strangeness mesons which medi-
ate the hyperon-hyperon interaction.

Numerical simulations reveal that BNS mergers generate
hot and dense strongly interacting matter during the post-
merger stage [17–20]. The outcome of such a merger is con-
tingent upon the combined masses of the merging objects
and may lead to the formation of a black hole or a sta-
ble neutron star. In any scenario, a transient hot object is
formed, and thus, the spectrum of gravitational waves emit-
ted during this phase (potentially observable with advanced
gravitational wave instruments, such as the Einstein Tele-
scope [21]) carries distinctive characteristics reflecting the
EoS of hot and dense matter. This EoS also governs the sta-
bility of the resulting object, influencing the course of its
transient evolution [22], as well as the efficiency of dissipa-
tive processes [23–30], which should be incorporated into
the commonly used ideal hydrodynamics simulations [31].

The emergence of hot and neutrino-rich compact objects
is also anticipated through numerical simulations of core-
collapse supernovas (CCSN). As the supernova progenitor
contracts, a hot proto-neutron star is formed along with
expanding ejecta [32–39]. The transient formation of dense,
high-temperature matter occurs also when the progenitor
possesses significant mass and the material collapses ulti-
mately into a black hole [40–43].

The local characteristics of matter during the hot phase
in the aforementioned astrophysical scenarios are primarily
defined by factors such as density, temperature (or entropy),
and the lepton fractions for electrons and muons. The EoS
in this phase depends on multiple parameters, which can be
compared to the more straightforward one-parameter EoS
describing cold and β-equilibrated matter. Given the mul-
titude of nuclear and astrophysical constraints imposed on
the cold EoS we will briefly touch upon the predictions of
underlying EoS for global properties of cold nucleonic and
hypernuclear compact stars; such input is also required by the
CompOSE repository. Muons are excluded from our tables
to maintain a three-dimensional representation of parameter

space, focusing on temperature, density, and electron frac-
tion.

This work is organized as follows. In Sect. 2 we review
the high-density EoS of hypernuclear matter at finite tem-
peratures, where Sect. 2.1 discusses the formalism, Sect. 2.2
– the choice of the coupling constants, Sect. 2.3 the con-
ditions relevant for BNS mergers and CCSN and Sect. 2.4
the procedure of matching the low (inhomogeneous) and
high-density (homogeneous) EoS. We present the numeri-
cal results on the EoS and composition in Sect. 3. The mass-
radius (hereafter M-R) relation of static cold compact stars
and the astrophysical constraints are discussed in Sect. 4.
Section 5 is dedicated to the discussion of how our model
compares to the alternative models. In Sect. 6 we provide
a summary of our main results. We use the natural (Gaus-
sian) units with h̄ = c = kB = 1, and the metric signature
gμν = diag(1,−1,−1,−1).

2 Finite temperature equation of state of hypernuclear
matter

The purpose of this section is to collect all the ingredients
that are required for the construction of the three-dimensional
tables. We review the physical model, the selection of the
values for the couplings in the Lagrangian of the model, the
thermodynamical conditions relevant for the cases of BNS
and CCSN, and, finally, the matching to the low-density (sub-
nuclear) EoS to the high-density one.

2.1 Formalism

The CDF model on which the finite-temperature EoSs is con-
structed is based on the Lagrangian

L = Lb + Lm + Lλ + Lem, (1)

where the J P
B = 1

2
+

baryon Lagrangian is given by

Lb =
∑

b

ψ̄b

[
γ μ

(
i∂μ − gωbωμ − gφbφμ − 1

2
gρbτ · ρμ

)

−(mb − gσbσ − gσ ∗bσ
∗)

]
ψb, (2)

with the index b summing over the J P
B = 1

2
+

baryon octet,
which includes neutrons, protons, and Λ, Ξ0,−, Σ0,± hyper-
ons. The interaction is modeled via the non-strange sector
mesons σ, ωμ, and ρμ which couple to all the members of
the octet and hidden strangeness mesons σ ∗, φμ, which cou-
ple only to hyperons. Here ψb are the Dirac fields of the
baryon octet with masses mb, gmb are the meson–baryon
couplings wherem index runs over the different meson chan-
nels. Note that the meson states here do not correspond to
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the ones in vacuum, but effectively describe the interaction
of baryons taking into account multiple scattering and in-
medium effects. It is assumed that the masses are close to
those in vacuum, except the σ meson, which has a resonance
structure and effectively represents two-pion state. Its mass
is often used as a free parameter of a model. Their couplings
to baryons, however, differ from the tree-level couplings in
vacuum physics, i.e., are treated as fit parameters that account
for the above-mentioned multiple scattering and in-medium
effects.

