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Abstract This paper is continuation of the previous review
[Mukhamedzhanov and Blokhintsev, Eur. Phys. J. A 58, 29
(2022)] in which the ANC of a bound state was addressed.
However, the ANC is important characteristics not only of
bound states but also resonances. In this paper, the role of
the ANCs in resonance processes is addressed. Among var-
ious topics considered here are Gamow—Siegert resonance
wave functions for charged particles and their normaliza-
tion, relationship between ANCs and resonance widths. Sig-
nificant part is devoted to the R-matrix approach for reso-
nance processes. The resonance wave functions, internal and
external and their projections on the two-body channel are
given. Important ingredients of the R-matrix method for reso-
nance states are also discussed. Elastic resonance scatterings
are analyzed and extended for subthreshold resonances. It is
shown how the notion of the subthreshold resonance works
in practical analysis. To this end, the 13C(Ot, n) 16() reaction,
which is considered to be the main neutron supply to build up
heavy elements from iron-peak seed nuclei in AGB stars, is
analyzed. Important part of the review is analysis of the rela-
tionship between resonance width and ANC of mirror reso-
nance and bound states using the Pinkston—Satchler equation
and the Wronskian method. Practical examples are given.
Among important parts of the theoretical research is the the-
ory of transfer reactions populating resonance states. Com-
parative analysis of prior and post-form DWBA amplitudes
shows that the prior form is preferable over the post form due
to faster convergence over r,, 4. Calculations of the stripping
to resonance reaction 1°0(d, p)!70(1d; /2) performed using
the prior form of the CDCC method. A special attention is
given to resonance astrophysical processes. Useful equations
for internal and external radiative widths are given. Radia-
tive capture through subthreshold resonance is considered.
In particular, radiative capture reactions ''C(p, y)!>N and
SN(p, ¥)!%0 and the role of the ANC is addressed in detail.
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1 Introduction

Resonances are one of the general and dominating aspects
of different branches of physics and, undoubtedly, one of
the essential phenomena in low-energy nuclear physics and
nuclear astrophysics. In one paper, covering even the main
aspects of the resonances in low-energy nuclear physics
is unrealistic. This review is a continuation of the review
paper by Mukhamedzhanov and Blokhintsev [1]! in which
addressed the bound state asymptotic normalization coeffi-
cients (ANCs) in scattering and direct reactions. I, therefore,
put constraints on the topics covered in this review, address-
ing some selected topics of low-energy nuclear resonances
in nuclear reactions and astrophysical resonance processes
in which special attention is given to the role of the ANCs in
treating resonance processes.

This theoretical paper contains basic and advanced con-
cepts of treating nuclear resonances, resonance wave func-
tions, and resonance reactions. It serves the interests of
researchers of different levels, with the main aim of this paper
to assess the attitude of graduate students, Ph. D students, and
postdocs.

The paper consists of thirteen sections and three Appen-
dices. Section2 considers the Gamow-Siegert resonance
wave functions, which are regular solutions at the origin
(r = 0) with the outgoing wave in the asymptotic region. An
important part of this section is the proof that the Gamow—
Siegert wave functions, which have exponentially diverging
asymptotic behavior, can be normalized in the entire coordi-
nate space for potentials having the Coulomb tail. The nor-
malizable Gamow-Siegert wave functions is used to general-
ize the Berggren completeness relationship, which includes
bound states, resonances, and continuum, for the potentials
with the Coulomb tail.

Section 3 addresses important proof of the relationship
between the resonance widths, residues of the elastic scat-
tering S-matrix in the resonance pole, and the ANCs of the
resonance states, which are the amplitudes of the tail of the
Gamow-Siegert wave functions. After that, the tails of the
resonant overlap functions are presented.

! In what follows, we refer to this review as review [1].
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One of the most effective and powerful methods to treat
resonance processes is the R-matrix method. This paper will
employ the R-matrix approach in many sections below. Sec-
tion4 addresses the first application of the R-matrix method.
We consider the R-matrix multichannel scattering wave func-
tions. The R-matrix approach is based on splitting the con-
figuration space into internal and external subspaces. That
is why the internal and external scattering wave functions
and their projections on two-body channels are considered
separately.

In Sect. 5 are considered the different ingredients of the
R-matrix approach: the reduced width amplitude, the log-
arithmic derivative of the outgoing Coulomb solution, and
the ANC. Important relationships between these quantities
both for bound and resonance states are derived. We define
the formal and observable single-particle reduced widths
used in the R-matrix formalism and their connections to the
single-particle ANC and full ANC via the Whittaker function
describing the external part of the bound-state wave function.
After that, we generalize the obtained equations for the res-
onance state using the normalizable Gamow—Siegert wave
functions.

