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Abstract We study the non-equilibrium cumulants of the
chiral order parameter field (σ field) in different phase tran-
sition scenarios via Langevin dynamics. Cumulants up to
fourth-order have been calculated based on the spacetime-
dependent σ configurations from the event-by-event numer-
ical simulations. By limiting the cooling of the system in a
Hubble-like way, the out-of-equilibrium cumulants illustrate
clear memory effects during the evolution. Both the signs
and the magnitudes of the high-order cumulants differ from
the equilibrium ones below the phase transition temperature.
Especially, the dynamical cumulants grow more intensively
from the first-order phase transition side than they do from
the crossover side. In addition, analysis of the high-order off-
equilibrium cumulants on the hypothetical freeze-out lines
present non-monotonic curves in the large chemical poten-
tial region.

1 Introduction

Searching for the location of the critical point and depicting
the QCD phase diagram is one of the fundamental topics in
heavy-ion physics, which has been extensively studied for
decades [1–12]. Induced by the divergent fluctuations at the
critical point, dramatic increases of the cumulants of the final
state proton multiplicities in the critical region are predicted
as a consequence of strong coupling between the quark mat-
ter and the chiral order parameter field (the σ field) [13–17].
Even though the correlation length of the chiral order param-
eter will be suppressed by the finite size of the QCD fireball in
heavy-ion collisions, the high-order correlators remain quite
sensitive to the increase of the correlation length near the
critical point since they are proportional to the high power
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of the correlation length [15]. Especially, the quartic criti-
cal cumulant is predicted to be negative as approaching the
critical point from the crossover side, but positive from the
first-order phase transition side, thus the non-monotonic kur-
tosis along the chemical freeze-out line is expected to carry
the signals of the QCD critical point in laboratory observa-
tions [15,18–20].

The experimental exploration of the QCD phase dia-
gram is performed at the BNL Relativistic Heavy Ion Col-
lider (RHIC). The STAR collaboration has measured the
high-order cumulants of net proton production in Au+Au
collisions for the collision energy ranging from 7.7 GeV
to 200 GeV [9,21,22]. The experimental data of κσ 2 (=
C4/C2) shows a large deviation from the baselines deter-
mined by Poisson statistics and presents complex non-
monotonic structure in the collision energy region below 39
GeV [22,23], which has not been fully explained in theoret-
ical calculations until now. Meanwhile, more experimental
measurements are being executed by the HADES collabo-
ration at GSI [24] and by the ALICE Collaboration at the
LHC [25]. Future experimental facilities such as FAIR in
Darmstadt, NICA in Dubna, HIAF in Huizhou and J-PARC
in Tokai will further explore the details of the QCD phase
transition at the (relative) low collision energy region.

Since the high-order cumulants of the protons are mea-
sured after hadrons chemically freeze-out, to identify the
signals of the critical point from the experimental data, a
proper freeze-out scheme near the critical point is introduced
to the hydrodynamic model and the equilibrium cumulants
of protons on the freeze-out surface are investigated [26–28].
The resulted cumulants qualitatively describe the acceptance
dependence of the experimental data and roughly fits the
C4 and κσ 2 data, but C2 and C3 are overestimated in this
framework. Incontrovertibly, the off-equilibrium dynamics
play an essential role in the dynamical evolution with phase
transition to address the critical slowing down near a critical

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epja/s10050-023-00949-1&domain=pdf
mailto:chaojingyi@jxnu.edu.cn


30 Page 2 of 10 Eur. Phys. J. A (2023) 59 :30

point [29,30] and to reveal the domain formation at the first-
order phase transition [31]. Indeed, the high-order cumulants
vary significantly, not only in the magnitudes but also the
signs, in the real-time evolution compared with the equilib-
rium hypothesis [32–35]. Furthermore, the early time fluctu-
ations and the critical enhancements around the critical point
can be probed by the rapidity-window-dependent Gaussian
cumulant [36]. In Ref. [37], it shows that the effects of the
nonlinear coupling and finite size are manifested through the
reduction of the correlation length near the pseudo-critical
temperature. In Ref. [38], the well separated equilibrating
time of non-hydrodynamic quasi-normal modes in different
channels is investigated at the critical point by a phenomeno-
logical realistic holographic model, likely to be model B.