The mesonic part of the Lagrangian is given by

Lm = 1

2
∂μσ∂μσ − m2

σ

2
σ 2 − 1

4
ωμνωμν + m2

ω

2
ωμωμ

−1

4
ρμν · ρμν+

m2
ρ

2
ρμ · ρμ+1

2
∂μσ ∗∂μσ ∗ − m∗2

σ

2
σ ∗2

−1

4
φμνφμν + m2

φ

2
φμφμ,

(3)

where mσ , mσ ∗ , mω, mφ and mρ denote the meson masses.
The field-strength tensors for vector fields are given by

ωμν = ∂μων − ∂μων, (4)

φμν = ∂μφν − ∂μφν, (5)

ρμν = ∂νρμ − ∂μρν . (6)

As mentioned above, charged leptons are treated as an
ideal gas, thus the Lagrangian is given by the free Dirac
Lagrangian

Lλ =
∑

λ

ψ̄λ(iγ
μ∂μ − mλ)ψλ, (7)

where ψλ are leptonic fields and mλ are their masses.
The general-purpose tables of EoS commonly include

only electrons and positrons and neglect the contributions
from other leptons. Charged τ -leptons are too massive to
appear in stellar matter. Including charged muons treated
as an ideal gas in an EoS table is a priori straightforward
since the main difficulty resides in determining the EoS
for the strongly interacting baryons. Since in addition only
a few simulations up to now evolve a muon fraction, see
e.g. [44], we refrain here from adding a fourth dimension
to our already rather memory-consuming tables. A similar
reasoning applies to the contributions of neutrinos which in
the trapped regime contribute to energy density and pres-
sure. These contributions can be cast into analytical expres-
sions which can easily be added if needed. Note that in
the case when strong electromagnetic fields are present (1)
should include the electromagnetic contribution Lem which
we neglect here. Examples, where such term is important
are the cores of magnetars that may support magnetic fields
of the order of 1018 G [45–47] as well as magnetar crusts

where the physics of finite nuclei may be affected by mag-
netic fields [48–51]. Electromagnetic part of the Largangian
contributes also to the Coulomb corrections in inhomoge-
neous matter, see e.g. Ref. [16], but these are not relevant
for present discussion. For the Lagrangian given by Eq. (1)
the evaluation of the pressure and energy density of the con-
stituents can be added with λ = e

P = Pb + Pm + Pe + Pr , (8)

E = Eb + Em + Ee, (9)

where the contributions due to mesons and J P
B = 1

2
+

-
baryons are given by

Pm = −m2
σ

2
σ 2−m∗2

σ

2
σ ∗2+m2

ω

2
ω2

0+
m2

φ

2
φ2

0+m2
ρ

2
ρ2

03,

(10)

Em = m2
σ

2
σ 2 + m∗2

σ

2
σ ∗2 + m2

ω

2
ω2

0+
m2

φ

2
φ2

0+m2
ρ

2
ρ2

03,

(11)

Pb =
∑

b

gb
6π2

∫ ∞

0

dk k4

Eb
k

[
f (Eb

k−μ∗
b)+ f (Eb

k+μ∗
b)

]
,

(12)

Eb =
∑

b

gb
2π2

∫ ∞

0
dk k2Eb

k

[
f (Eb

k−μ∗
b)+ f (Eb

k+μ∗
b)

]
,

(13)

where f (E) = [1 + exp(E/T )]−1 is the Fermi distribu-
tion function at temperature T , the single-particle energies

of baryons are given by Eb
k =

√
k2 + m∗2

b , gb = 2Jb+1 = 2
is the spin (Jb = 1/2) degeneracy factor of the baryon octet,
and the effective masses are defined as

m∗
b = mb − gσbσ − gσ ∗bσ

∗. (14)

The effective chemical potentials are given by

μ∗
b = μb − gωbω0 − gφbφ0 − gρbρ03 I3b − Σr , (15)

where the so-called rearrangement term is given by

Σr =
∑

b,d

(
∂gωb

∂nb
ω0nb + ∂gρb

∂nb
I3bρ03nb + ∂gφb

∂nb
φ0nb

− ∂gσb

∂nb
σnsb − ∂gσ ∗b

∂nb
σ ∗nsb

)
(16)

and the pressure contribution from this term is Pr = nBΣr .
Note that we implicitly used the fact that the baryon-meson
couplings depend on the vector density, therefore the rear-
rangement term appears in Eq. (15) for the chemical poten-
tials. If, however, scalar-density dependence is used, as in
the MPE model of Ref. [52], then the formalism needs some
modifications [14]. The mesonic fields in Eqs. (10), (11) and
the following equations correspond to the mean-field values.
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Their expectation values in the infinite system approxima-
tions are standard and we will not write them down here.
The system of equations for baryons is closed by the expres-
sions for the scalar and baryon (vector) number densities:

nb = gb
2π2

∫ ∞

0
k2dk

[
f (Eb

k − μ∗
b) − f (Eb

k + μ∗
b)

]
, (17)

nsb = gb
2π2

∫ ∞

0

k2dk m∗
b

Eb
k

[
f (Eb

k − μ∗
b) + f (Eb

k + μ∗
b)

]
.

(18)

The electronic contribution is given by

Pe = ge
6π2

∫ ∞

0

dk k4

Ee
k

[
f (Ee

k − μe) + f (Ee
k + μe)

]
,

(19)

Ee = ge
2π2

∫ ∞

0
dk k2Ee

k

[
f (Ee

k − μe) + f (Ee
k + μe)

]
,

(20)

where the degeneracy factor for electrons ge = 2. Elec-
tronic energies are given just by their kinetic energy Ee

k =√
k2 + m2

e , whereme is given by the free mass of an electron.

2.2 Coupling constants

In total six tables were constructed, three of which are purely
nucleonic and are based on the parameterization of Ref. [14].
The other three EoS contain in addition hyperons. The three
nucleonic EoS differ by the value of the slope of the symmetry
energy Lsym = 30, 50 and 70 MeV and have fixed skewness
Qsat; we will abbreviate them as DDLS(30), DDLS(50), and
DDLS(70), respectively. The value Qsat = 400 MeV was
chosen to ensure that the maximum masses of hypernuclear
stars surpass the lower bound of two solar masses. The con-
sidered range for 30 ≤ Lsym ≤ 70 MeV accommodates
existing uncertainties associated with neutron skin measure-
ments and neutron star radii [53]. Consequently, our ensem-
ble of EoS facilitates investigations of the impact of varying
the symmetry energy slope on dynamic phenomena such as
supernova explosions and BNS mergers.

