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Abstract Level density ρ(E, N , Z) is calculated for the
two-component close- and open-shell nuclei with a given
energy E , and neutron N and proton Z numbers, taking into
account pairing effects within the microscopic-macroscopic
approach (MMA). These analytical calculations have been
carried out by using semiclassical statistical mean-field
approximations beyond the saddle-point method of the Fermi
gas model in a low excitation-energies range. The level den-
sity ρ, obtained as function of the system entropy S, depends
essentially on the condensation energy Econd through the
excitation energyU in super-fluid nuclei. The simplest super-
fluid approach, based on the BCS theory, accounts for a
smooth temperature dependence of the pairing gap � due
to particle number fluctuations. Taking into account the pair-
ing effects in magic or semi-magic nuclei, excited below
neutron resonances, one finds a notable pairing phase tran-
sition. Pairing correlations sometimes improve significantly
the comparison with experimental data.

1 Introduction

Many properties of heavy nuclei can be described in terms
of the level density [1–16]. In close relation to the statisti-
cal level density [4,6], this article is devoted to the mem-
ory of Professor Peter Schuck, in particular, to his fruitful
ideas of the semiclassical pairing treatment in nuclear physics
and associated areas [17–32]. The level density ρ(E, N , Z),
where E , N and Z are the energy, neutron and proton num-
bers, respectively, is given by the inverse Laplace trans-
formation of the partition function Z(β,α) [1]. Within the
grand canonical ensemble, the standard saddle-point method

a e-mail: magner@kinr.kiev.ua (corresponding author)

(SPM) is used for integration over all Lagrangian multipliers,
β for the energy E and α = {αn, αp} for neutron N and pro-
ton Z numbers [1,2]. This method assumes large excitation
energies U , so that the temperature T is related to a well-
determined saddle point β∗ in the integration variable β for
a finite Fermi system of large neutron and proton numbers
in a nucleus, T = 1/β∗. However, data from many experi-
ments for energy levels and spins also exist for low excitation
energyU , where such a saddle point does not exist. Moreover,
there is a pairing effect which can be extremely important at
low U . For presentation of experimental data on low-energy
nuclear spectra, the cumulative level-density distribution –
cumulative number of quantum levels below the excitation
energy U – is conveniently often calculated for statistical
analysis of the experimental data on collective excitations
[33]. Therefore, to simplify the calculations of the level den-
sity, ρ(E, N , Z), we carry out [34–39] the integration over
the Lagrange multiplier β in the inverse Laplace transforma-
tion of the partition function Z(β,α) analytically but more
accurately beyond the SPM for small and large shell-structure
contributions [40]. Thus, for the integration over β we will
use approximately the micro-canonical ensemble which does
not assume a temperature and an existence of thermodynamic
equilibrium.

For formulation of the unified microscopic canonical and
macroscopic grand-canonical approximation (MMA) to the
level density [34–39], we found a simple analytical approx-
imation for the level density ρ which satisfies the two well-
known limits. One of them is the Fermi gas asymptote,
ρ ∝ exp(S) for large entropy S [1]. Another limit is the
combinatoric expansion in powers of S for a small entropy
S or excitation energy U ; see Refs. [1,41].

In the calculation of level density at low excitation
energies in nuclei, we will consider the system of inter-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epja/s10050-023-01222-1&domain=pdf
http://orcid.org/0000-0002-7702-7282
mailto:magner@kinr.kiev.ua


6 Page 2 of 11 Eur. Phys. J. A (2024) 60 :6

acting Fermi particles with a macroscopic number A =
N + Z , described by the Hamiltonian of the well-known
nuclear super-fluid model [42,43], taking mainly the simplest
Bardeen-Cooper-Schrieffer (BCS) [44] theory of supercon-
ductivity [5,14,18,45]. This method was used also in the level
density calculations [4,6] for the description of the super-
fluidity properties of nuclei, and for other problems such
as in nuclear astrophysics; see, e.g., Ref. [46]. We should
emphasize the well-known self-consistent method of super-
fluidity calculations, the Hartree-Fock-Bogoliubov (HFB)
theory [18]. Within a mean field approximation, as BCS or
HFB approaches, the pairing gap � depends sharply on the
excitation energyU in the phase transition from a super-fluid
to a normal nuclear state. However, as shown in Ref. [19],
if we take into account also the particle number fluctuations
by using the projected HFB approach, the gap � becomes a
smooth function of temperature T , in contrast to any mean
field models. Smooth behavior of the pairing gap has been
found also and carefully studied by analytical methods asso-
ciated with the extended Thomas-Fermi (ETF) approach, see
Refs. [17,20–24,26]. Therefore, we cannot use the normal-
state properties of the shell closure, in particular, for magic
nuclei like 40Ca, 48Ca, 56Ni, and 208Pb, to deduce that the
pairing transition from a super-fluidity to the normal state
does not exist there. Our present work was partially initiated
also by the recent experimental studies in Ref. [47] in order
to clarify their relation to the super-fluidity in magic nuclei.
Pairing correlation can in fact influences the level density
in magic nuclei, and the question is what are other reasons
for difficulty in its experimental observation in magic nuclei,
see Refs. [18,39]. This question cannot be separated from
the study of the shell structure effects in magic nuclei. Thus,
the qualitative study of reasons for a super-fluidity in magic
nuclei is one of the main purposes under consideration in this
work.