According to the classification of dynamic universal-
ity, the QCD chiral phase transition in heavy-ion collisions
belongs to Model H, since it is governed by five con-
served hydrodynamic modes [39–45]. Dynamical models
with hydrodynamic background, such as chiral hydrodynam-
ics [46–50] and Hydro+ [51–53] have been developed to
describe the medium expansion and the critical mode evolu-
tion of QCD phase transition in heavy-ion collisions. How-
ever, besides the numerical complexities of these models, the
equation of state, the transport coefficients, and the freeze-out
scheme in the vicinity of the critical point still needs care-
ful discussions. The numerical calculations of cumulants are
even more challenging when the long range correlation of
high-order fluctuations [54] and the nonzero-momentum crit-
ical modes are considered for different phase transition sce-
narios, thus it is worth employing the simplified relaxational
model A and/or diffusive model B [32–38,43] to study the
dynamical phase transition at a broader chemical potential
regions.

Based on the event-by-event Langevin equation, we
detailed study the dynamical evolution of the σ field’s cumu-
lants in different phase transition scenarios and on the hypo-
thetical freeze-out line. Some preliminary results of the
dynamical cumulants in various phase transition scenarios
are provided in the proceedings [34,35]. Here, more calcula-
tions and discussions are presented, including those involv-
ing the impact of the initial temperature on evolution and the
dynamical cumulants on the hypothetical freeze-out lines.
The paper is organized as follows: In Sect. 2, we introduce the
dynamical model in detail where the necessary input param-
eters are exhibited to solve the stochastic equation, including
the initial profile, expansion routine of temperature, damp-
ing coefficient, and the magnitude of noise. In Sect. 3, we
present the numerical results of σ field’s cumulants along
the given evolution trajectories in both the crossover and the
first-order phase transition scenario. Afterward, we illumi-
nate the results of non-equilibrium cumulants on the hypo-
thetical freeze-out lines. In Sect. 4, we close the article by

summarizing our main results and discussing future devel-
opments.

2 Model and set-ups

Linear sigma model is a QCD-inspired low energy effective
theory, depicting the phase structure of strongly interacting
matter in the μ-T plane via the order parameter σ = 〈

ψ̄ψ
〉

[55,56]. As the mass of the σ field approaches to zero near
the critical point, its correlation length grows to infinity. The
corresponding equation of motion of the long wavelength
mode is well described by the Langevin equation [47,57,58]:

∂μ∂μσ (t, x) + η∂tσ (t, x) + δVeff (σ )

δσ
= ξ (t, x) , (1)

where the effective potential of the σ field is explicitly written
as

Veff (σ ) = U (σ ) + Ωq̄q (σ ) . (2)

U (σ ) denotes the vacuum contribution and takes the form
of

U (σ ) = λ2

4

(
σ 2 − v2

)2 − hqσ −U0. (3)

The parameters λ, σ , hq , and U0 are set by the hadrons prop-
erties at zero temperature. As the chiral symmetry is spon-
taneously broken in the vacuum, the nonzero expectation of
the σ field is 〈σ 〉 = fπ = 93 MeV with 〈 �π〉 = 0. In reality,
the chiral symmetry is explicitly broken by the light quark
mass, then the linear term is included with hq = fπm2

π and
mπ = 138 MeV. ν2 = f 2

π − m2
π/λ2 and the mass of σ is

mσ ∼ 600 MeV by setting λ2 = 20. The zero-point energy
U0 = m4

π/
(
4λ2

) − f 2
πm

2
π . Note that we have neglected the

meson fluctuations of �π , since the mass of the triplet is finite
in the critical regime. Ωq̄q represents the contributions from
the thermal quarks, which is

Ωqq̄ (σ ; T, μ) = −dq

∫
d3 p

(2π)3

{
E+T ln

[
1+e−(E−μ)/T

]

+T ln
[
1 + e−(E+μ)/T

] }
. (4)

dq = 12 is the degeneracy factor of the quarks. The energy

dispersion of the valence quark is E =
√
p2 + m2

q(σ ) with

the dynamical quark mass mq (σ ) = m0 + gσ [20,26]. For
g = 3.3, the mass of the constituent quark is approximately
310 MeV, and the corresponding proton mass mp ∼ 930
MeV.