Let us now recall that the energy density of nuclear matter
in the vicinity of saturation density and isospin-symmetrical
limit can be expressed via a double-expansion in the Taylor
series:

E(χ, δ) � Esat + 1

2!Ksatχ
2 + 1

3!Qsatχ
3

+
(
Jsym + Lsymχ + 1

2!Ksymχ2

+ 1

3! Qsymχ3
)

δ2

(21)

Table 1 The ratios of the couplings of hyperons to mesons to those of
nucleons at saturation density, i.e., n0 = nsat

b\R Rωb Rφb Rρb Rσb Rσ ∗b

Λ 2/3 − √
2/3 0 0.6106 0.4777

Σ 2/3 − √
2/3 2 0.4426 0.4777

Ξ 1/3 − 2
√

2/3 1 0.3024 0.9554

where χ = (n − nsat )/3nsat and δ = (nn − n p)/n, with nn
and n p being the neutron and proton densities.

The definition of the coefficients of the expansion are stan-
dard and are given, e.g., in Ref. [5]. For the density depen-
dence of the nucleon-meson couplings, we assume a standard
form [54]

giN (nB) = giN (n0)hi (x), (22)

where x = nB/n0 and n0 is a reference density specified in
the parametrization.

hi (x) = ai
1 + bi (x + di )2

1 + ci (x + di )2 , i = σ, ω, (23)

hρ(x) = e−aρ(x−1). (24)

The explicit values of couplings and parameters deter-
mining the density-dependence are given in Ref. [14]. To
complete the discussion, let us note that the saturation
density nsat = 0.152 fm−3, the binding energy per par-
ticle in symmetrical nuclear matter at saturation density
EB = − 16.14 MeV, the compressibility K = 251 MeV
and effective nucleon mass m∗

n,p/mN = 0.57 MeV (where
mN = 939 MeV is the bare mass) for the DDLS models
are by construction the same as for the DDME2 model. The
symmetry energy Esym, however, changes with the value of
the Lsym, specifically, Esym = 30.1, 32.2, 34.0 MeV for
Lsym = 30, 50 and 70 MeV, respectively.

The density dependence of the couplings for hyperons
is the same as those for nucleonic ones, but their strengths
at the reference density n0 are different. The ratios of the
hyperonic to nucleonic ones are given in Table 1. The depths
of hyperonic potentials in the symmetric nuclear matter
are UΛ(nsat) = − 30 MeV UΞ(nsat) = − 14 MeV and
UΣ(nsat) = + 30 MeV.

2.3 Adapting CDF to conditions in CCSN and BNS merger
remnants

For zero-temperature computations, we will assume weak-
equilibrium among the members of the baryon octet and elec-
trons. It is assumed that neutrinos freely escape the star and,
therefore, do not form a statistical ensemble. This implies the
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Fig. 1 Upper panel: pressure of nucleonic matter as a function of
baryon density (normalized by the saturation density nsat) and elec-
tron fraction for Lsym = 30 MeV and temperatures T = 10 MeV (left),
T = 80 MeV (middle) and T = 150 MeV (right). Middle panel: ratio
of the pressure of nucleonic matter with Lsym = 50 MeV to the pres-

sure of nucleonic matter with Lsym = 30 MeV as a function of baryon
density (normalized by the saturation density nsat) and electron frac-
tion for temperatures T = 10 MeV (left), T = 80 MeV (middle) and
T = 150 MeV (right). Lower panel: same as the middle panel but for
the ratio of pressure at Lsym = 70 MeV to that at Lsym = 30 MeV

following relations among the chemical potentials

μΛ = μΣ0 = μΞ0 = μn = μB, (25)

μΣ− = μΞ− = μB − μQ, (26)

μΣ+ = μB + μQ, (27)

where μB and μQ = μp − μn = −μe are the baryon
and charge chemical potentials. An additional constraint is
imposed by the charge neutrality condition

n p + nΣ+ − nΣ− + nΞ− − ne− + ne+ = 0. (28)

where e± refers to electrons and positrons, respectively. We
will work below with a fixed electron fraction which is given
by Ye = (ne− − ne+)/nB .

2.4 Matching to low-density matter for the general-purpose
tables

In numerical simulations of CCSN or BNS mergers, in gen-
eral, the EoS is incorporated in the form of tables covering the
necessary ranges in thermodynamic parameters. The latter
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Fig. 2 Upper panel: pressure of hypernuclear matter as a function of
baryon density (normalized by the saturation density nsat) and electron
fraction for Lsym = 30 MeV and temperatures T = 10 MeV (left),
T = 80 MeV (middle) and T = 150 MeV (right). Middle panel: ratio
of the pressure of hypernuclear matter with Lsym = 50 MeV to the

pressure of hypernuclear matter with Lsym = 30 MeV as a function of
baryon density (normalized by the saturation density nsat) and electron
fraction for temperatures T = 10 MeV (left), T = 80 MeV (middle)
and T = 150 MeV (right). Lower panel: same as the middle panel but
for the ratio of pressure at Lsym = 70 MeV to that at Lsym = 30 MeV