In Sect. 6 we consider the simplest single-channel, single-
level resonance elastic scattering S-matrix and elastic scat-
tering amplitude. We obtain the near-resonance behavior of
the elastic scattering amplitude in terms of the observable
resonance width. Another interesting case to address is the
elastic scattering in the presence of the subthreshold bound
state (aka subthreshold resonance). We derive the expression
for the residue of the elastic scattering amplitude in the sub-
threshold pole in the energy plane and express the ANC of
the subthreshold bound state in terms of the reduced width
of the subthreshold bound state and the observable partial
resonance width of the subthreshold resonance at positive
energies.

To further discuss the resonance processes within the R-
matrix approach, in Sect. 7 we consider the two-channel,
single- and multi-level resonance elastic scattering and reac-
tion generalizing results obtained in Sect. 6. The expressions
for the resonance pole of the scattering amplitude and the
observable resonance width are presented. We also take into
account the presence of the subthreshold resonance.

In Sect. 8 is demonstrated how the equations presented in
Sect. 7 for the reaction amplitude proceeding through the sub-
threshold resonance can be used for the analysis of the impor-
tant astrophysical reaction '3C(a, n)'°0 reaction, which is
considered to be the main neutron supply to build up heavy
elements from iron-peak seed nuclei in AGB stars. The level
of 170 at E, = 6.356 MeV gives the dominant contribution
to the reaction under consideration in the Gamow window.
The location of this level is under discussion and the cur-
rently accepted value is 4.7 keV above the threshold. To find
the reduced width of this level we use the reduced widths

of the subthreshold bound states and extrapolate them to the
resonance state. Using the determined reduced width of the
resonance state 4.7 keV we calculated the S(0)-factor of the
reaction 3C(a, n)'°0.

The width of a narrow resonance can be expressed in terms
of the ANC of the Gamow—Siegert wave function (Sect. 3.1).
That is why we can extend the relationship between the ANCs
of mirror bound states to the relationship between resonance
widths and ANCs of the mirror nuclei. Section 9 discusses the
connection between the resonance widths and the ANCs of
the mirror states using the Pinkston—Satchler equation. The
obtained ratio of the resonance width and the ANC of the mir-
ror states is expressed in terms of the ratio of the Wronskians
containing the overlap functions of the mirror resonance and
bound states in the internal region. In the Wronskian method,
which is used here, one needs the wave functions only in
the internal region, in which it is very convenient to use the
R-matrix method. The connection between the ANC and the
resonance width of the mirror resonance state provides a pow-
erful indirect method to obtain information that is unavailable
directly. If, for instance, the resonance width is unknown, one
can find it through the known ANC of the mirror state and
vice versa. The relationship between the mirror resonance
width and the ANC allows us to find the resonance width
from the ANC of the mirror bound state. Also loosely bound
states o + A become resonances in the mirror nucleus o + B,
where charge Zpe > Ze. Using the method developed in
Sect. 9, one can find missing quantities, the resonance width
of the narrow resonance state, or the mirror ANC.

In Sect. 10, the Wronskian method is applied for the
ratio I', 12C/C5 1c Of the resonance state 13N(1d5/2) and
the ANC of the mirror bound state '>C(1ds s2) and the ratio
r, 140/C§ e of the mirror states '8Ne(17) and '80(17).

Analysis of the S-matrix pole structure is a powerful
method in quantum physics. The S-matrix in the complex
momentum (or energy) plane has poles corresponding to
bound, virtual, and resonance states. The resonance states
are described by the wave functions containing asymptoti-
cally only the outgoing waves, which exponentially increase
due to the complex momenta. In Sect. 11 we employ the
Gamow-—Siegert resonance wave functions to describe reso-
nance states.

A few different techniques to determine the resonance
energy, width and resonance wave function based on the
solution of the Schrodinger equation are described. One of
them is Zel’dovich’s normalization procedure, which we dis-
cussed in Sect. 2.3. Another method is the complex scaling
method CSM (see Appendix C). In this method the normal-
ization of the resonant wave function is achieved using the
rotation of the integration countour over r from R, to the
complex plane, where the nuclear potential is cut to zero. In
this method, the complex eigenvalue and the Gamow wave

@ Springer
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function can be found by integration of the Schrédinger equa-
tion imposing the boundary conditions in the origin and the
asymptotic region. Finally, we mention a pole search by the
solution of the Schrédinger equation with the short-range
interaction for the scattering wave function. The method
allows one to find resonances and even subthreshold reso-
nances. We illustrate how different theoretical approaches
can be used to determine the parameters of the resonances
SE(1/27F, 5/2%) testing the predictive power of the used
methods. We address two approaches based on the definition
of the resonance energy and width: the potential model based
on the solution of the Schrédinger equation and the analytical
expression for the S-matrix. We compare the results of these
two approaches with the R-matrix method.

