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Abstract The band structure of N = Z nuclei is con-
structed by projecting states of good angular momentum from
intrinsic states defined in terms of quartets. The simplest of
these intrinsic states is a condensate of collective quartets
withisospin 7 = 0. The other intrinsic states are built by pro-
moting one quartet of the condensate to an excited 7 = O con-
figuration. From these intrinsic states, by angular momentum
projection, band structures are generated that approximate
well the experimental ones. The projected states also repro-
duce to a very good extent the spectra resulting from con-
figuration interaction calculations based on the same quar-
tets forming the intrinsic states. These results show that the
quartet-based intrinsic states provide an appropriate frame-
work to understand in a simple and intuitive manner the emer-
gence of band-like structures in N = Z nuclei.

1 Introduction

As pointed out already in the sixties and seventies [1-12],
quartets play an important role in N = Z nuclei. Quar-
tets are meant as quasi-independent 4-body structures of two
neutrons and two protons which are correlated in the config-
uration space. It is worth emphasizing that the quartets, as
defined here, are different from the «-clusters. The latter, pre-
dicted since the thirties [13—16], are commonly defined as a
grouping of two neutrons and two protons in relative s-wave
states and are characterized by close spacial correlations.
One of the first indications of quartet structures in the
excited states of N = Z nuclei came from the excited 0T
states in 10 and “°Ca. These states, described in terms of
4 p—4h configurations [5,17,18], are interpreted as a quartet
excited from the closed shell to the next major shell. Quartet-
type excitations have been also identified in various « trans-
fer reactions. For example, quartet excitations of low ener-
gies, around 3-5 MeV, have been populated by « transfer
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on medium weight nuclei [10]. The fact that these quartet
excitations appear at low energies, below the particle-hole
excitations, is related to the small energy necessary to break
the bonds between the quartets, which is smaller than the
energy necessary to break a particle from a quartet [9].

On the theoretical side, the quartet structures in the excited
states of N = Z nuclei have been studied in the framework
of various approximations, e.g., the stretched scheme [5-
8], the roton model [9], the shell-model [19], the extended
IBM model [20-22], the algebraic models [23-26], the multi-
step shell model [27]. In addition, one finds many studies of
excited states in N = Z nuclei related to the more general
issue of a-clustering, which are based on cluster models,
antisymmetric molecular dynamics, THSR model, etc (e.g.,
see [28] and the references quoted therein).

In recent years, the excited states of N = Z nuclei have
been also described by diagonalizing the shell model Hamil-
tonian in a quartet basis [29-32]. Relevant for the present
paper is Ref. [32], in which we have shown that configura-
tion interaction calculations, done with the quartets extracted
from a set of special trial states, are able to describe rather
well the band structures of light N = Z nuclei. The goal of
this paper is to demonstrate that the trial states employed in
Ref. [32] actually play the role of true intrinsic states from
which the bands of N = Z nuclei can be generated directly
by angular momentum projection. It will be shown that this
approach provides a novel quartet-based framework, simpler
than the one employed in Ref. [32], which is able to grasp
the basic features of band-like structures in N = Z nuclei.

In Sect. 2, we will define the intrinsic states in the formal-
ism of quartets and outline the projection technique employed
in this work. The criterion adopted for the choice of the intrin-
sic states will then be illustrated. In the same section we will
compare spectra of N = Z nuclei in the sd and pf shells
obtained from the projection of these states with those result-
ing from configuration interaction calculations, shell model
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(SM) calculations and experimental data. In Sect. 3, we will
summarize the results and draw the conclusions.

2 Formalism and applications

In this study we focus on the low-lying excited states of even-
even N = Z nuclei which are generated by the interaction
of the valence nucleons outside a double-magic core. The
excitations will be described in a quartet formalism analo-
gous to the collective pair approximation (CPA) which has
been employed long ago for the description of deformed sys-
tems of like-particles [33—35]. We remind that in the CPA
approach the bands are associated to trial states expressed in
terms of intrinsic pairs, composed by a linear superposition of
pairs with well-defined angular momenta. Thus, the ground
band is generated, through the angular momentum projec-
tion, from a condensate of intrinsic pairs. Furthermore, the
B band is associated to a trial state obtained by breaking an
intrinsic pair from the pair condensate and promoting it into
an “excited” intrinsic pair [35]. These trial states resemble
the IBM intrinsic states employed to describe the deformed
nuclei [36,37]. In this case, the role of pairs with angular
momenta J = 0 and J = 2 is played by the s and d bosons.

To describe the band structures in N = Z nuclei we shall
use a procedure similar to the CPA approach, but based on
collective quartets instead of pairs. The quartets are formed
by two neutrons and two protons coupled to the total isospin
T = 0. The quartet creation operator, of a well-defined angu-
lar momentum J, is defined by

+ = . . . .
9ym = Z Z qulllfl,lzjzfz,T’

ivjiJiizjado T’
nT T’ JT=0
[[a+a+] [ta?] , ()
J1 )2
M
where ait creates either a proton or a neutron (depending

on the isospin projection 7) on the spherically-symmetric
state i = {mn;,[;, ji}. No restrictions on the intermediate
couplings J; T’ and J,T' are introduced and the amplitudes
iy j1J1,i2 oo, T’ ar€ supposed to guarantee the normalization
of the operator.