are mostly chosen to be temperature, baryon number density,
and electron fraction (as mentioned above, muon fraction
needs an additional evolution equation and is in general not
included) with values typically in between 0.1 � T � 100
MeV, 10−12 � nB � 1 fm−3, and 0.01 � Ye � 0.6 [3] to
describe matter under the very different thermodynamic con-
ditions occurring during the CCSN or the BNS merger. The
models presented here only consider homogeneous matter,
i.e. they are not adapted to the low-density and temperature
region where nuclear clusters coexist with unbound nucle-

ons. To extend our models into that region and produce a
complete general-purpose table, we have chosen to match
the high-density EoS to the low-density HS(DD2) one [16]
at a density of nB = 0.04 fm−3. If for the given values of T
and Ye, matter is not homogeneous in the original HS(DD2)
table at this density, then the matching is performed at the
lowest density for homogeneous matter. The HS(DD2) model
describes inhomogeneous matter within an extended nuclear
statistical equilibrium approach [16], treating the interaction
of unbound nucleons within the DD2 [55] model. At low
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Fig. 3 Upper panel: energy density of nucleonic matter as a function
of baryon density (normalized by the saturation density nsat) and elec-
tron fraction for Lsym = 30 MeV and temperatures T = 10 MeV (left),
T = 80 MeV (middle) and T = 150 MeV (right). Middle panel: ratio
of the energy density of nucleonic matter with Lsym = 50 MeV to
energy density of nucleonic matter with Lsym = 30 MeV as a func-

tion of baryon density (normalized by the saturation density nsat) and
electron fraction for temperatures T = 10 MeV (left), T = 80 MeV
(middle) and T = 150 MeV (right). Lower panel: same as the middle
panel but for the ratio of energy density at Lsym = 70 MeV to that at
Lsym = 30 MeV

densities, the DD2 interaction is very close to the models
employed here and at the densities at which we perform the
matching, only nucleons should be present. This ensures a
smooth matching of inhomogeneous to homogeneous matter
upon constructing our general-purpose table. The only weak-
ness is that we miss a fraction of hyperons and �-resonances
at high temperatures and low densities. Indeed in this regime,
the hyperon fractions are substantial, see Figs. 5 and 6 and
Refs. [3,5,8,9,12] and matching the purely nuclear HS(DD2)
EoS within our tables induces small discontinuities in partic-

ular in the hyperon fractions. Their influence on thermody-
namic quantities is small. We will improve on this point in a
future version of the tables.

3 Equation of state and composition of hypernuclear
matter

Our tables were generated through self-consistent solutions
of the equations for the meson fields (in the static approxi-
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Fig. 4 Upper panel: energy density of hypernuclear matter as a func-
tion of baryon density (normalized by the saturation density nsat) and
electron fraction for Lsym = 30 MeV and temperatures T = 10 MeV
(left), T = 80 MeV (middle) and T = 150 MeV (right). Middle panel:
ratio of the energy density of hypernuclear matter with Lsym = 50 MeV
to the energy density of hypernuclear matter with Lsym = 30 MeV as a

function of baryon density (normalized by the saturation density nsat)
and electron fraction for temperatures T = 10 MeV (left), T = 80 MeV
(middle) and T = 150 MeV (right). Lower panel: same as the middle
panel but for the ratio of energy density at Lsym = 70 MeV to that at
Lsym = 30 MeV

mation) and the scalar and baryon densities (17) and (18) for
fixed values of temperature, density, and electron fraction.
The neutrino contribution is typically added within the sim-
ulations from the employed neutrino treatment which also
accounts consistently for neutrino trapping, which happens
typically in dense matter above a temperature of several MeV.
Muons are neglected likewise to limit the dimensionality of
the table to three.

We next illustrate the content of the tables by showing
selected results, which are obtained through cuts in three-
dimensional space spanned by density, temperature, and
electron fraction. The finite-temperature pressure as a func-
tion of density and electron fraction for nucleonic matter is
shown in Fig. 1 for Lsym = 30 MeV and three values of
fixed temperature. We show in the same figure the ratios
of pressures P[Lsym = 50 MeV]/P[Lsym = 30 MeV] and
P[Lsym = 70 MeV]/P[Lsym = 30 MeV] to visualize the
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Fig. 5 Composition of matter for the three different values of L at a constant electron fraction of Ye = 0.1 and temperature of T = 10 MeV (left
panels) and T = 80 MeV (right panels). All figures correspond to the hypernuclear EoS

changes with the change in the symmetry energy slope Lsym.
As expected, pressure is an increasing function of density;
The ratios of pressure for different Lsym values tend to unity
in the limit of large densities where pressure is dominated by
the value of Qsat and the influence of Lsym is negligible. The
ratios increase as one moves away from the symmetric limit.
It is also obvious that the ratios are numerically larger the

larger the difference in Lsym. Increasing the temperature for
a fixed value of Lsym diminishes the ratios of the pressures
as they are increasingly dominated by thermal effects rather
than interactions.

Figure 2 shows the EoS for the same parameters as in
Fig. 1, but in the presence of hyperons. It is seen that this
new feature strongly softens the EoS due to the onset of the
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Fig. 6 Same as in Fig. 5, but for an electron fraction of Ye = 0.4

new degrees of freedom, which allow for the reduction of the
degeneracy pressure of nucleons. The ratios of the pressures
at various Lsym show the same trends seen in the nucleonic
case since the factors that determine them are unchanged
when hyperons are added.