According to the effective potential of Eq. (2), the phase
diagram is plotted in Fig. 1 as the function of (μ, T ). The dot
line denotes crossover at small μ, and the solid line represents
the first-order phase transition at large μ. The critical point
locates at (μcp, Tcp) ∼ (205, 100.2) MeV.
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Fig. 1 Cartoon QCD phase diagram on the (T, μ) plane

In Eq. (1), the damping coefficient η and the white noise
ξ (t, x) originate from the interaction between the σ field and
the heat bath, which is consisted of the thermal quarks [59].
In this work, η is treated as a free parameter, within the range
of models allowing, whose values η = 1, 3, 7 fm−1 are taken
in the following calculations. In the zero-momentum mode
limit, the correlation of the noise has the form [47]

〈
ξ (t) ξ

(
t ′
)〉 = 1

V
mσ η coth

(mσ

2T

)
δ
(
t − t ′

)
. (5)

We remark that the zero-momentum approximation only suits
the critical point scenario at the thermodynamic limit. In the
realistic case with finite correlation length, we set the spatial
noise at different time steps as,

ξ (x) =
√

1

V
mσ η coth

(mσ

2T

) 1

dt
G (x) , (6)

where G (x) is a random number generator of the standard
normal distribution.

For our numerical implementation, we first construct the
initial profiles of the σ field using the probability function:
P [σ ] ∼ exp (−E (σ ) /T ), with E (σ ) = ∫

d3x 1
2 (∇σ (x))2

+Veff (σ (x)). In order to solve Eq. (1), the space-time infor-
mation of the local temperature, T (t, x, y, z), and baryon
chemical potential, μ(t, x, y, z), have to be known which in
principle shall be extracted from the heat bath. For simplic-
ity, we assume the system evolves along the constant baryon
density trajectories (seen traj. I and traj. II in Fig. 1), while
the spatial-uniform temperature decreases in a Hubble-like
way [32]:

T (t)

T0
=

(
t

t0

)−0.45

, (7)

where T0 is the initial temperature, and t0 = 1fm is the initial
time. The whole simulation is run in a V = 6.83 fm3 box. The
space step size dx = dy = dz = 0.2 fm and the time step
size is dt = 0.1 fm/c. Note that the system volume will affect
the configurations of σ field in each event, due to the change
in the magnitude of the noise term, but has no influence on
the results of the event-averaged σ .

With all the ingredients in hand, we complete the event-by-
event simulations of the σ field from Eq. (1). In the numerical
calculation process, the configurations of the σ field at every
time step over 105 events are recorded. The moments of the
σ field are then calculated by:

μ′
n = 〈σ n〉 =

∫
dσσ n P [σ(x)]
∫
dσ P [σ(x)]

, (8)

where σ = 1
V

∫
d3x σ (x). The non-equilibrium cumulants

of the σ field are iteratively determined by the following
formula:

C1 = μ′
1, (9)

C2 = μ′
2 − μ′2

1 , (10)

C3 = μ′
3 − 3μ′

2μ
′
1 + 2μ′3

1 , (11)

C4 = μ′
4 − 4μ′

3μ
′
1 − 3μ′2

2 + 12μ′
2μ

′2
1 − 6μ′4

1 . (12)

3 Numerical results and discussions

3.1 dynamical evolution in the crossover scenario —
critical slowing down

We first solve the Langevin equation in the crossover scenario
for μ = 200 MeV. The effective potential and the probabil-
ity distribution function for the phase transition region are
shown in Fig. 2. Both the effective potential and the distribu-
tion function each have a dip or peak at the given tempera-
ture region. The system smoothly transits from the symmetry
restored phase to the symmetry broken phase as the temper-
ature decreases.

