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Abstract Motivated by the growing interest in the appli-
cations of quantum information science in astrophysical set-
tings, especially for the neutrino transport in compact objects
where three-flavors of neutrinos need to be mapped on qutrits,
we review properties of one- and two-qudit systems. We con-
trast two-qubit and two-qudit systems by pointing out how
some of the properties of two-qubit systems generalize to
higher dimensions and explore emerging new properties for
dimensions three or higher. One example is provided by the
Werner states: when the density operator is written in the fun-
damental representation, we show that only two-qubit Werner
states can be pure states, but not two-qudit Werner states
when the qudit dimension is larger than two.

1 Introduction

There is progressively increasing interest in using the tools
of quantum information science and quantum computing in
high energy [1] and nuclear [2] physics, including the physics
and astrophysics of neutrinos [3] (Some specific examples
include Refs. [4–8] for high energy and Ref. [9] for nuclear
physics). Of particular interest is simulating the neutrino
transport in core-collapse supernovae and neutron-star merg-
ers where the very large number of neutrinos present make
a full many-body calculation impossible on classical com-
puters. For those cases quantum computing is likely to be
the appropriate approach. If we assume that it is sufficient to
consider only two neutrino flavors, an assumption which can
only be justified in a limited number of special cases, one
can map those two flavors onto the two states of a qubit. Pre-
liminary analyses of the so-called collective neutrino oscilla-
tions (where coherent forward neutrino-neutrino interactions
can no longer be ignored) have indeed been carried out on
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the noisy intermediate-scale quantum devices utilizing qubits
[10–18]. Preliminary attempts to address collective neutrino
oscillations with three flavors on quantum computers exist
[3,19,20]. One purpose of this paper is to lay out the for-
mal framework for the systematic study of three-flavor case.
Since there are already many references to multiqudit sys-
tems in the literature [4–9,21–26] the current paper should
be viewed as complementary to those studies. We also refer
to several excellent textbooks for more detailed information
on Lie algebras and Lie groups [27,28].

An immediate question is choosing an appropriate
parametrization for the density matrix [29]. Three possible
bases are the generalized Gell–Mann matrix basis, the polar-
ization operator basis and the Weyl operator basis. In this
paper we choose the Gell–Mann matrix basis, the procedures
for converting into other bases are available in the literature
[25].

This paper is organized as follows. In the Sect. 2 we estab-
lish our notation by introducing properties of density matri-
ces, entanglement entropy, and connection to the elemen-
tary symmetric polynomials (Sect. 2.1). In the same section
we work out qutrit properties as a non-trivial example of
qudits beyond qubits (Sect. 2.2). The Sect. 3 is devoted to the
two-qudit systems. We first summarize several results scat-
tered through the literature for two-qubit systems and then
list some results previously not commented on in the litera-
ture (Sect. 3.1). Subsequently, we explore two-qudit systems,
point out how the properties of two-qubit systems general-
ize to higher dimensions and also comment on the emerging
new properties for dimensions three or higher (Sect. 3). We
conclude and discuss the main points presented in the work
in Sect. 4.

In the appendices we list the properties of the symmetric
polynomials of the characteristic equation in Appendix A,
we outline the connection between fundamental and adjoint
representations of SU(N) in Appendix B, and we show the
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relations between Gell–Mann matrices and direct products
of Pauli matrices for SU(4) in Appendix C.

2 Multilevel systems and qudits

In this section, we first describe the formalism used to treat
multilevel systems and expand on some of the qudits proper-
ties in Sect. 2.1. Following, in Sect. 2.2 we discus the impli-
cations of those properties on the single qutrit example.

2.1 Properties of qudits

The density matrix for a given N level system or a qudit
can be written in various bases. In the basis of generalized
Gell–Mann matrices λa we can write this density operator as

ρ = 1

N
(1 + λa Pa), (1)

where 1 is the N × N unit matrix and Pa is a component
of a real vector with N 2 − 1 entries sitting in the adjoint
representation of the SU(N) group. The generalized Gell–
Mann matrices are Hermitian and they satisfy the equation

λaλb = 2

N
δab1 + (dabc + i fabc) λc. (2)

In the above equation fabc are the structure constants of the
SU(N) algebra,

[λa, λb] = 2i fabcλc, (3)

and dabc is a basis-dependent tensor which is completely
symmetric under exchange of its indices. It is given as

dabc = 1

4
Tr ({λa, λb}λc). (4)

All dabc vanish for SU(2).