For a deeper understanding of the correspondence between
the classical and the quantum approach and simplifying the
problem for analytical derivations, it is worthwhile to ana-
lyze the shell and pairing effects in the statistically averaged
level density ρ, see Refs. [4,6,34], by using the semiclassi-
cal periodic-orbit (PO) theory (POT) [48–51]. We extended
the MMA approach [34] in Refs. [35–39], for semiclassi-
cal description of the shell and isotopic asymmetry effects
in the level density of complex nuclei. Smooth properties
of the level density as function of the nucleon number A
have been studied within the framework of self-consistent
ETF approach [7,13,52]. However, for instance, the pairing
effects in the statistical MMA level density ρ are still attrac-
tive subjects [4,6,14,15,40]. See also common ideas and a
very intensive recent analytical study of pairing effects within
the semiclassical Wigner-Kirkwood h̄ expansion including
nuclear surface h̄2 corrections; see Refs. [29,32] and refer-
ences therein.

Table 1 Acronyms and their content

Abbreviations Content

SPM Saddle-point method

MMA Micro-macroscopic approach

BCS Bardeen-Cooper-Schrieffer

HFB Hartree-Fock-Bogoliubov

ETF Extended Thomas-Fermi

POT Periodic-orbit theory

LES Low energy states

FG Fermi gas

LMSF Least mean-square fits

ENSDF Evaluated nuclear structure data file

SCM Shell correction method

s.p. single-particle

In the present paper, we will present the expressions of
MMA for the level density ρ(E, N , Z) in Section 2. The
basic formulation of pairing contributions to the MMA level
density is shown in Section 3. Section 4 is devoted to the dis-
cussion of the results. Summary of the work and perspectives
are discussed in Section 5. Some details for the semiclassical
periodic orbit theory are given in Appendix A.

2 Microscopic-macroscopic approach

For the statistical description of level density ρ of a nucleus
in terms of the total energy, E , and the neutron, N , and pro-
ton, Z , numbers, one can begin with the micro-canonical
expression [1,2]:

ρ(E, N , Z) =
∫

dβdα

(2π i)3 exp [S (β,α)] , (1)

where S = lnZ(β,α)+βE−αN, and N = {N , Z} with the
total particle number A = N + Z . The partition function Z
depends on the Lagrange multipliers, β and α = {αn, αp} =
βλ. The neutron and proton chemical potential components
are given by λ = {λn, λp}, where λn = αn/β and λp =
αp/β. The entropy S(β,α) can be expanded in power series
over α for a given β near the saddle point α∗,

S(β,α) = S(β,α∗) +(1/2)
(
∂2S/∂α2

)∗ (
α − α∗)2 + . . . .

(2)

The Lagrange multiplier, α∗, and the chemical potential λ,
are defined in terms of the neutron and proton relatively large
particle numbers N by a saddle-point condition,
(

∂S

∂α

)
α=α∗

≡
(

∂ lnZ
∂α

)
α=α∗

− N = 0 . (3)
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In order to avoid the SPM divergences for the zero exci-
tation energy limit (Table 1), we will integrate over β in
Eq. (1) more accurately using the statistically averaged exci-
tation energyU as a measure of the mean nuclear excitations,
instead of the temperature T . Integrating over α in Eq. (1) by
the standard SPM, using the expansion (2), one obtains

ρ(E, N , Z) ≈ 1

4π2i

∫
dβ βJ −1/2 exp (βU + a/β) , (4)

where U = E − E0 is the excitation energy and E0 is the
total neutron and proton energy background, and a is the
level density parameter. In Eq. (4), J is the Jacobian,

J = J
(

∂	

∂λn
,

∂	

∂λp
; λn, λp

)∗
=

(
∂2	

∂λ2
n

∂2	

∂λ2
p

)∗
, (5)

where 	 is the thermodynamic potential,

	 = lnZ/β . (6)

The asterisk in Eq. (5) indicates the saddle point, Eq. (3), for
the integration over α at any β. We assumed here that the
neutron, λn , and proton, λp, chemical potentials are close to
a mean value λ, and similarly, an ≈ ap ≈ a/2 for the level
density parameter. Then, as shown in Refs. [35,36] (includ-
ing the shell effects), for sufficiently low energies, U , the
Jacobian J , and the exponent in Eq. (4) mainly have a sim-
ple β dependence. Indeed, the thermodynamic potential 	,
Eq. (5), under such small excitation energies takes a simple
form:

	 ≈ 	0 − a

β2 , 	0 = E0 − λA , (7)

where 	0 is the thermodynamical potential background. To
reduce the integral over β in Eq. (4) to the textbooks Laplace
transforms, we use the approximate and rather accurate eval-
uation of the integrand factor, J −1/2, where J is the Jaco-
bian, Eq. (5). According to Eqs. (5) and (7), the Jacobian,
J 1/2, can be written as