In Fig. 3, we plot the dynamical evolution of σ ’s cumu-
lants along traj. I as marked on the cartoon phase diagram
of Fig. 1. The corresponding horizontal axis is the inverted
temperature as time increases. The dashed lines represent the
equilibrium cumulants, and the colored solid lines represent
the non-equilibrium ones at a given damping coefficient. In
the left panel, we show the behavior of σ ’s cumulants at dif-
ferent damping coefficients. The initial configurations of σ

fields are constructed to satisfy the equilibrium distribution
at t0, thus both the non-equilibrium and equilibrium cumu-
lants have the same values at the starting point. In the evo-
lution, the non-equilibrium cumulants present clear memory
effects, going after the trends of equilibrium ones as tem-
perature decreases and reaching their maxima (or minima)
at later times. Finally, after the phase transition, the effec-
tive potential changes from a non-Gaussian shape to a Gaus-
sian shape. As expected, the non-equilibrium C1 goes to the
equilibrium value and the high-order cumulants vanish at
the broken phase. During the expansion, non-equilibrium C2

decreases slightly at the earlier stage and then grows due to
the broadening of the effective potential in the critical region.
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Fig. 2 Given μ = 200 MeV,
the effective potential and
probability distribution as
functions of σ at different
temperature

Fig. 3 Non-equilibrium cumulants of σ field (units of Cn : MeVn .)
along traj. I. The dashed lines denote the equilibrium values, and
the colored lines represent the non-equilibrium cumulant values. Left
panel: Cumulant evolution of σ , which starts at the same temperature

but develops under different damping coefficients. Right panel: given
η = 3 fm−1, cumulative evolution of σ s at different initial temperature
(initial configurations)

We emphasize that the signs and values of the dynamicalC3,4

strongly differ from the equilibrium ones in a large T region
below Tc. For larger damping coefficients, the σ field relaxes
as slowly as it should and the system takes a longer time to
approach equilibrium. Prolonging the duration to its out-of-
equilibrium state, the maximum (or minimum) of high-order
cumulants are enhanced as η increases. The effect of the
damping coefficients can be estimated in the strong limit. In
the critical region, the behavior of the critical mode simpli-
fies to a diffusion-like process, as ω � η and the higher
order time derivative term are ignored. Shown in Fig.7 in
Appendix 1, a large η results in an over-damped system, and
the cumulants from the Langevin dynamics match those from
the diffusion equation.

Besides the damping coefficients, the initial conditions
also have a significant influence on the magnitude of the
dynamical cumulants. In the right panel of Fig. 3, we exhibit
the results of non-equilibrium cumulants starting from three
different initial temperatures above Tc, with the damping
coefficient fixed at η = 3 fm−1. The initial σ field con-

figurations are again sampled according to the equilibrium
distribution function and thus vary for different T0. Again,
the initial values of the σ ’s cumulants are governed by the σ

field’s distribution at starting temperature. We find that the
high-order cumulants are strongly enlarged whileT0 are close
to Tc and maintain substantial values during the later non-
equilibrium development until below Tc. In addition, with the
same damping coefficient, the cumulants reach their maxima
(or minima) at approximately the same temperature, which
is almost unrelated to their starting points.

Note that we have also carried out calculations on the
dynamical cumulants both with and without the spatial fluc-
tuations of the σ fields, as demonstrated in Appendix 2. The
influence of spatial fluctuations is diminished since we per-
form the statistics based on the event-averaged σ field. Shown
in Fig. 8, for the specified values of μ and T , we compare σ ’s
Ci at two cases. As evident, it is challenging to observe the
impact of the spatially non-uniform σ field on the cumulants
after event-by-event averaging.
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Fig. 4 Given μ = 240 MeV,
the effective potential and
probability distribution as
functions of σ at different
temperatures

Fig. 5 Non-equilibrium cumulants of σ field along traj. II. Left panel: Cumulant evolution of σ , starting at the same temperature but developing
under different damping coefficients. Right panel: given η = 3 fm−1, the cumulative evolution of σ ’s at different initial temperature (initial
configurations)