2.1.1 Properties of the density matrix

A density matrix should satisfy four conditions:

i. It is Hermitian,
ii. Its trace is one,

iii. It is positive semi-definite (i.e., all its eigenvalues should
be positive or zero),

iv. ρ2 ≤ ρ.

Mathematically the fourth condition is not an independent
one, but it often provides a useful check of consistency. The
density matrix in Eq. (1) satisfies the first two conditions by
construction. The third condition implies that only certain
values of Pa are permissible. One way to ensure that the den-
sity matrix is positive semidefinite is to show that elementary

symmetric polynomials formed from its eigenvalues are non-
negative (for a proof, see, e.g., Ref. [30]). There are only N
such non-zero polynomials for an N × N matrix and they
can be calculated by evaluating the traces of the powers of ρ.
We list the properties of these polynomials in Appendix A.

The density matrix in Eq. (1) can represent either a pure
state or a mixed state. For a pure state it should satisfy the
additional condition ρ2 = ρ and for a mixed state ρ2 < ρ.
Imposing the pure-state condition ρ2 = ρ one gets

|P|2 = N (N − 1)

2
, (5)

and(
1 − 2

N

)
Pa = 1

N
dbca PbPc. (6)

Hence the norm squared of the vector P could lie on a N 2−1-
dimensional hypersphere,1 but not all points on that hyper-
sphere correspond to a pure state because of the Eq. (6). Note
that multiplying Eq. (6) with N Pa and summing over a we
then get

Q = dbca PbPcPa = N (N − 1)(N − 2)

2
, (7)

for a pure state.
Clearly for a pure state the condition ρ = ρk , where k

is an arbitrary integer, implies that ρ is a positive semidef-
inite matrix. Indeed inserting this condition into Eqs. (69)
through (74) and using Tr ρ = 1 we see that all the ele-
mentary symmetric polynomials of the eigenvalues of such
a density matrix are non-negative. Even when a state is not
pure, its positive semidefiniteness implies that Tr ρk ≥ 0
for all k. Positivity of the elementary symmetric polynomi-
als of the eigenvalues of the density matrix has a physical
interpretation. The positivity of e2 of Eq. (70) implies

e2 ≥ 0 ⇒ Trρ2 ≤ 1. (8)

It can be shown that positivity of ek implies Trρk ≤ 1, with
equality for only pure states. For example for e3 this can
be seen by setting Trρ2 = 1 − ε with 0 ≤ ε ≤ 1 and
Trρ3 = 1 − δ. Equation (71) then yields

ε ≥ 2

3
δ, (9)

implying that Trρ3 ≤ 1.

2.1.2 Entanglement entropy

The entanglement entropy is given by

S = −Tr ρ log ρ. (10)

1 Some authors in the literature rescale P so that |P|2 is always one.
We keep the N (N − 1)/2 factor to emphasize its scaling with N .
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It vanishes for a pure state. The characteristic equation for a
k × k density matrix is

ek − ek−1ρ + ek−2ρ
2 − · · · (+ or −)ρk = 0, (11)

implying that the eigenvalues of the density matrix and hence
the entanglement entropy can be written as functions of the
elementary symmetric polynomials of the eigenvalues of the
density matrix. We calculate the first few to illustrate the
duality to the Casimir operators of the SU(N). We have

e2 = N − 1

2N
− 1

N 2 |P|2, (12)

e3 = (N − 1)(N − 2)

6N 2 − N − 2

N 3 |P|2 + 2

3N 3 Q, (13)

e4 = (N − 1)(N − 2)(N − 3)

24N 3 − (N − 2)(N − 3)

2N 4 |P|2

+2(N − 3)

3N 4 Q (14)

+ 1

2N 4 |P|4 − 1

2N 4

(
2

N
|P|4 + qaqa

)
(15)

In the equations above we defined

qa = dabc PbPc, (16)

and Q is given by Eq. (7). Hence the entanglement entropy
depends on the quantities Pa Pa, Q = dabc Pa PbPc, dabc
dae f PbPcPePf , . . ., which are dual to the SU(N) Casimir
operators FaFa, dabcFaFbFc, dabcdae f FbFcFeF f , . . .where
Fa are elements of the SU(N) algebra.