Figure 3 shows the energy density of nucleonic mat-
ter as a function of density and electron fraction for
Lsym = 30 MeV and again the same three values of fixed

temperature. It also shows the ratios of energy densities
E[Lsym = 50 MeV]/E[Lsym = 30 MeV] and E[Lsym =
70 MeV]/E[Lsym = 30 MeV]. The general features that we
already discussed in the case of pressure are repeated in the
case of energy density as well. (a) It is an increasing func-
tion of density and has a minimum at the isospin symmetric
limit. (b) The ratios of energy densities for different Lsym

values are peaked at Ye → 0 (pure neutron matter) as the
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Fig. 7 Gravitational mass versus radius for non-rotating (upper panel)
and maximally fast rotating (lower panel) stars. In the case of rotating
stars, R refers to the equatorial radius. The upper three branches, labeled
as N , correspond to nucleonic, and the lower three labeled as Y – to
hyperonic stars for EoS models DDLS(30), DDLS(50) and DDLS(70)
for fixed value of Qsat = 400 MeV. The ellipses in the upper panel show
90% CI regions for PSR J0030+0451 [57,58], PSR J0740+6620 [59,
60] and gravitational wave event GW170817 [61]. The colored regions
correspond to the light member in the GW190814 event (blue) [62],
the heavy member in the GW230529 event (light green) [63], and the
heavy companion of PSR J0514-4002E (violet) [64]. The dots indicate
the location of the maximum mass for any given sequence, see also
Table 2

asymmetry energy is maximal in this limit. (c) Again, as in
the case of pressure ratios, the ratios of energy densities are
numerically larger the larger the difference in Lsym.

Figure 4 shows the same quantities as in Fig. 3 but for
hypernuclear matter. The energy density ratios at different
Lsym values exhibit the same trends already observed in the
nucleonic case, and we do not repeat the discussion here.

3.1 Composition of matter

We next turn to the composition of matter under the condi-
tions considered in this work. Figure 5 shows the composition
of finite-temperature hyperonic matter at two temperatures

T = 10 and 80 MeV for three values of Lsym = 30, 50 and
70 MeV and fixed Ye = 0.1. At T = 10 MeV hyperons Λ,
Ξ−, Σ− and Ξ0 appear in the given order with increasing
density, with the Σ− hyperon fraction being strongly sup-
pressed by the highly repulsive potential in nuclear matter
at saturation density. Since the chemical potentials are still
much larger than the temperature, this arrangement is qual-
itatively the same as the one at zero temperature and shows
also relatively sharp thresholds for the appearance of hyper-
ons. The large negative charge chemical potential in matter
with low electron fractions favors here the negatively charged
hyperons over their isospin partners, see e.g. the discussion
in [56]. For higher temperature T = 80 MeV the thresh-
olds disappear and hyperon abundances extend deep in the
low-density regime. The isospin triplet of Σ±,0 is now ther-
mally supported with amounts comparable to other hyperons.
As pointed out in Refs. [11,12] there is a special isospin
degeneracy point where the fractions within each isospin
multiplet coincide. This is visible for Σ and Ξ hyperons
at T = 80 MeV. At this degeneracy point, there is a reversal
in the dominance of the abundances of the hyperons present.
For example, as density increases, the Σ− hyperon goes over
from being the most abundant to the least abundant hyperon
in the Σ-hyperon multiplet. Similar behavior is seen as well
for Ξ− and Ξ0 fractions. The mechanism underlying the
isospin degeneracy point is discussed in Ref. [12], where it
is pointed out that this effect is related to the vanishing of
the charge chemical potential at that point. The variations
of the abundances of hyperons with the value of Lsym are
large quantitatively, see however the visible suppression of
Σ− hyperons with increasing Lsym.

Figure 6 shows the same for an electron fraction of Ye =
0.4. The higher charge chemical potential in this less neutron-
rich regime leads to a different composition where the neg-
atively charged particles within an isospin multiplet are no
longer favored. This can be seen at T = 10 MeV with the Ξ0

and the Σ+ appearing first and at T = 80 MeV, the isospin
degeneracy point is shifted to lower baryon number densities.
The value of Lsym only has a minor influence on the results
because the contribution of the symmetry energy is small for
nearly symmetrical matter.

4 Cold equation of state and astrophysical constraints

While the finite-temperature EoS is needed for transient
astrophysical scenarios involving neutron stars, the cold
(zero-temperature) limit of the EoS is sufficient to describe
their secular time scale evolution independent of their obser-
vational manifestations as pulsars, accreting X-ray neutron
stars, etc. Currently, available astrophysical constraints on
the global parameters of neutron stars put limits on the cold
β-equilibrated EoS, therefore we complete the discussion
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Table 2 The upper half of the table refers to the properties of
non-rotating spherically symmetric cold β-equilibrated, neutrino-
transparent, compact stars based on the EoS models considered in this
work. The first three columns show the maximum gravitational mass
(MG,max), the corresponding radius (Rmax) and central energy density
(εB,max) for the (cold) EoS with nucleons only (N ) and hyperons (Y ).
The remaining column shows the radius at MG = 1.4M	 mass. The

lower half shows the same quantities for maximally rotating (Keple-
rian) sequences. The listed radii correspond to equatorial ones in this
case. In addition, we show the Keplerian frequency ΩK

max for maximum
mass nucleonic and hyperonic stars. The same values for a 1.4M	 stars,
which coincide in the cases of nucleonic and hyperonic stars, are given
by ΩK