3.2 dynamical evolution in the first-order phase transition
scenario — supercooling effect

In this subsection, we discuss the dynamical evolution
of σ ’s cumulants in the first-order phase transition scenario,
with the baryon chemical potential fixed at μ = 240MeV . As
shown in the left panel of Fig. 4, the thermodynamic poten-
tials are characterized by two co-existing phases near Tc. At
the thermodynamic limit, the probability distribution func-
tion is double δ-like only at the phase transition point. The σ

field stays at the global minimum of the effective potential,
and there is a discontinuity at the phase transition tempera-
ture in the equilibrium cumulants. In turn, confining to a finite
system volume (V = 6.83 fm3), the probability distribution
function presents two peaks with comparable probability in
the phase transition region (as shown in the right panel of
Fig. 4), which leads to significantly different behaviors of
the high-order cumulants.

In Fig. 5, we present the numerical results of dynamical
cumulants as functions of decreasing temperature, as denoted
by the traj. II in Fig. 1. The left panel represents the evolution
of cumulants starting from a given set of σ ’s configurations
under different damping coefficients. For fixed η = 3 fm−1,

the right panel shows the cumulative behaviors starting at var-
ious initial temperatures. Similar to the case in the crossover
scenario, the diffusive dynamics render the same memory
effects for the non-equilibrium cumulants. In addition, the
non-equilibrium cumulants are continuous and much larger
than that of the equilibrium ones.

The significant enhancements of the non-equilibrium
cumulants are explained in the following. In the first-order
phase transition scenario, the existence of a barrier between
the two minima in the thermodynamic potential prevents
the σ ’s configurations from shrinking to the global mini-
mum even when the temperature is lower than Tc (known as
supercooling effects in thermodynamics). Since the σ field is
trapped in the original minima during the cooling down pro-
cess, only the events with intense thermal fluctuations would
overcome the potential barrier. Then as the broadening of
the probability distribution function in a finite-size system,
different events occupy both of the states with comparable
weights, which leads to a strong departure of C3,4 from the
equilibrium cumulants. Such enhancements of cumulants at
the boundary side of the first-order phase transition have the
potential to address the large deviations of BES data κσ 2

from the statistical baselines at low collision energies.
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3.3 cumulants on the hypothetical freeze-out lines

The possible signals of phase transition are measured after
the particles chemically freeze out, and in this subsection,
we discuss the non-equilibrium cumulants’ behaviors on the
hypothetical freeze-out lines as functions of baryon chemical
potential. Within the present model setting, the phase transi-
tion line described by the linear sigma model is far away from
the freeze-out line determined by the statistical model via fit-
ting experimental data [60]. Thus, we are not able to directly
borrow the freeze-out information from the experiments. In
the following, we artificially choose the freeze-out lines and
assume the dynamical evolution of the σ field along different
trajectories starting at T0 = (Tc + 4) MeV, and freezing out
at either Tf1 = (T0 − 10) MeV or Tf2 = (T0 − 15) MeV. In
the duration of each trajectory, the baryon chemical potential
is fixed.

In Fig. 6, we draw the σ ’s cumulants as functions of
the baryon chemical potential, adopting Tf1 and Tf2 as the
freeze-out temperature individually. The high-order equi-
librium cumulants decay to zero as the system is away
from the phase transition region. Rather, the non-equilibrium
cumulants exhibit large deviations from the equilibrium ones
and significant non-monotonic structures on the hypothetical
freeze-out line. Below Tc, the equilibrium C3 is negative and
limited to zero as temperature decreases. However, the non-
equilibrium C3 is positive in most phase space of μ for both
applied freeze-out lines. The flipping of signs could address
the sign problem based on the prediction of equilibrium crit-
ical fluctuations [26]. Last but not least, the non-equilibrium
C4 is oscillating near the critical baryon chemical potential
(∼ 205 MeV) and tends to zero around μ ∼ 270 MeV.