We next consider transformations of the density matrix in
Eq. (1) under the SU(N) transformations:

ρ → ρ′ = UρU †. (17)

Since the density matrix is written in terms of the fundamental
representation of the SU(N) algebra,U in the above equation
is in the fundamental representation of the SU(N) group.
Note that this transformation leaves the entanglement entropy
invariant. Using Eq. (76) of Appendix B in Eq. (17) we get

UρU † = 1

N
(1 + Rki Piλk), (18)

or

Pi → P ′
i = Ri j Pj . (19)

In these equations Ri j are the matrix elements of the adjoint
representation of SU(N) (see Appendix B). The Eq. (79)
implies

Pi Pi = P ′
j P

′
j . (20)

Similarly Eq. (82) implies

di jk Pi Pj Pk = dabc P
′
a P

′
b P

′
c. (21)

Continuing in this fashion one can show that all the quantities
entanglement entropy depends on remain unchanged under

SU(N) transformations. Here we provided the proof when the
density matrix is written in the fundamental representation
of SU(N), the subject of this review. It is straightforward to
generalize this proof to any representation.

2.2 Example: single qutrit

For a single qutrit we first consider the matrix A = λa Pa
where λa are the SU(3) Gell–Mann matrices:

ρ = 1

3
(1 + A). (22)

Although the positive definiteness condition is automati-
cally satisfied for the single-qubit density matrices, that is
no longer the case for qudits of dimension N for N ≥ 3 [31].
As mentioned above, the elementary symmetric polynomials
of the eigenvalues of the traces of first three powers of these
density matrices should be non-negative, see discussion in
Sect. 2.1.1. The conditions that the SU(3) invariants satisfy
for a single qutrit are

|P|2 ≤ 3, (23a)
2

3
Q ≥ |P|2 − 1. (23b)

However these inequalities do not completely specify the
necessary restrictions since all positive values can be real-
ized. It is also necessary to examine the roots of the charac-
teristic equation [31].

It is faster to examine the characteristic equation for the
matrix A only. We have

Tr A = 0,

Tr A2 = 2|P|2,
and

Tr A3 = 2Q.

Hence the characteristic equation for the matrix A is

x3 − |P|2x − 2

3
Q = 0, (24)

i.e., the entanglement entropy depends only on |P| and Q.
As mentioned before, the density matrix should be positive
semidefinite. This requires all roots of this equation to be real
and take values so that (1 + xi ) are positive. If all the xi are
real then the discriminant Eq. (24) is positive:

− 4(−|P|6) − 27
4

9
Q2 > 0, (25)

or

3
Q2

|P|6 < 1. (26)
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Fig. 1 Shaded area: allowed values of Q and |P| for a qutrit imposing
the positivity conditions. The dot-dashed line represents the condition
given in Eq. (23b) and solid and dashed lines represent the conditions
given in Eq. (27). Note that the upper right corner of the figure corre-
sponds to a pure state

This suggests that

− 1 ≤ √
3

Q

|P|3 ≤ +1, (27)

so that it can be written as trigonometric functions. The roots
of the characteristic equation are given by

x1 = 2| �P|√
3

[
−1

2
cos

(χ

3

)
−

√
3

2
sin

(χ

3

)]
, (28a)

x2 = 2| �P|√
3

[
−1

2
cos

(χ

3

)
+

√
3

2
sin

(χ

3

)]
, (28b)

x3 = 2| �P|√
3

cos
(χ

3

)
, (28c)

where

cos χ = √
3

Q

|P|3 . (29)

Clearly not all values in the range given in Eq. (27) yield
positive definite eigenvalues of the density matrix (see also
Ref. [32]). The conditions given in Eq. (23b) also need to be
satisfied. The allowed values of Q and |P| are displayed in
Fig. 1. It is apparent from the graph that, unlike |P|2, Q can
take negative values.

3 Two-qudit systems

In this section, we examine the properties of two-qubit
(Sect. 3.1) and two-qudit systems (Sect. 3.2). We specifi-
cally comment on how the properties inherent to two-qubit

systems extend to higher dimensions and which properties
emerge only in dimension three or higher.