1.4M	/(104 Hz) = 0.57, 0.54, 0.52 for DDLS(30), DDLS(50)
and DDLS(70) models

Model MG,max Rmax εB,max R1.4M	 ΩK
max/104

(M	) (km) (1015 g cm−3) (km) (Hz)

N , DDLS(30) 2.48 12.02 1.85 12.87 –

N , DDLS(50) 2.47 12.16 1.90 13.15 –

N , DDLS(70) 2.46 12.04 1.85 13.47 –

Y , DDLS(30) 2.02 11.82 1.94 12.87 –

Y , DDLS(50) 2.00 11.80 2.02 13.15 –

Y , DDLS(70) 1.98 11.81 2.08 13.48 –

N , DDLS(30) 3.04 16.07 1.53 18.06 0.96

N , DDLS(50) 2.99 15.96 1.60 18.53 0.97

N , DDLS(70) 2.95 15.91 1.67 19.10 0.97

Y , DDLS(30) 2.51 16.92 1.40 18.06 0.82

Y , DDLS(50) 2.44 16.66 1.53 18.53 0.83

Y , DDLS(70) 2.38 16.45 1.68 19.10 0.83

of the finite-temperature EoS by confronting its zero tem-
perature limit with the observations, see also Ref. [14]. In
Fig. 7 the 90% CI ellipses show three key constraints involv-
ing PSR J0030+0451 [57,58], PSR J0740+6620 [59,60],
and the gravitational wave event GW170817 [61]. The
first two objects are pulsars with constrained radii. PSR
J0030+0451 has a gravitational mass M = 1.34+0.15

−0.16M	
and radius R = 12.71+1.14

−1.19 km (68% CI) [57]. An alter-

native evaluation leads to M = 1.44+0.15
−0.14 M	 and R =

13.02+1.24
−1.06 km (68% CI) [58]. For the more massive compact

star PSR J0740+6620 one finds the mass 2.08±0.07M	 and
radius 13.7+2.6

−1.5 km [60] or, alternatively, 2.072+0.067
−0.066M	 and

12.39+1.30
−0.98 km (68% CI) [59].

The static solutions of Einstein’s equations in spherical
symmetry were obtained by solving the Tolman–Oppen-
heimer–Volkoff equations [65] for cold β-equilibrated EoS
models DDLS(30), DDLS(50) and DDLS(70) for purely
nucleonic matter (labeled as N ) and hypernuclear matter
(labeled as Y ), see Fig. 7. In addition, the same figure shows
the M-R relations for maximal fast rotating (Keplerian)
sequences for rigid rotation for the same EoSs. These were
computed with the RNS code [66]. Table 2 lists the maximal
gravitational mass MG,max of each sequence considered, as
well as the corresponding radius (Rmax), and central den-
sity (εB,max). The well-known softening of the EoS once
hyperons are allowed results in the lower maximum masses
of non-rotating and rapidly rotating stars, see Fig. 7 and
Table 2. The masses and radii of the non-rotating sequences
are compatible with the NICER inferences for canonical (i.e.

M ∼ 1.4M	) and massive (i.e. M ∼ 2M	) compact stars.
It is evident that the N and Y sequences differ only when
the central density of a configuration is above the threshold
for the onset of hyperons. The M-R tracks are fully consis-
tent with GW170817 ellipses for DDLS(30) and DDLS(50)
models but require a smaller radius than predicted by the
DDLS(70) model. We still keep this model in our collec-
tion as we aim to cover a broad range of Lsym values. Note
that CDF models that allow for � resonances in addition
to hyperons can produce smaller radii for intermediate-mass
stars without affecting the maximum mass of a sequence, see
Refs. [10,67–71].

The lower panel of Fig. 7 shows the mass-radius diagram
for maximally fast rotating nucleonic and hyperonic stars,
where the radius is the equatorial one. Table 2 lists the key
parameters of maximally fast rotating stars - the gravitational
mass, equatorial radius, and Keplerian frequency for the max-
imum mass star. The interest in rotating hypernuclear (and
�-admixed) compact stars arose in connection with the pos-
sibility that the light companion in the highly asymmetric
binary compact object coalescence event GW190814 [62]
with estimated mass in the range 2.5 ≤ M/M	 ≤ 2.67 is
a rotating hypernuclear star. The range of inferred masses is
within the “mass gap” where neither neutron stars nor black
holes were found and are also hard to form with current the-
oretical models. This scenario has been explored with the
DDME2 parametrization with some variations of the hyper-
onic coupling constants [72–75]. Reference [75] finds hyper-
nuclear stars with masses close to 2.5M	 can be achieved
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Fig. 8 Tidal deformability Λ of nucleonic models DDLS30, DDLS50,
and DDLS70. Current constraint, inferred from GW170817 event, sets
an upper limit on tidal deformability for an 1.4M	 mass star Λ1.4 <

800. Data taken from Ref. [14]

in the case of maximally fast (Keplerian) rotation, but their
values of Qsat are much larger than those considered here.
It was concluded that the GW190814 event is likely to be
a low-mass black hole rather than a supramassive neutron
star. Here we confirm the conclusion reached earlier that
hyperonization precludes highly massive hypernuclear stars.
The lower panel of Fig. 7 also shows two additional candi-
dates for the mass-gap objects: the GW230529 event where
the more massive object has an inferred mass in the range
2.5 ≤ M/M	 ≤ 4.5 [63] and PSRJ0514-4002E with the
mass range of the primary 2.09 ≤ M/M	 ≤ 2.71 [64], the
heavy member in the GW230529 event (light green), and
the heavy companion of PSR J0514-4002E (violet). Since
the lower limit for GW230529 coincides with errors with
the GW190814, our conclusions apply to this object as well.
The lower limit on the mass of the companion of PSRJ0514-
4002E allows for a hypernuclear neutron star even without
rotation.