J ≈ (1/4)E ′′2
0 (1 + ξ) , ξ = −2a′′/(β2	′′

0), (8)

where the primes denote derivatives of the level density
parameter, a(λ), and background part of the thermodynamic
potential, 	0(λ), Eq. (7), and E0(λ), over the mean chemical
potential λ. The expression (8) for ξ can be evaluated approx-
imately at the saddle point β ∼ β∗ = 1/T = (a/U )1/2 in
the integration over β, Eq. (4), ξ ∼ ξ∗. This estimate can be
used to simplify the Jacobian factor J 1/2 in the integrand of
Eq. (4). It is convenient to relate the value ξ∗ to the energy
shell corrections δE by using the POT expression, Eq. (A5);
see Appendix A and Refs. [48,50],

ξ∗ = − 2a′′

β∗2	′′
0

≈ 8π6U A1/3

3aλ2 Esh ,

Esh = − δE

EETF
A . (9)

Table 2 The Bessel function index ν (second column), the coefficients
ρν (third column) in the basic formula, Eq. (10), for the level density
ρMMA, short notations (fourth column) for different MMA approaches
(1st column); ξ∗ is given by Eq. (9), κ = (π2a′′/3a)1/2

Approach ν ρν notations Criterion

MMA1 2 2πa/3 (i) ξ∗ � 1

MMA2a 3 4πa2/(3κ) (ii) ξ∗ 	 1

MMA2b 3 2
√

6 λa2/3 (ii) ξ∗ 	 1

Here, β∗ is the saddle-point value of β mentioned above, and
EETF is the ETF energy component, EETF ≈ (1/2)λ2gETF,
and gETF ∼ gTF = 3A/2λ. We took into account the fac-
tor 4 for the proton-neutron degeneracy. The energy shell
correction, δE , can be approximated, for a major shell struc-
ture, within the semiclassical POT accuracy, by Eq. (A4)
(see Refs. [35,36,39,48,50,51]). In derivations of Eq. (9) we
used that any derivative of a in Eq. (7) for the Jacobian J ,
Eq. (5), leads to the appearance of multiplier of the order of
S/h̄ ∼ A1/3, where S is the classical action for the leading
periodic orbit; see Appendix A, Eq. (A7). The characteristic
parameter ξ∗, Eq. (9), proportional to Esh, specifies the two
different approximations, ξ∗ � 1 and ξ∗ 	 1, for small
and large shell correction contribution Esh, respectively (see
Table 2). We will consider below mainly nuclei, for which
one has the case of relatively large Esh and, therefore, large
ξ∗.

Thus, expanding the Jacobian factor, J 1/2 with Eq. (8),
over ξ for small ξ (i) and large ξ (ii) (see fourth column
in Table 2) in the integrand over β [Eq. (4)], one takes the
standard inverse-Laplace integrals. The convergence in these
expansions over ξ was studied in Ref. [36]. Finally, one
arrives at the following analytical expressions for the level
density ρ(E, N , Z); see Refs. [35,36]:

ρ ≈ ρMMA(S) = ρνS
−ν Iν(S) , S = 2

√
aU . (10)

Here, Iν(S) is the modified Bessel function of the entropy
S, which depends on the excitation energy U through the
entropy S. The latter will account for the pairing effects in
the next section. In this function, one has the index ν = 3
(ii) for the shell structure dominance and ν = 2 (i) for small
shell contributions as shown in Table 2. The coefficients ρν

are also given in Table 2. In Eq. (10), the value of ν depends
on the number of the integrals of motion beyond the energy
E and of the shell structure contribution, which is determined
by Eq. (9) for ξ∗ (see Table 2).

As shown in Table 2 (Ref. [35]), one thus finds, Eq. (10),
that ν = 2 and ρ2 ∝ a for small ξ∗, named as MMA1 (i)
approach while ν = 3 and ρ3 for large ξ∗, for the MMA2
approach. Within the MMA2 approach, one may also use
a full analytical approach for small values of shell correc-
tions but with large shell contributions due to their significant
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derivatives; see general MMA2a approach and its approxi-
mation MMA2b in Table 2. The reason for MMA2b approach
is large derivatives of the grand-canonical potential 	, Eq. (7)
over the chemical potential λ, as shown above with the help
of Appendix A. This is in contrast to the MMA2a approach
with evaluations of the Esh by using the numerical results of
Ref. [53].

Notice that the Fermi-gas (FG) asymptotes [35] can be
obtained by using the full SPM approach [1] at ξ∗ → 0,

ρFG(E, N , Z) =
√

π exp(2
√
aU )

12a1/4 U 5/4
. (11)

As seen and well known, they are divergent at U → 0, in
contrast to the finite results of Eq. (10).

3 Pairing effects

Following Refs. [4,6], one can reduce the level density calcu-
lation for the system of interacting Fermi-particles described
by the two-body Hamiltonian to that of the system of a mean
field with the quasi-particles Hamiltonian [5,18]. For neu-
trons (protons) one writes

Ĥ − λN̂ = ∑
js

(
ε j − λ

)
â+
js â js −G

∑
j j ′

â+
j+â

+
j−â j ′−â j ′+ . (12)

Here, ε j is the single-particle energy of states j , which are
doubly degenerated over the spin projection sign, s = ±,
and λ ≈ λn ≈ λp is the chemical potential. For the operator
of the total particle number, N̂ , one has N̂ = ∑

js â
+
js â js .