3.1 Two-qubits

Study of interacting a couple of two-level systems have a long
history, for an earlier review see, e.g., Ref. [33]. In general
density matrices for one qudit with N = 4 or a system of two
qubits can be written using SU(4) generators. In the previous
section we used the Gell–Mann (or generalized Gell–Mann)
representation of these generators. (For a description of dif-
ferent bases for SU(N) and the procedure to write down gen-
eralized Gell–Mann matrices see e.g. Ref. [25]). Especially
for two qubit systems, either non-interacting (pure) or inter-
acting (mixed), it is physically more transparent to write the
SU(4) generators in terms of Pauli matrices. (The relation
between Gell–Mann matrices and direct products of Pauli
matrices forming the SU(4) basis is given in Appendix C).
The two-qubit density matrix then takes the form

ρ2q = 1

4
[(1 ⊗ 1) + (σi ⊗ 1)xi + (1 ⊗ σi )yi

+(σi ⊗ σ j )ωi j
]

(30)

Here xi and yi are three-vectors and ωi j is a 3 × 3 real
matrix. If this density matrix is not describing a pure state
xi , yi , and ωi j need to satisfy further conditions we give at
the end of this subsection.

We next quantify the condition for this density matrix to
represent a pure state. We first calculate

ρ2
2q = 1

16

{
(1 ⊗ 1)(1 + |x|2 + |y|2 + ωi jωi j )

+(σi ⊗ 1)(2xi + 2ωi j y j ) + (1 ⊗ σi )(2yi + 2x jω j i )

+ (σi ⊗ σ j )
[
2ωi j + xi y j − δi j

(
(Tr ω)2 − Tr ω2

)

+2ω j iTr ω − 2(ω2) j i

]}
. (31)

To satisfy the pure state condition ρ2 = ρ we need

1 + |x|2 + |y|2 + ωi jωi j = 4, (32)

xi = ωi j y j , (33)

yi = x jω j i , (34)

ωi j = xi y j − 1

2
δi j

[
(Tr ω)2 − Tr ω2

]

+ω j i (Tr ω) − (ω2) j i . (35)

Taking the trace of Eq. (35) one obtains

Tr ω = x · y − 1

2

[
(Tr ω)2 − Tr ω2

]
, (36)

i.e., Eq. (36) provides the relationship between first two ele-
mentary symmetric functions of eigenvalues of the matrix
ω. Multiplying Eq. (33) with xi , summing over i and using
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Eq. (34) we see that

xi xi = xiωi j y j = y j y j ⇒ |x|2 = |y|2. (37)

Multiplying Eq. (35) with ωT we get

(ωωT )ik = xi xk − ωki

2

[
(Tr ω)2 − Tr ω2

]

+(ω2)ki (Tr ω) − (ω3)ki , (38)

where we used Eq. (33) in rewriting the first term in the right
side of the equation. Taking the trace of both sides we obtain

Tr (ωωT ) = |x|2 − 1

2
(Tr ω)

[
(Tr ω)2 − Tr ω2

]

+(Tr ω2)(Tr ω) − Tr ω3. (39)

Using the relations between power sums and elementary
symmetric polynomials given in the Eqs. (67)–(68) in
Appendix A and that e3 = det ω we see that

Tr (ωωT ) = |x|2 − 3e3 = |x|2 − 3 det ω. (40)

Substituting Eqs. (37) and (40) into Eq. (32) we get that

|x|2 = |y|2 = 1 + det ω, (41)

i.e., for a physical state det ω ≤ 0 (zero for a pure state). Next
consider the Cayley–Hamilton theorem which states that the
matrix ω satisfies its characteristic polynomial:

ω3 − ω2e1 + ωe2 − 1e3 = 0, (42)

where e1 = Tr(ω) and e2 = 1/2(Tr (ω))2 − 1/2Tr(ω2).
Defining the matrix

Zi j = −1

2
δi j

[
(Tr ω)2 − Tr ω2

]
+ ω j i (Tr ω) − (ω2) j i ,

(43)

we see that

ZT = −1e2 + ωe1 − ω2. (44)

Multiplying this equation with ω we obtain

ωZT = −ωe2 + ω2e1 − ω3. (45)

Comparing this with Eq. (42) we finally obtain

ωZT = − det ω 1 ⇒ ZT = − det ω ω−1. (46)

In other words −ZT is the adjugate matrix of ω. Note that
Eq. (35) can be written as

ωi j = xi y j + Zi j . (47)

If Eq. (30) were to describe two unentangled qubits ωi j would
be xi y j . Hence a non-zero Z quantifies the entanglement
between the two qubits we are considering. Z is a null matrix
only when det ω = 0. Indeed Eq. (41) shows that in that case
the two qubits are unentangled (|x|2 = |y|2 = 1).