In the representation spanned by the quartets (1) we con-
struct a set of intrinsic quartet states. Thus, following Ref.
[32], we introduce the ground intrinsic state

n
[©6) = s (2£)"|o) @
where by 7 is denoted the number of quartets which can be
formed with the valence nucleons outside the closed core,

denoted by |0). As can be noticed, |®) is a condensate of
the intrinsic quartet O defined by
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In order to fix QF, we minimize the energy of the state |® g)

with respect to the coefficients ql(lgj)l T inja T’ and g .

In addition to the ground intrinsic state, we introduce a
set of “excited” intrinsic states which are generated by pro-
moting one of the quartets Q; of |®,) to an excited T = 0
configuration. These states have the general form

(n—1)
00 = Neoj (of) ‘0> 5)
with
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Assuming that the quartet Q; has already been fixed, we

construct the new quartet Q,j by minimizing the energy of
|®) with respect to the coefficients qi(.k;, Tinja T’ and a(k)
(under the constraint of orthogonality when various states
with the same k are involved). The states (5) will be identified
with the value of the quantum number k. It can be seen that
these states, as well as the state (2), have an undefined angular
momentum.

In this work we will explore the ability of the trial states (2)
and (5) to represent proper intrinsic states of N = Z nuclei.
To this end we will generate the spectrum of these nuclei by
projecting states of good angular momentum from them. The
projection technique which has been used employs standard
tensor coupling rules which do not deserve special expla-
nations. What is instead worth of being noticed is the fact
that when projecting V intrinsic states associated to a given
nucleus one can generate up to A states with the same angu-
lar momentum J. This projection does not guarantee neither
that these states are orthogonal with each other nor that the
Hamiltonian matrix is diagonal with respect to them. Thus, in
these cases, a proper definition of the spectrum implies that
we have first to build an orthonormal basis out of these pro-
jected states and then to diagonalize the Hamiltonian in such
a basis. The maximum size of these basis in the calculations
that we are going to present has been 6.
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Fig. 1 Energies of the intrinsic states (2) and (5) for 2*Mg, *8Si and
48Cr. The numbers at the bottom represent the quantum number k
characterizing the intrinsic states. Only states with energies below the
dashed-dotted lines have been included in the calculations

The approach described above for constructing spectra,
based on angular momentum projection of the intrinsic quar-
tet states (2, 5), will be contrasted with the one we have used
in Ref. [32]. Namely, in Ref. [32] the spectrumofa N = Z
nucleus was constructed by performing a configuration inter-
action (CI) calculation in the space spanned by all the quar-
tets of well-defined angular momentum which characterise
the intrinsic states (2, 5). By working in the m-scheme, this
space if formed by the states

(n) + \Nim
o vl =TT (afw) 0> ®)
J.Me(—1,7)
under the conditions
9

ZNJMZI’Z, ZMNJMZM.
JM JM

The calculation requires first the orthonormalization of the
states (8) and then the diagonalization of the Hamiltonian in
this basis for the various M (in order to identify the angular
momentum of the states). This approach will be referred to
with the acronym QM (Quartet Model). It is worth noticing
that the QM approach and the projection method are based
on different calculations schemes. Indeed, in the projection
method the linear combination of the quartets which define a
state of given angular momentum is set already by the projec-
tion while in the QM method this combination is determined
by the diagonalization of the Hamiltonian. For this reason,
as seen below, the QM approach provides results closer to
the exact results.

The formalism presented above is applied for the even-
even N = Z nuclei with the valence nucleons in the sd and
pf major shells. Thus, the vacuum state |0) of the previous
expressions stands for the nuclei '°0 and *°Ca. The calcula-
tions for the sd and pf shell nuclei have been performed with
the USDB [38] and KB3G [39] interactions, respectively.

24Mg
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Fig. 2 2*Mg: experimental (EXP), projected (PROJ), QM and SM
spectra. See text for details

The first problem that has to be faced in the approach
just described is that of defining the most appropriate set of
intrinsic states to involve in the calculations. In this work
we have adopted the criterion of selecting the intrinsic states
on the basis of their energy. In Fig. 1, we show the energies
of the lowest intrinsic states (with the associate value of the
quantum number k) in the cases of 2*Mg, 28Si and “8Cr. The
values of the angular momentum J entering the summations
of Egs. (3) and (6) have beenrestrictedto J = 0, 2, 4 for |®,)
and |®) while for |®) (k # 0) we included the values J =
k, k41, k+2. Only in the case of BCranextra = 6 quartet
has been added to |®,). In all cases the lowest intrinsic state
has been found to be the condensate (2), followed by a k=0
or 2 state (5). The calculations for the three nuclei quoted
above have been done with the intrinsic states lying below
the dashed-dotted lines shown in Fig. 1.