In Eq. (12), a+
js and a js are the operators of the creation and

annihilation of particles, respectively; see details in Refs.
[4,6]. The second term in Eq. (12) is the pairing interaction
with the constant G (G ≈ Gn ≈ Gp), which is the averaged
matrix element of the residue interaction. The pairing gap �

is determined by the corresponding equation [18]:

� = G

2

∑
j

�√
(ε j − λ)2 + �2

. (13)

In this case one has a very simple and powerful model for the
description of the pairing properties of nuclei. The interaction
constant G (neutron Gn and proton Gp) can be determined
using experimental data [2,6]. The corresponding thermody-
namic average of any operator Q̂ is determined by

〈Q̂〉 = Tr
[
Q̂exp (−βH)

]
/Tr

[
exp (−βH)

]
. (14)

Up to a constant, the Hamiltonian H , Eq. (12), coincides with
that of the Fermi quasi-particles in a mean field. Therefore,
for the entropy S, one can use the similar expression:

S = 2
∑
j

[
βε j n j − ln

(
1 − n j

)]
, (15)

where ε j = [(ε j−λ)2+�2]1/2, andn j = [
1 + exp

(
βε j

)]−1

are the quasi-particle energies, and occupation numbers aver-
ages, respectively [4]. In particular, one can find [45] the
critical value of the temperature Tc for disappearance of pair-
ing correlations. Introducing, for convenience, the potential,
Eq. (7) in the mean field approach, one has to specify the sys-
tem through the Hamiltonian taking into account the pairing
correlations within the simplest approach based on the BCS
theory [18,44,45].

Straightforward analytical derivations [4–6,45] valid near
the critical point of the superfluid-normal phase transition
lead to the critical temperature Tc,

Tc = eC�/π , (16)

where C ≈ 0.577 is the Euler constant.
For a given temperature T , when exists, by minimization

of the expectation value for the grand-canonical potential 	,
one has (see Refs. [4,6]),

	 ≡ E − λN − S/β = 〈Ĥ − λN̂ − Ŝ/β〉 , (17)

where 〈...〉 denotes a statistical average over the operator
enclosed in angle brackets. Here, N̂ is the particle (neutron
and proton) number and Ŝ is the entropy operators. For the
pairing ground-state energy 〈H0〉, which equals 〈H〉 at zero
excitation energy, U = 0, one finds 〈H0〉 ≈ �2/4G. With
the heat part,Uc = aT 2

c [with Eq. (16) for Tc], where a is the
level density parameter, one obtains for the total excitation
energy U tot

c of the mean superfluid-collapse transition,

U tot
c = aT 2

c + �2/(4G) . (18)

The statistically averaged condensation energy Econd can
be derived in simple form in terms of the constant pairing
gap �, independent of the quasi-particle spectrum [2,18,46].
For constant �, one can use its averaged empiric dependence
on the particle number A, � ≈ 12A−1/2 MeV [2,4,6,18].
The results for the level density are weakly dependent on the
variation (within 15%) of the number in front of A−1/2, also
when we replace this power dependence by that suggested
in Ref. [54]. This phenomenological behavior �(A) is good
for sufficiently heavy nuclei, in particular, for A∼> 40.

For the entropy S in Eq. (10), one finds

S ≈ Seff = 2
√
aUeff , (19)

where Ueff is the excitation energy, shifted due to the pairing
correlations,

Ueff = U − Econd ≥ 0 . (20)

For the condensation energy Econd, one finally has [4,6,
18]

Econd = 3a�2

2π2 ≈ 216

π2K
MeV, (21)
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where K = A/a is the inverse level density parameter.
For K ∼ 10 − 30 MeV [13,35,36], one obtains Econd ≈
1 − 2 MeV. Notice also that, the condensation energy Econd,
Eq. (21), depends on the particle number A mainly through
the inverse level density parameter K for � = 12/A1/2 MeV.
This parameter depends on A [35,36] is basically due to shell
effects. For small and large S = Seff , one obtains from the
general equation (10) the well-known combinatoric [41] and
Fermi gas [1] asymptotes using the important S2 and 1/S
corrections, respectively,

ρMMA(S)
ρν

→ 2−ν

�(ν+1)

[
1+ S2

4(ν+1)
+O(

S4
)]

, S�1,

ρMMA(S)
ρν

→ exp(S)

Sν
√

2π S

[
1− 1−4ν2

8S +O
(

1
S2

)]
, S	1 , (22)

where � is the gamma function.

4 Discussion

In Figs. 1 (Table 3) and 2 (Table 4) we present results of theo-
retical calculations of the statistical level density ρ(E, N , Z)

(in logarithms) within the MMA approach, Eq. (10), and its
FG limit, Eq. (11), as functions of the excitation energy U
for different nuclei.