In addition to the constraints on the mass-radius diagram,
the dimensionless tidal deformability Λ inference for the
GW170817 offers an additional constraint on the EoS of
dense matter. For the nucleonic models adopted here, the
deformabilities were computed in Ref. [14] and are shown in
Fig. 8. The GW170817 event sets an upper limit on tidal
deformability Λ1.4 < 800 for an 1.4M	 star [61]. The
deformability computed for the present models exceeds this
limit for M ≤ 1.39M	 in the case of DDLS70 model,
M ≤ 1.34M	 for DDLS50 model and M ≤ 1.30M	 for the
DDLS30 model, i.e., for current models the tidal deformabil-
ity of a 1.4M	 mass star is consistent with the bound above.
The hyperonic sequences branch off from the nucleonic ones
when the mass is above M � 1.6M	 - the upper range of the
mass of one of the stars involved in GW170817. Therefore,
constraints on hyperonic sequences are the same as for the

nucleonic ones. Nevertheless, we note that hyperonic models
are softer than their nucleonic counterparts and consequently
their deformabilities are smaller than the nucleonic ones for
stars that have central densities above the hyperon onset, i.e.
a high enough mass, see e.g. Ref. [76] for more details.

5 Comparison with previous work

We complement now the discussion of our results with a brief
comparison of the models used in this work with those that
exist in the literature and are available on CompOSE reposi-
tory. Our focus is on the general-purpose EoS, i.e., those that
cover the density-temperature and electron fraction parame-
ter space. In addition, we will restrict our discussion to those
models that include hyperons and at the same time allow for
a cold maximum TOV mass above the current observational
lower limit M � 2M	. These restrictions reduce the number
of alternatives further.

In general, differences among various models within the
hyperonic sector become more pronounced at low tempera-
tures and higher densities, rather than in dilute and hot matter
because they arise mainly from the modeling of the interac-
tions. Furthermore, the model uncertainties present in the
purely nucleonic sector propagate in the hyperonic sector
through the mutual dependence of the baryon octet chem-
ical potentials imposed by baryon conservation and charge
neutrality. To give an example, we note that a small magni-
tude of the symmetry energy of nucleonic matter disfavors
hyperons [9]. As mentioned above, the requirement that the
maximum mass of a cold hypernuclear star be larger than
the observational limit 2M	, favors nucleonic models with
hard EoS and hyperonic interactions that become sufficiently
repulsive at high densities. These features have been dis-
cussed extensively in the context of the “hyperon puzzle”,
for reviews see [5,82].

Let us start our discussion with the nucleonic parametriza-
tions that have been used as a basis for extensions to the
hypernuclear sector. We list their nuclear characteristics in
Table 3. They can be divided into several classes.

1. CDFs with density-dependent couplings. References [8–
10,71] developed models based on the DD2 [55] parameter-
ization and their extension to the hypernuclear sector includ-
ing the full baryon octet; some of the models include also �-
resonances [10,71]. The hypernuclear models of Refs. [83]
based on the same parametrization include Λ hyperons only.
The nucleonic DD2 model [55] predicts a moderate value of
the slope of the symmetry energy Lsym = 55 MeV and stan-
dard values of the remaining characteristics of nuclear matter.
Among our models, the DDLS(50) model thus has a similar
value Lsym = 50 MeV. However, there are stronger varia-
tions in the values of Qsat, specifically Qsat = 479.22 MeV
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Table 3 Nuclear characteristics at saturation density of models for
which general-purpose EoS for hypernuclear matter are available on
CompOSE database. Here EB is the binding energy per particle in
symmetrical nuclear matter at saturation density nsat and K is the com-
pressibility. Note that the symmetry energy Esym of models DDLS(30),

DDLS(50) and DDLS(70) is fixed at the crossing-density 0.110 fm−3

to value Esym = 27.09 MeV corresponding to the one predicted by the
DDME2 functional. Consequently, the symmetry energy and its slope
coefficient L at saturation density are changing in a correlated manner

Model nsat −EB K Esym L References
(fm−3) (MeV) (MeV) (MeV) (MeV)

DD2 0.149 16.0 243 31.7 55.0 [55]

DDME2 0.152 16.14 251 32.3 51.3 [77]

DDLS(30) 0.152 16.14 251 30.1 30 [14]

DDLS(50) 0.152 16.14 251 32.2 50 [14]

DDLS(70) 0.152 16.14 251 34.0 70 [14]

QMC 0.156 16.2 292 28.5 54 [78]

CMF 0.150 16.0 300 30.0 88 [79]

SFHo 0.158 16.2 245 31.6 47.1 [80]

FSU2H 0.150 16.28 238 30.2 41.0 [81]

for the DDME2 model [77], Qsat = 169.15 MeV for the DD2
model, and Qsat = 400 MeV in the present work. All mod-
els guarantee that hyperonic stars have masses larger than the
two-solar limit; present models allow to vary Lsym parameter
and explore its influence on various astrophysical scenarios.