If the density matrix in Eq. (30) represents a pure state
the conditions given in Eqs. (32)–(35) are sufficient for it to

be positive semi-definite. But if it represents a state which is
not pure, then the elementary symmetric polynomials of the
eigenvalues of the traces of first four powers of this density
matrix should be less than one and non-negative. The first
one, Tr ρ, is positive by construction. The conditions other
three need to satisfy can be calculated using the expressions
in Appendix A. We get

|x|2 + |y|2 + ωi jωi j ≤ 3, (48a)

|x|2 + |y|2 + ωi jωi j ≤ 1

9
+ 2(xiωi j x j − det ω), (48b)

1 − 2(|x|2 + |y|2 + ωi jωi j ) + (|x|2 + |y|2 + ωi jωi j )
2

+8(xiωi j x j − det ω) − 4xi (ωωT )i j x j

−4yi (ω
Tω)i j y j − 4(|x|2|y|2 + 2yi Zi j x j + Zi j Zi j ) ≥ 0,

(48c)

where the matrix Z is given by Eq. (46). In Eqs. (48) the
equality sign holds only when the state in Eq. (30) is a pure
state.

3.2 Two qudits

For a system of two dimension-N qudits one can write the
density matrix in terms of the generators of the SU(N2) alge-
bra expressed as direct products of the generators of the
SU(N) algebra:

ρ2q = 1

N 2 [(1 ⊗ 1) + (λi ⊗ 1)xi + (1 ⊗ λi )yi

+(λi ⊗ λ j )ωi j ]. (49)

If we want the density matrix in Eq. (49) to represent a pure
state, imposing ρ = ρ2, we get four conditions:

N 2 = 1 + 2

N
(|x|2 + |y|2) + 4

N 2 ωi jωi j ,

(50a)

(N 2 − 2)xi = dkji xk x j + 4

N
y jωi j + 2

N
dmkiωmlωkl ,

(50b)

(N 2 − 2)yi = dkji yk y j + 4

N
x jω j i + 2

N
dmkiωlmωlk,

(50c)

(N 2 − 2)ωi j = 2xi y j + 2dkli xkωl j + 2dkl j ykωil + Ci j ,

(50d)

where

Ci j = ωmnωkl
(
dnl j dmki − fnl j fmki

)
. (50e)

Defining zi = dimkωmk and using the SU(N) identity [34]

fmki fnli = 2

N
(δmnδkl − δmlδkn) + dmnidkli − dkni dmli ,

(51)
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Equation (50d) yields

(N 2 − 2)Tr ω = 2x · y + 2(x + y) · z
+1

2
dimkdinl(ω + ωT )mn(ω + ωT )kl

− 2

N

(
(Tr ω)2 − Tr ω2

)
− z2. (52)

Equation (52) generalizes Eq. (36) from qubits to qudits.
Taking partial traces of the density matrix in Eq. (49) we

obtain the reduced density matrices for each qubit:

ρ1 = Tr2ρ = 1

N
(1 + λi xi ), (53a)

ρ2 = Tr1ρ = 1

N
(1 + λi yi ). (53b)

These reduced density matrices should each be also positive
semidefinite. This brings additional conditions. (For qutrits
we explicitly discussed these conditions in Sect. 2.2).

Note that the Eqs. (50a) through (50d) and Eq. (52) are
invariant under the simultaneous transformations xi ↔ yi
and ω ↔ ωT . Using Eqs. (5) and (6) it is also straightforward
to show that tensor product of two pure states, i.e, ωi j = xi y j ,
satisfies these equations.

A Werner state corresponds to a density matrix repre-
senting a bipartite system which remains invariant under the
transformation by all the unitary operators in the formU⊗U
[35]:

ρ = (U ⊗U )ρ(U † ⊗U †). (54)

For two dimension-N qudit density matrix in Eq. (49) to be
Werner state density matrixU in Eq. (54) should be the most
general SU(N) transformation. We get

ρ2q = (U ⊗U )ρ2q(U
† ⊗U †)

= 1

N 2

[
(1 ⊗ 1) + (UλiU

† ⊗ 1)xi + (1 ⊗UλiU
†)yi

+(UλiU
† ⊗Uλ jU

†)ωi j

]
. (55)

Using Eq. (76) of Appendix B one can get the conditions

Ri j xi = x j , Ri j yi = y j , (56a)

ωnm = RT
niωi j R jm, (56b)

for the equality in Eq. (55) to be satisfied. For the conditions
in these equations to be valid for any adjoint representation
of SU(N) group element one needs

xi = 0 = yi , ωi j = αδi j ∀ i, j, (57)

where α is a real number to be determined. (The condition
on the ω matrix follows from the Schur’s lemma).