In Fig. 1, these results are compared with the experimen-
tal data for the close-shell magic nuclei 40Ca (a) and 56Ni
(b), semi-magic nucleus 54Fe (c) and open-shell non-magic
nucleus 52Fe (d), accounting for pairing contributions. Pair-
ing effects in 56Ni and 52Fe nuclei are studied experimentally
in details in Ref. [47]. In Fig. 2 we display the results for other
nuclei 48Ca, 115Sn, 144Sm, and 208Pb. Our results are obtained
by using the values of the inverse level density parameter
K , found from their one-parametric least mean-square fits
(LMSF) of the MMA results to the experimental data [55].
The data shown by dots with error bars in Figs. 1 and 2 are
obtained for the statistical level density ρ(E, N , Z) from the
experimental ENSDF [55] data on the excitation energies U
and spins I of the quantum states spectra by using the sam-
ple method, ρi = Li/Us , where Li is the number of states
in the i th sample, i = 1, 2, ...,ℵ [3,6,36]. The dots are plot-
ted at mean-weighted positions Ui of the excitation energies
for each i th sample. Convergence of the sample method over
the equivalent sample-length parameter Us of the statistical
averaging was studied under the statistical plateau condition
over the K values. The lengths Us (or the equivalent number
of samples ℵ) play a role which is similar to that of averag-
ing parameters in the Strutinsky smoothing procedure for the
shell correction method (SCM) calculations of the averaged
single-particle level density [40]. The plateau condition in
our calculations means the almost constant value of the phys-
ical parameter K (with better than 20% accuracy) within a
relatively large change of sample numbers ℵ. Therefore, the

results of Tables 3 and 4, calculated at the same values of the
found plateau, do not depend, with the statistical accuracy, on
the averaging parameter ℵ within the plateau. The statistical
condition, Li 	 1, at different plateau values ℵ determines
the accuracy of our statistical calculations. As in the SCM, in
our calculations within the sample method with good plateau
values for the sample numbers, ℵ, shown in the caption of
Fig. 1, one obtains a relatively smooth statistical level den-
sity as function of the excitation energy U . We require such
a smooth behavior because the statistical fluctuations of par-
ticle numbers are neglected in our theoretical derivations of
the level density.

The relative error σ of the standard LMSF (see Tables 3
and 4), for the description of the spectra data, in terms of the
statistically averaged level density ρi , is given by the standard
formula through the χ2 of the LMSF, σ 2 = χ2/(ℵ−1) is the
relative error dispersion. The error σ determines the applica-
bility of the theoretical approximations, ρ(Ui ). These exper-
imental results are practically independent of the model. One
of the important reason is that we use the plateau condition
over the number of points ℵ. This is similar to that of the
SCM (Ref. [40]) but in contrast to many other presentations;
cf., e.g. with Refs. [10,11]. We do not use empiric (non-
physical) free fitting parameters. We discuss the level density
ρ(E, N , Z) integrated over spins accounting for degeneracy
over their projections. In particular, this ρ(E, N , Z) is inde-
pendent of assumptions for using the approximation of small
spins, and there is no explicit dependence of ρ on the nuclear
moment of inertia.

Figure 1 shows the results for four different situations
concerning pairing contributions. In the upper plots of Fig. 1
we present two magic nuclei with the red pairing-collapse
arrow far away on right of the 1st experimental data point
for 40Ca (a), and slightly on its left for 56Ni (b), respectively.
In both panels, one has a significant excitation-energy gap
below the first data point in close-shell magic nuclei. In con-
trast to them, in the lower plots Fig. 1c and d we show a
semi-magic and non-magic examples for the nuclei 54Fe and
52Fe, respectively, where the first experimental point appears
at a relatively small excitation energyU . The super-fluid col-
lapse (red arrow) is placed in Fig. 1c, d on a finite distance
from the first excited state, which is of the order of the con-
densation energy Econd.

Thus, we do not expect significant pairing effects for the
nucleus 56Ni (Fig. 1b and Table 3) which agrees with exper-
imental studies in Ref. [47]. However, it is related to the
superfluid-normal phase transition itself, rather than to a shell
closure in nucleus 56Ni in its normal state. Best conditions
for the experimental observation of a super-fluidity transition
in studied nuclei can be found, in our opinion, in 40Ca, see
Fig. 1a and Table 3 because of the sufficiently large distance
in the positive direction between the first excited state and
estimated arrow forU tot

c , Eq. (18), for the pairing collapse. It
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Fig. 1 Level density, lnρ(E, N , Z), for low energy states in the magic
(close-shell) 40Ca (a) and 56Ni (b), semi-magic 54Fe (c) and non-magic
(open-shell) 52Fe (d) nuclei. Solid lines show the results of the MMA
for the minimal value of the least mean square (LMS) error σ , Eq. (10),
Table 3, by neglecting the pairing condensation. Dashed lines are the
same but taking into account the pairing effect through the condensation
energy Econd [Table 3, Eq. (21)]. Blue dotted lines present the Fermi
gas (FG) approach [1]. The chemical potential is λ = 40 MeV. Exper-

imental close circles are obtained directly from the excitation energy
data [55] by using the sample method [35,36]. The plateau condition
was checked within the number of dots ℵ = 5−8 over the inverse level
density parameter K . Black (Ec = Econd), and red (Uc = U tot

c ) arrows
present the evaluations of the condensation energy (21), and the excita-
tion energy (18) for the phase superfluid-normal transition, respectively

Table 3 The inverse level
density parameter K (sixth
column) and its error (seventh
column), found by the LMSF
with relative accuracy σ (eighth
column), for the nuclei shown in
the first column (see Fig. 1)