2. Quark-meson coupling model. Reference [78] generated
tables for these types of models that include a hyperonic

component; these are labeled in the CompOSE database as
SDGTT(QMC-A). As can be seen from Table 3, the slope of
the symmetry energy is close to the DDLS(50) model. How-
ever, the symmetry energy at saturation is smaller compared
DDLS(50) model and other models discussed above, which
implies that its value at the crossing density of nB = 0.110
fm−3 is likewise smaller than for the rest of the model collec-

Fig. 9 A comparison of hyperon fraction YH as a function of baryon density for various fixed values of temperature T and electron fraction Ye as
predicted by different EoS models. The labelings of various curves are explained in the text
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tion. Another notable difference is that the compressibility
of nuclear matter is by about 20% larger than in the models
used here.

3. Chiral mean-field (CMF) model. This model [labeled in
CompOSE database as DNS(CMF)] is based on a non-linear
realization of the sigma model which includes pseudo-scalar
mesons as the angular parameters for the chiral transforma-
tion [67,79]. This model has large compressibility (which is
comparable to the QMC model) and a value of Lsym which is
by about 25% larger than the value for DDLS(70) model. The
model is characterized by a low-value symmetry energy at
saturation and its steep increase at higher densities. It appears
that the density-dependence of the symmetry energy of the
CMF model differs considerably from other models except
for the QMC model.

4. Non-linear mean-field models. These models are based
on the CDFs with nonlinear meson self-interactions. The
FSU2H parametrization was specifically designed for an
extension to the hypernuclear sector [81], see also its updated
version in Ref. [? ] labeled in the CompOSE database as
KRT(FSU2H*). The alternative SFHo [80] parametrization
was extended to hypernuclear sector in Ref. [9] and is labeled
in the database as OMHN(DD2Y). For both models, the
nuclear parameters are close to their central values; in par-
ticular, the Lsym value is close to the DDLS(50) model used
in this work.

In Fig. 9 we display the total hyperon fraction YH =∑
i Yi , where the index i sums over the hyperons, as a func-

tion of baryon number density for the same temperatures
T = 10 and 80 MeV and electron fractions Ye = 0.1 and
0.4 as in Figs. 5 and 6. As already seen above, there is only a
slight difference in the hyperon content of the three models
based on DDLS(30,50,70) parametrization. The value of YH

is slightly larger for a larger value of Lsym. We anticipate that
the variations of the slope of the symmetry energy at satura-
tion density has little influence on the hyperonic content of
the models which is determined by the physics at higher den-
sities, where the contribution of the ρ-meson responsible for
variations in Lsym is exponentially suppressed, see Eq. (24).
Note also that the magnitude of YH at low temperatures is
dominated by the Λ hyperons independent of the value of the
electron fraction.

At low temperatures, our models and the model BHB(Λφ)
of Ref. [83] predict the largest hyperon fractions which are
nearly identical. Slightly smaller hyperon fractions are pre-
dicted by the models OMHN(DD2Y) of Ref. [8] based on
DD2 parametrization, model KRT(FSU2H*) of Ref. [13]
based on FSU2H* parametrization, and model FOP(SFHoY)
[9] based on SFHo parametrization (maximally about 15%
reduction). This difference does not change with temperature,
as it reflects the differences in the hyperonic parametriza-
tions. At high temperatures, the BHB(Λφ) model result devi-

ates more strongly from the other models as it contains only
Λ hyperons. This underlines the importance of including
hyperon species other than the Λ at high temperatures. The
density range where YH is non-negligible changes with tem-
perature: In the low-temperature regime, it abruptly increases
above the threshold density of hyperons, whereas in the high-
temperature regime it extends to much lower densities. While
all models exhibit these features, the density dependence, and
the magnitude of YH predicted by the DNS(CMF) [67,79]
model and SDGTT(QMC-A) [78] model are markedly dif-
ferent at low temperatures and there are still some qualitative
differences at high temperatures. Our brief review in this sec-
tion highlights the necessity of a more detailed comparison of
the predictions of the modern CDF models in the hyperonic
sector. Uncovering the origin of the discrepancies among the
CDFs remain an interesting task for the future.

6 Conclusions

In this work, we have computed the EoS and composition
of finite temperature nucleonic and hypernuclear matter on
three-dimensional grids of temperatures, densities, and elec-
tron fractions that are required by input tables for simulations
of CCSN and BNS mergers. The homogeneous matter was
computed down to 0.5nsat and the extension to lower den-
sities was done by matching to the low-density HS(DD2)
model. The high-density EoS is based on the DDLS family
of parametrizations [14] which allow (in general) variations
of the slope of the symmetry energy Lsym and skewness Qsat;
we have chosen to work with Qsat = 400 MeV which guar-
antees that the values of maximum masses of hypernuclear
stars are above the two solar mass lower bound and changed
the value of Lsym = 30, 50 and 70 MeV. The range of Lsym

has been chosen to allow for the current uncertainties in this
quantity associated with the measurements of neutron skin
experiments as well as radii of neutron stars. Thus, our col-
lection of EoS, among other things, allows one to study the
effects of varying the symmetry energy in dynamical tran-
sients such as supernova explosions and BNS mergers. The
six EoS and composition tables that were generated are avail-
able on the CompOSE database.
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