By comparing the vanishing equilibrium cumulants of
C3,4, the dynamical processes provide us with abundant non-
trivial behaviors. In our model calculation, the appearance of
the non-monotonic curves of C4 originates from a combined
effect of η and the hypothetical freeze-out line. At the first
freeze-out temperature Tf1, the evolution of C4 at smaller
η (red and green lines) show the non-monotonic structure,
but they oscillate under the influence of larger η (green and
blue lines) at freeze-out temperature Tf2. This means that
C4 evolves following its own dynamical processes and its
behavior is non-universal. Furthermore, the deviation of C4

not only comes from the development of itself but also from
the non-equilibrium features of other cumulants since the
higher order cumulants are coupled to the lower order ones
as shown in Eq. (9–12).

The peaks of C3 and C4 are worth paying attention to, as
well. Both of these maximums take place at a critical value
around μ ∼ 240 MeV. Such maximums are induced by the
maximization of the supercooling effect in the current model.
With μ slightly larger than μc, the barrier between the global
minima and the false minima prevents a critical number of

events from developing to the global minimum. The σ field is
approximately evenly distributed in both minima for different
events, and induces a dramatically large peak of the high-
order cumulants. At the high baryon chemical potential, μ ∼
270 MeV, the barrier is so strong that the σ field is trapped in
the original minima and can not escape even at a temperature
much lower than Tc. Without the fluctuations manifesting the
phase transition, the high-order cumulants are suppressed,
and their magnitude approaches the equilibrium limit.

In spite of the various cumulative behaviors found in the
first-order phase transition scenario, we note that one should
be cautious when comparing the current model simulation at
a high baryon chemical potential region to the experimental
data, since a mismatch between the model and the experi-
ments at small collision energies is likely to occur. In this
work, we have presumed that system evolution occurs when
the chiral symmetry is restored, but quark-gluon-plasma may
not be created in heavy-ion collisions at low collision ener-
gies. A sophisticated first-order phase transition with the
proper degree of freedom should be further explored and
studied in future work.

4 Summary and outlook

To summarize, in this work, we study the dynamical evolu-
tion of the σ field based on the event-by-event simulations
of a single component Langevin equation. The temperature
decrease for the system is set to be Hubble like and the com-
putation is completed in a finite-size system. We statistically
weight the dynamical variable σ over 105 events during the
real-time evolution to obtain its high-order cumulants. With
the current model setting, we find that the non-equilibrium
cumulants express clear memory effects, and the magnitude
of C2 slowly increases as the system approaches its critical
regions. The signs of C3,4, as well as the magnitudes, can
differ from the equilibrium ones below Tc. We also find that
the high-order cumulants are significantly enhanced on the
boundary side of the first-order phase transition. Finally, the
spread of out-of-equilibrium cumulants along the hypotheti-
cal freeze-out lines has been presented. The non-equilibrium
C3 is positive at large baryon chemical potentials, in con-
trast to the negative sign of the equilibrium C3. In the vicin-
ity of CP, with certain parameter sets, the non-equilibrium
C4 expresses non-monotonic curves at large μ region. We
conclude that the combination of supercooling effect and
dynamical effects on the first-order phase transition side
plays a dominant role in the nonmonotonicity of the high-
order cumulants on the hypothetical freeze-out lines.

Note that the apparent memory effects of the cumulants
up to the fourth order based on the Langevin framework are
in accord with those obtained by the use of the Fokker-Plank
equations [32,33], but currently not sufficiently discussed
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Fig. 6 σ ’s cumulants as functions of baryon chemical potentials, ending on the hypothetical freeze-out line with Tf1 = (T0 − 10) MeV (left panel)
and Tf2 = (T0 − 15) MeV (right panel)