Nuclei MMA Esh Econd U tot
c K �K σ

(MeV) (MeV) (MeV) (MeV)

40Ca 2a′ 0.061 2.3 7.1 9.6 0.3 1.3

2a 12.5 0.3 1.6

FG 13.4 0.4 1.5
56Ni 2b′ 0.008 0.80 2.50 27.3 0.7 2.2

2b 29.0 0.7 2.4

FG 17.8 0.7 3.2
54Fe 2b′ 0.264 1.23 3.82 17.9 0.8 1.9

2b 21.1 0.7 1.9

FG 12.5 0.5 2.3
52Fe 2a′ 0.003 1.23 3.84 17.7 0.5 2.5

2a 20.1 0.5 2.4

FG 15.4 0.5 2.7

The second column displays the MMA method: MMA2a′ or MMA2b′ with the finite condensation energy
Econd, and MMA2a or MMA2b with no pairing, and all versus FG model. The relative shell (with pairing)
corrections Esh, Eq. (9) (from Ref. [53]), are shown in the third column. The fourth and fifth columns show
the found condensation energies Econd, Eq. (21), and total excitation energies U tot

c for the phase transition
from superconductive to normal nuclear states, Eq. (18), respectively. The experimental excitation spectra
were taken from the ENDSF base [55] as in Fig. 1; see the text
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Fig. 2 The same as in Fig. 1
but for other nuclei 48Ca, 115Sn,
144Sm, and 208Pb

Table 4 The same as in Table 3
but for nuclei 48Ca, 115Sn,
144Sm, and 208Pb, presented in
Fig. 2

Nuclei MMA Esh Econd U tot
c K �K σ

(MeV) (MeV) (MeV) (MeV)

48Ca 2b′ 0.224 1.0 3.2 21.6 1.3 2.6

2b 23.7 1.2 2.6

FG 15.5 0.8 2.6
115Sn 2b′ 0.061 1.4 4.4 15.6 1.7 3.0

2b 23.7 1.1 3.1

FG 11.7 0.6 3.5
144Sm 2b′ 0.368 0.6 2.0 34.2 1.2 1.4

2b 38.8 1.3 1.6

FG 20.8 0.4 1.1
208Pb 2a′ 1.77 0.9 2.9 23.9 0.9 3.2

2a 28.1 0.9 3.4

FG 38.3 1.6 3.6

is seen also from a significant difference of the MMA results
for the finite condensation energy Econd (dashed lines) and
those at Econd = 0 (solid lines). An intermediate situation for
pairing observation takes place in Fig. 1c, d for a semi-magic
54Fe and non-magic 52Fe; see also Table 3.

In all plots of Fig. 1 and Table 3 we present the dominat-
ing shell-structure MMA approach (10) with large ξ∗, espe-
cially large for 54Fe [Fig. 1 (c)]. The MMA2a approach [35]
with the relative shell-correction energy Esh from Ref. [53] is
associated with the smallest LMSF error σ for calculations
in Fig. 1.

Thus, the MMA2a and MMA2a′ results presented in
Fig. 1a for 40Ca show a strong shell and pairing effects with

a relatively large shell correction Esh (ξ∗ 	 1), in spite that
40Ca is magic nucleus, in both neutrons and protons; see also
Table 3 and Ref. [53]. The pairing energy-condensation con-
tribution [cf. dashed and solid lines in Fig. 1] is significant,
especially remarkably seen in Fig. 1a for 40Ca. The pairing
shift of the excitation energy notably improves the compar-
ison between the experimental dots and theoretical MMA
dashed results. These should be compared with those of the
pairing discard version of the MMA approach [MMA2a in
(a,d) and MMA2b in (b,c)] shown by solid lines. The pairing
effects are smaller in Fig. 1d and, especially, in panels (b, c)
than in that of (a).
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Figure 2 (Table 4) shows several other situations concern-
ing the pairing contributions. In Fig. 2a we present the same
level density as in Fig. 1a but for another double magic
isotope 48Ca with a large isotopic asymmetry parameter,
X ≈ 0.2. There is a super-fluidity but essentially below all
experimental points as shown by the red arrow. Therefore,
the pairing correlations are not easily detected, in contrast to
those for 40Ca [Fig. 1a]. The error parameter σ and the value
of the inverse level parameter K are significantly higher for
48Ca than in the case of 40Ca. Relatively, the super-fluidity
effect measured by the difference between dashed and solid
red curves decreases significantly for 48Ca.

The next plot (Fig. 2b) for a semi-magic even-odd nucleus
115Sn is devoted to another exotic case concerning super-
fluidity. Notice that in this case there are several excita-
tion energies below the condensation energy (two lowest
experimental points). This is because there are several low-
est nuclear excited states which are significantly below the
condensation energy value Econd. These excited states are
excluded from our calculations because they give a relatively
very small (about 4%) contribution to the total error disper-
sion σ 2, and almost do not change the result (see Table 4) for
σ . Therefore, in this case, almost all experimental points, giv-
ing important contributions into the dispersion parameter σ 2,
are below the superfluidity-normal phase transition indicated
by the red arrow. Thus, one can assume that the even-odd
nucleus 115Sn is in principle superfluid in the MMA, as seen
also from essential difference of dashed and solid curves.
Notice that this approximate MMA result for an even-odd
nucleus differs from a more microscopic treatment of pair-
ing in such even-odd nuclei; see, e.g., Ref. [6]. Therefore, we
have to clarify more this result by using a modification of the
MMA method, e.g., taking into account the Pauli blocking,
in our future work, that is beyond the scope of our present
work. In contrast to the MMA, within the standard Fermi-gas
model, one has negligibly small pairing effects, due to almost
zero corresponding change of the background energy in the
FG model, in line of Ref. [2].