For a pure Werner state, using the SU(N) property∑
j di j j = 0 [34], it follows that Eqs. (50b) and 50c are

readily satisfied for the values in Eq. (57). Using Tr ωωT =

α2(N 2 − 1) Eq. (50a) determines the value of α to be

α2 = N 2

4
. (58)

For a pure Werner state Eq. (50d) also need to be satisfied,
i.e. the equation

(N 2 − 2)αδi j = α2δmnδkl
(
dnl j dmki − fnl j fmki

)
, (59)

also needs to hold. Using the SU(N) relations [34]

fi jk fi jn = Nδkn, (60)

and

di jkdi jn =
(
N 2 − 4

N

)
δkn, (61)

Equation (59) determines α to be

α = −N (N 2 − 2)

4
. (62)

Equations (58) and (62) are consistent only for N = 2. Indeed
for two qubits the Werner state can be written either as

ρ = 1

4

[
(1 ⊗ 1) − α

3∑
i=1

(σi ⊗ σi )

]
, (63)

or as

ρ = −α|
−〉〈
−| + 1 + α

4
(1 ⊗ 1), (64)

where |
−〉 = (|01〉 − |10〉)/√2 is a Bell state. Clearly a
pure Werner state is only possible for α = −1 as given by
Eq. (62) for N = 2.

For mixed two-qudit Werner states the positive semi-
definiteness condition of the density matrix requires the ele-
mentary symmetric functions given in Appendix A to be all
positive. For example the condition e2 ≥ 0, equivalent to the
condition Trρ2 < 1 (cf. Eq. 8), we obtain the possible ranges
of α to be bounded as

− N

2
< α < +N

2
. (65)

It is important to emphasize that this is a necessary, but not a
sufficient condition. Similarly the requirement e3 ≥ 0 gives
the condition[

(N 2 − 2) − 12(N 2 − 2)
( α

N

)2 − 32
( α

N

)3
]

≥ 0, (66)

which is again necessary, but not sufficient. For two dimension-
N qudits the elementary symmetric functions e2, e3, . . . , eN2

should all be non-negative. See also Refs. [36–39] for more
discussion of this topic.
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4 Conclusions

The growing field of quantum information science opens up
opportunities to study many-body problems in astrophysics.
Of particular interest are the neutrino-neutrino interactions
in compact objects as that is the only place, except the Early
Universe, where neutrino densities are large enough to permit
efficiently such interactions.

In this work, we summarized our findings on properties
of two-qubit systems and extend the treatment to two-qudit
systems. In generalizing the two-qubit systems to higher
dimensions, we point out the emergence of new properties
for dimensions three or higher. In particular we showed that
there is no pure Werner state, written in the fundamental rep-
resentation of SU(N), beyond two qubits. As far as we know
this was not noted in the literature before.
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A Symmetric polynomials

The characteristic equation of any matrix M with eigenval-
ues xi can be written as

N∏
i=1

(x − xi ) =
N∑

k=1

(−1)k x N−kek = 0 (67)

where ek are the elementary symmetric polynomials of the
eigenvalues xi . The elementary symmetric polynomials can
in turn be expressed in terms of power sums, pk = ∑

i x
k
i .

via the equality

∑
k

ek x
k = exp

(∑
k

(−1)k+1

k
pkx

k

)
. (68)

Note that pk = Tr (Mk).
From the expressions above first few elementary symmet-

ric functions of the density matrix is given as (using Trρ = 1)

e1 = Tr ρ = 1, (69)

e2 = 1

2
− 1

2
Tr ρ2, (70)

e3 = 1

6
− 1

2
(Tr ρ2) + 1

3
(Tr ρ3), (71)

e4 = 1

24

(
1 − 6 Tr ρ2 + 3 (Tr ρ2)2

+8 Tr ρ3 − 6 Tr ρ4
)

,

(72)

e5 = 1

120

(
1 − 10 Trρ2 + 15(Tr ρ2)2 + 20 Tr ρ3

−20(Tr ρ2)(Tr ρ3) − 30 Trρ4 + 24 Trρ5
)