and presented elsewhere, which is crucial for the study of
nonequilibrium signals from experiments. Of course, in order
to quantitatively describe the experimentally observed cumu-
lants of net proton multiplicities, more sophisticated and real-
istic dynamical modeling are required from the theoretical
side [62,63]. A suitable mathematical tool that can accurately
describe the properties of fluids in heavy-ion collisions and
better performs numerical calculations is still under explo-
ration. It is well known that the method of Fokker-Plank equa-
tions is equivalent to the Langevin dynamics in the Markov
process [32,33,61]. However, taking into account the realis-
tic fireball evolution in heavy-ion collisions, where the spatial
distributions of temperature and baryon chemical potential,
etc., are nonuniform, the Langevin dynamics has the advan-
tage of easily including those effects in simulations, and fur-
ther combines with the hydrodynamic equations to describe
the complete dynamical process in RHIC. We note here how
these non-Markov effects manifest in the Fokker-Plank equa-
tions is beyond the scope of this paper. Further investigation
and analysis are under work.

In this paper, with a relatively simple setup for the model-
ing and the parameters, we present the dynamics of the cumu-
lants, which serves as reference information for the analysis
of the experimental measurements. For the explanation of the
experimental data, a number of effects are playing their roles,
including the subject of the proper equation of state [64–66],
of the unknown parameters of the Ising-to-QCD mapping
[67], of the critical transport coefficients [68–71], of the finite
size, finite size scaling and global charge conservation in the
vicinity of a CP [72–76], of the non-critical baselines for
the cumulants of net-proton number fluctuations [77], of the
nonuniform temperature/chemical potential effects [78], and
of the proper freezeout scheme in the critical region [79].
Besides, further connections between the criticality and the
other experimental observable are being established through

theoretical efforts [80–85] and new technique such as the
machine learning method [86–88] is also being developed
for the search of QCD phase transition signals as well.

Acknowledgements We thank Ulrich. Heinz, Yu-Xin Liu, Swagato
Mukherjee, Misha Stephanov, Derek Teaney, Yi Yin, Shanjin Wu and
Huichao Song for useful discussion and comments. We thank the anony-
mous reviewer for his/her valuable suggestions in the impact of spatial
non-uniformity of the sigma field. The work of LJ has been supported
by the NSFC under Grant no. 12105223, and the work of JC has been
supported by the start-up funding from Jiangxi Normal University under
Grant No. 12021211.

Data Availibility Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The data that
support the findings of this study are available from the authors upon
reasonable request.]

Appendix

A.1 The comparison of dynamical results from diffusion
equation and Langevin equation

In the low frequency range, the evolution of the sigma field is
described by an over-damped diffusion-like equation, since
ω � η. Ignoring the second order time derivative term, the
diffusion equation takes the form:

η∂tσ (t, x) − ∇2σ (t, x) + δVef f (σ )

δσ
= ξ (t, x) . (13)

Here we compare the numerical evolution of the sigma field
using the Langevin equation as well as the over-damped dif-
fusion equation. In Fig. 7, we plot the Langevin (solid lines)
dynamics of σ ’s cumulants and the over-damped diffusion
equation (dotted lines) with three different damping coeffi-
cients at μ = 200 MeV. In the figure, it is shown that the
differences of σ ’s cumulants decrease with an increase in
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Fig. 7 σ ’s cumulants as functions of temperature, rendered by either
the Langevin equation (solid lines) or the over-damped diffusion equa-
tion (dotted lines)

Fig. 8 Given μ = 200 MeV and η = 3fm−1, the black lines represent
cumulants calculated from sigma’s configurations without fluctuations,
and the red dashed lines represent results with fluctuations

the damping coefficient. At η = 7 fm−1, the evolution dif-
ferences between the two kinds of equations can be safely
ignored.

A.2 the comparison of dynamical cumulants with and
without spatial fluctuations

Here, we numerically simulate the dynamical cumulants
under the assumption that the sigma field is spatially homo-
geneous (the black lines in Fig. 8) and compare the results to
the cases with spatial fluctuations (red dashed lines in Fig. 8).
It has been discovered that there are no apparent differences
between the first and second-order cumulants. The third and
fourth-order cumulants have larger magnitudes in the early
stages for the spatially uniform σ events, but the differences
reduce in later stages due to the damping of the σ field. Thus
based on the above calculations, we find that it is difficult

to detect the impact of σ ’s spatial fluctuations on the event-
averaged quantities.
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