In the next plot (c) of Fig. 2 for another semi-magic
nucleus 144Sm, all experimental points are lying inside of
the interval between both arrows for Ec and Uc, that perhaps
leads to a good condition for detection of the super-fluidity
effects. However, the difference between solid and dashed
curves, which is a measure of the superfluity effect, is small
in this case, in contrast to the super-fluidity of magic nucleus
40Ca (Fig. 1a) but similar to that for another semi-magic
nucleus 54Fe (Fig. 1c).

Much larger difference occurs in the case (d) of Fig. 2 for
double magic nucleus 208Pb with about the same asymmetry
parameter X ≈ 0.2 as in the panel (a) of this figure for another
double magic nucleus 48Ca (Fig. 2a). But a similar problem
for experimental observation of the superfluity effects takes
place as in Fig. 2a for 48Ca, and even more similar to those for

56Ni in Fig. 1b. The distance of the pairing collapse energy
Uc from the first excitation energy state point is too small in
Fig. 2d, almost 300 keV on its right. Therefore, it is difficult to
detect the super-fluidity effects in 208Pb. In close similarity
with the situation for magic nuclei 56Ni and 48Ca: There
is a superfluity transition to the normal state but it is very
difficult or even impossible to observe because of a small
distance of the pairing collapse energy U tot

c , Eq. (18), to the
first excitation energy point.

As shown in Tables 3 and 4, the values of the inverse
level density parameter K can be significantly larger than
those (about 10 MeV) for the neutron resonances. In all plots
of Figs. 1 and 2, one can clearly see also the divergence of
the SPM FG lines, Eq. (11), near the zero excitation energy,
U → 0. The FG approach has a larger (or sometimes, of the
order) value of σ for considered low-energy states in all plots
of Figs. 1 and 2, except for that of the semi-magic nucleus
144Sm and magic nucleus 48Ca.

5 Conclusions

We have obtained agreement between the results of the the-
oretical approximation (MMA) and experimental data [55]
for the statistical level density ρ in the low excitation energy
states (LES) region for several nuclei with close and open
shells and for intermediate situations. Using the mixed micro-
and grand-canonical ensembles beyond the standard saddle-
point method of the Fermi gas model we take into account
the pairing correlations. The derived level density expres-
sions can be approximated by those known as small (com-
binatoric) and relatively large (Fermi gas) limits with exci-
tation energies Ueff , shifted due to pairing correlations. The
MMA clearly manifests an advantage over the standard full
SPM Fermi gas (FG) approaches at low excitation energies,
because the MMA results do not diverge in the limit of small
excitation energies. The values of the inverse level density
parameter K obtained within the MMA for LES’s below neu-
tron resonances in spectra of several super-fluid nuclei are
found to be smaller than those obtained at zero condensa-
tion energy Econd. The pairing correlation contributions to
the MMA significantly improve the agreement with experi-
mental data for magic nuclei as 40Ca.

An existing opinion on the absence of pairing effects
in magic (close shell) nuclei as 208Pb and 56Ni can be
explained by a very short spectrum length within the super-
fluid phase transition. Therefore, it might be difficult to detect
such effects. As shown for another magic nucleus 40Ca,
these critical arguments are basically due to an underesti-
mated role of the statistical averaging for the level density
obtained from the excitation states and particle number fluc-
tuations. Another reason is an overestimation of the shell
model properties of nuclei in a normal state while we have
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a wide superfluid-normal transition beyond the shell model
approach. The MMA results were obtained with only one
physical LMSF parameter – the inverse level density parame-
ter K . The MMA values of the inverse level density parameter
K for LES’s can be significantly different from those of the
neutron resonances. Simple estimates of pairing condensa-
tion contribution in spherical magic nuclei at low excitation
energies, sometimes significantly improve the comparison
with experimental data.

As perspectives, following ideas of Peter Schuck and his
collaborators, (see, e.g., Ref. [21]), it would be nice to extend
our results using the super-fluid properties for infinite matter
to those for finite nuclei. Another fruitful extension, also in
line of activities of Peter Schuck, is applications of our MMA
accounting for pairing effects to suitable problems of nuclear
astrophysics.
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Appendix A: Semiclassical periodic orbit theory

For the sake of a simple notation, we shall presently restrict
ourselves to the case of A nucleons (one kind only) in a given
local (HF) potential V (r) as in Refs. [35,48,50–52]. The
level density shell corrections can be presented analytically
within the periodic orbit theory (POT) in terms of the sum
over classical periodic orbits (PO) [48,50,51],