(73)

e6 = 1

6!
(

1 − 15 Tr ρ2 + 45(Tr ρ2)2

−15(Tr ρ2)340 Tr ρ3 − 120(Tr ρ2)(Tr ρ3)

+40 (Tr ρ3)2 − 90 Tr ρ4 + 144 Tr ρ5 − 120 Tr ρ6
)

(74)

For an N × N matrix ek = 0 for k > N . Finally for the
density matrix ρ = (1 + A)/N we have

Trρk = 1

Nk

k∑
m=0

k!
m!(k − m)!Tr Am . (75)

B Connection between fundamental and adjoint
representations of SU(N)

Consider a transformation of the extended Gell–Mann matri-
ces under the transformation of the SU(N) group, Uλ jU †.
The result is a traceless, Hermitian matrix and as such it can
be written as a linear combination of the extended Gell–Mann
matrices:

Uλ jU
† = Rkjλk, (76)

where Rkj are real numbers. Starting with this equation it is
easy to show that the matrices R transform like the elements
of a group. Indeed they are the elements of the (N 2 − 1)-
dimensional adjoint representation of the SU(N) group. They
represent the SU(N) subgroup of the SO(N2 − 1) group. The
results we outline below were derived for SU(3) in Ref. [40].
Here we present their generalization to SU(N).

Multiplying Eq. (76) with itself we can write

Uλ jU
†UλpU

† = Rkjλk Rqpλq . (77)

Rewriting the product of two lambda matrices we get

2

N
δ j p + (i f j pz + d jpz)UλzU

†

=
[

2

N
δkq + (i fkqt + dkqt )λt

]
Rkj Rqp. (78)

Taking the trace of the above equation one obtains

RT R = 1. (79)
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First removing the terms proportional to the identity matrix
in Eq. (78), second using Eq. (76) on the left side, third mul-
tiplying both sides with the same lambda matrix and finally
taking the trace we get

(i f j pz + d jpz)Rlz = (i fkql + dkql)Rkj Rqp. (80)

Using the orthogonality of the R matrices and separating the
real and imaginary parts of this equation we then obtain

fkql Rk j Rqp Rlm = f j pm, (81)

dkql Rk j Rqp Rlm = d jpm . (82)

C The relation between Gell–Mann matrices and direct
products of Pauli matrices for SU(4)

�12
s =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ = 1

2
(σ3 ⊗ σ1 + 1 ⊗ σ1) (83)

�34
s =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ = 1

2
(1 ⊗ σ1 − σ3 ⊗ σ1) (84)

�13
s =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ = 1

2
(σ1 ⊗ 1 + σ1 ⊗ σ3) (85)

�24
s =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠ = 1

2
(σ1 ⊗ 1 − σ1 ⊗ σ3) (86)

�14
s =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ = 1

2
(σ1 ⊗ σ1 − σ2 ⊗ σ2) (87)

�23
s =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ = 1

2
(σ1 ⊗ σ1 + σ2 ⊗ σ2) (88)

�12
a =

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ = 1

2
(1 ⊗ σ2 + σ3 ⊗ σ2) (89)

�34
a =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎠ = 1

2
(1 ⊗ σ2 − σ3 ⊗ σ2) (90)

�13
a =

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞
⎟⎟⎠ = 1

2
(σ2 ⊗ 1 + σ2 ⊗ σ3) (91)

�24
a =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞
⎟⎟⎠ = 1

2
(σ2 ⊗ 1 − σ2 ⊗ σ3) (92)

�14
a =

⎛
⎜⎜⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞
⎟⎟⎠ = 1

2
(σ1 ⊗ σ2 + σ2 ⊗ σ1)

(93)

�23
a =

⎛
⎜⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎟⎠ = 1

2
(σ2 ⊗ σ1 − σ1 ⊗ σ2)

(94)

�1 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ = 1

2
(1 ⊗ σ3 + σ3 ⊗ σ3)

(95)

�2 = 1√
3

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎟⎠

= 1√
3

[
σ3 ⊗ 1 + 1

2
(σ3 ⊗ σ3 − 1 ⊗ σ3)

]
(96)

�3 = 1√
6

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞
⎟⎟⎠

= 1√
6

(σ3 ⊗ 1 − σ3 ⊗ σ3 + 1 ⊗ σ3) (97)
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