In Figs.2, 3 and 4, the low-lying states obtained within
the projected approach are compared with the experimental
spectra and the results of QM and shell model (SM) calcu-
lations. For the experimental spectra we have shown only
the states with certain angular momenta and parities. The
numbers next to each level of the QM and SM spectra give
the overlaps with the corresponding projected states while
those at the bottom represent the ground state energies. At
this point it is worth mentioning that a simple SM calcula-
tion provides only a sequence of states. Associating them
with specific band-like structures, such as ground, g and y -
like bands, requires additional analysis. In Figs.2, 3 and 4
we have split the SM states in groups of levels following the
correspondence with the band-like structures associated to
the QM and the projected intrinsic states.

From Figs.2, 3 and 4 one can notice that, in general,
there is a clear correspondence among projected, QM and
SM states. The only exception is in the case of 28Si, where
one generates only two J = 2 projected states and, in corre-
spondence with the second of them, one finds two QM and
three SM J = 2 states. It can be also observed that the over-
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Fig. 4 As in Fig.2 for *3Cr

lap of the projected states with the QM and SM states are
significant, especially for the ground band. For the reason
explained above, the QM levels are closer to the SM ones
and, since the SM interaction is fitted to the data, the QM
levels are also closer to the experimental spectrum.

As seen from Figs.2, 3 and 4, the agreement between
projected states with the experimental data is rather good
for all the nuclei. We find quite surprising that this agree-
ment is obtained within such a simple approach, based only
on projected states and a subsequent diagonalization in very
reduced spaces (only a few units). These results support the
definition of the states (2) and (5) as proper intrinsic states
and show that the quartet structure of these intrinsic states
is able to encapsulate the most important correlations which
determine the spectra of even-even N = Z nuclei.

3 Summary and conclusions
In this paper we have shown that the band structure of
deformed N = Z nuclei can be associated with intrinsic

states based on quartets. The simplest of these states is just
a condensate of a collective quartet with isospin 7 = 0 and
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an undefined angular momentum. The other intrinsic states
are built by promoting one quartet of this condensate to an
excited T = O configuration. A criterion has been introduced
to select the most appropriate set of these states. We have
shown that the band structure of 24Mg, 288 and *8Cr can be
generated to a very good extent by projecting states of good
angular momentum from the above intrinsic states. These
results demonstrates that the emergence of band-like struc-
tures in N = Z nuclei can be simply understood in terms of
quartet-based intrinsic states. This simple manner of gener-
ating bands from intrinsic quartet states is similar to the one
employed earlier for describing deformed like-particle sys-
tems [33-35]. The basic difference is that in the latter case
the intrinsic states are built in terms of pairs instead of quar-
tets. This interesting analogy between quartets and pairs had
already emerged in a previous analysis of the proton-neutron
pairing Hamiltonian [41] where it had been observed that
quartets played the same role as Cooper pairs in the case of
a like-particle pairing Hamiltonian.

In the present study we have focused on the validity of
the quartet approach for the energy spectra of N = Z nuclei.
An open issue, which will be addressed in a future study, is
how good is this approach for describing the electromagnetic
transitions in these nuclei.

We like to emphasize the interesting analogy between the
formalism presented in the present work, based on general
two-body interactions of SM type, and the one employed in
the case of the isovector-plus-isoscalar proton-neutron pair-
ing interaction, discussed in Ref. [40]. In the latter case, it was
evidenced that a very accurate approximation of the ground
and excited states could be provided, respectively, by a con-
densate of T = 0, J = 0 quartets (each built with isovector
and isoscalar pairs) and by states obtained by promoting one
quartet of this condensate to an excited 7 = 0 configuration.
The intrinsic states employed in the present work appear to
be a generalization of these states in the case of deformed
systems. The basic difference between the states of Ref. [40]
and the intrinsic states of this work is that while the former
have a well defined angular momentum, the latter do not.
Thus, in the present case, in order to generate the spectrum
of a N = Z nucleus it has been necessary to go through
an additional step, namely to project states of good angular
momentum from the intrinsic states.

Finally we would like to comment on the relation between
the present quartet approach and the semi-microscopic alge-
braic quartet model which has been recently employed to
describe the band structures of sd and pf shell nuclei
[23-26]. In this model the authors use a phenomenologi-
cal interaction expressed in terms of the invariant opera-
tors of the U(3) D SU@B) D SO(3) group-chain. This
interaction contains essentially a harmonic oscillator term,
a quadrupole—quadrupole force and a rotational term. This
interaction is very different from the general two-body inter-
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action employed in the present study. In particular, the Hamil-
tonian of the algebraic quartet model does not include the
isovector-isoscalar proton-neutron pairing interaction which
plays a major role in the low-lying states of N = Z nuclei
[42]. Whether the algebraic quartet model could be extended
to include the proton-proton pairing interaction, preserving
a simple algebraic structure, is an interesting question worth
to be explored.
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