δgscl(ε) =
∑
PO

gPO(ε),

gPO(ε)=APO(ε) cos

[
1

h̄
SPO(ε) − π

2
μPO − φ0

]
. (A1)

HereSPO(ε) is the classical action along the PO in the nucleon
potential well of the same radius, R = r0A1/3 (r0 ≈ 1.14
fm), μPO is the so called Maslov index, determined by the
catastrophe points (turning and caustic points) along the PO,
and φ0 is an additional shift of the phase coming from the
dimension of the problem and degeneracy of the POs. The
amplitude APO(ε), and the action SPO(ε), are smooth func-
tions of the energy ε. In addition, the amplitude, APO(ε),
depends on the PO stability factors. The Gaussian local aver-

aging of the level density shell correction, δgscl(ε), over
the single-particle (s.p.) energy spectrum εi near the Fermi
surface εF , with a width parameter γ , smaller than a dis-
tance between major shells, Dsh, can be done analytically
[48,50,51],

δgγ scl(ε)
∼=

∑
PO

gPO(ε) exp

[
−

(
γ tPO

2h̄

)2
]

, (A2)

where tPO = ∂SPO/∂ε is the period of particle motion along
the PO in the potential well.

The smooth ground-state energy of the nucleus is approxi-
mated by Ẽ ≈ EETF = ∫ λ

0 dε ε g̃(ε) , where g̃(ε) is a smooth
level density equal approximately to the ETF level density,
g̃ ≈ gETF, (λ ≈ λ̃, and λ̃ is the smooth chemical potential in
the SCM). The chemical potential λ (or λ̃) is the solution of
the corresponding conservation of particle number equation:

A =
λ∫

0

dε g(ε) . (A3)

The POT shell component of the free energy, δFscl, is
related in the non-thermal and non-rotational limit to the shell
correction energy of a cold nucleus, δEscl, see Refs. [48,50,
51]. Within the POT, δEscl is determined, in turn, by the
oscillating level density δgscl(ε), Eq. (A1),

δEscl ≈
∑
PO

h̄2

t2
PO

δgPO(λ) . (A4)

The chemical potential λ can be approximated by the
Fermi energy εF , up to a small excitation energy, and isotopic
asymmetry corrections (T � λ for the saddle point value
T = 1/β∗, if exists). It is determined by the particle-number
conservation conditions, Eq. (A3), where g(ε) ∼= gscl =
gETF + δgscl is the total POT level density. One now needs
to solve equation (A3) to determine the chemical potential
λ as function of the particle number A since λ is needed in
Eq. (A4) to obtain the semiclassical energy shell correction
δEscl.

For a major shell structure near the Fermi energy surface
ε ≈ λ, the POT energy shell correction, δEscl, is approx-
imately proportional to the level density shell correction,
δgscl(ε) [Eq. (A1)], at ε = λ, Eq. (A4),

δE ≈ δEscl ≈
(Dsh

2π

)2

δgscl(λ) , (A5)

where Dsh ≈ λ/A1/3 is the mean distance between major
nuclear shells. Indeed, the rapid convergence of the PO sum
in Eq. (A4) is guaranteed by the factor in front of the density
component gPO, Eq. (A1), a factor which is inversely propor-
tional to the period time tPO(λ) squared along the PO. There-
fore, only POs with short periods which occupy a significant
phase-space volume near the Fermi surface will contribute.
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These orbits are responsible for the major shell structure, that
is related to a Gaussian averaging width, γ ≈ γsh, which is
much larger than the distance between neighboring s.p. states
but much smaller than the distance Dsh between major shells
near the Fermi surface. Eq. (A2) for the averaged s.p. level
density was derived under these conditions for γ . According
to the POT [48,50,51], the distance between major shells,
Dsh, is determined by a mean period of the shortest and most
degenerate POs, 〈tPO〉 [50]:

Dsh ∼= 2π h̄

〈tPO〉 ≈ λ

A1/3 . (A6)

Taking the factor in front of gPO, in Eq. (A4) off the sum over
the POs for the energy shell correction δEscl, one arrives at
its semiclassical expression (A5) [48,49,51]. Differentiating
Eq. (A5) with (A1) with respect to λ and keeping only the
dominating terms coming from differentiation of the sine of
the action phase argument, SPO/h̄ ∼ A1/3, one finds the
useful relationships:

∂2δEPO

∂λ2 ≈ −δgPO(λ) ,

∂2gscl

∂λ2 ≈
∑
PO

∂2δgPO

∂λ2 ≈ −
(

2π

Dsh

)2

δgPO(λ) . (A7)

Notice that taking into account Eq. (A3) for the chemical
potential λ, one has another useful relationship for the second
derivative of background thermodynamic potential, 	0 =∫ λ

0 dε(ε − λ)gscl(ε):

∂2	0

∂λ2 ≈ −gscl(λ) . (A8)

The level density parameter a [see Eq. (10) for the entropy
S] can be related to the averaged POT level density ETF and
shell correction components by

a ≈ aETF + δascl = π2

6
(gETF + δgscl) , (A9)

For shell corrections, one has the following relation:

δascl = π2

6
δgscl(λ). (A10)

Using Eqs. (A9), (A10), and Eq. (A7), one obtains Eq. (9).
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