Section 12 is devoted to the theory of the (d, p) stripping
reactions populating resonance states. The standard method
of analyzing the nucleon transfer reactions populating bound
states for a long time was the distorted-wave-Born approx-
imation (DWBA). However, an adequate theory for transfer
reactions to resonance states has yet to be developed because
the resonance wave function is large in the nuclear interior,
where different channels are coupled. In the outer region, the
resonance wave function is the Gamow-Siegert wave func-
tion, whose asymptotic is given by the outgoing Coulomb
scattered wave. The stripping pattern to resonances can dif-
fer from stripping to bound states. For regularization of the
reaction matrix elements, one can use the Zel’dovich regu-
larization procedure (see Sect. 2) or CSM (see Appendix C).
Nowadays, the standard DWBA is being replaced by more
advanced approaches such as continuum discretized coupled
channels (CDCC), adiabatic distorted wave (ADWA), cou-
pled reaction channels (CRC), and the coupled channels in
Born approximation (CCBA) available in FRESCO code.

Below we describe a theory of deuteron stripping that will
solve the problems mentioned above for the deuteron strip-
ping to resonant states. We start with considering the con-
ventional DWBA amplitude and then consider the CDCC
one. By splitting the post and prior forms into the internal
post, surface, and prior external form, we can analyze the
convergence of the resonant DWBA amplitude. We compare
post and prior forms and show that for the stripping to res-
onance, the prior form has an advantage over the post form
due to the faster convergence. To demonstrate the theoretical
conclusions, the calculations of the stripping to resonance
1%0(d, p)'70(1d3,2) at E; = 36 MeV using the CDCC
final-state wave functions are presented. We showed that the
prior form convergence was much faster than the post form.
By normalizing the calculated prior differential cross-section
to the experimental one, we determined the resonance width
and its uncertainty caused by the uncertainty of the radial
parameter of the Woods—Saxon potential used to calculate
the resonance state. A strong dependence of the SF on the

@ Springer

radial parameter of this potential confirms that the surface
amplitude provides a significant contribution.

Section 13 addresses the radiative capture reactions in
which a nucleus fuses with another, accompanied by the
emission of electromagnetic radiation, which plays a cru-
cial role in nuclear astrophysics. The radiative capture reac-
tions caused by the electromagnetic interaction are signifi-
cantly slower than reactions induced by the strong interac-
tions. Hence these slow reactions control the rate and time
of cycles of nucleosynthesis.

In nuclear astrophysics, many important nucleon capture
reactions occur through resonance states which then decay to
bound states. The interference of resonant and non-resonant
contributions gives the total capture cross-section for such
reactions. Many theoretical models for resonant and non-
resonant cross-sections require proper knowledge of the ini-
tial and final state, the nature and multipolarity of the tran-
sition, and the radiative width. For many nuclei, radiative
capture reactions are the only p- or a-capture processes with
positive Q-values. Hence the reaction rates of these reactions
are crucial for determining stellar energy production. The
radiative capture reactions represent the most practical appli-
cation of the indirect ANC method in nuclear astrophysics.
One of the main input parts of the radiative capture ampli-
tude is the radiative width, one of the important observables
whose precise value is required to accurately determine the
resonance capture cross-sections and which is often the main
source of uncertainty. That is why we start our discussion
from the radiative width amplitudes splitting them into the
internal and external (channel) parts. To calculate the channel
radiative width amplitude, one needs to know two observ-
ables: the ANC of the final bound state and partial resonance
width. Therefore, with precise knowledge of these quantities,
the channel radiative width amplitude can be calculated quite
accurately. The internal radiative width amplitude is usually
a fitting parameter in the R-matrix method.

The combination of the peripheral transfer reactions
allowing one to determine the ANCs and the radiative cap-
ture reactions whose amplitudes are parameterized in terms
of the ANCs extracted from the transfer reactions is the
essence of the indirect ANC method in nuclear astrophysics.
In what follows, we present useful R-matrix equations for
radiative capture amplitudes and then present two examples
of using the indirect ANC method to determine the astro-
physical factors. These are astrophysical radiative capture
processes, ”C(p, y)lzN and 15N(p, y)160, in which the
role of the ANC is elucidated. The paper uses the system of
units in whichz = ¢ = 1.



Eur. Phys. J. A (2023) 59:43

Page 5 of 56 43

2 Gamow-Siegert resonance wave functions
2.1 Introduction

In 1928, Gamow [2] introduced the energy eigenfunction
with complex eigenvalue in the paper on the « decay of
nuclei. Gamow eigenfunctions are called Gamow vectors.
The complex energy eigenvalue consists of the real part, the
observable resonance energy, and the imaginary part, the
resonance width. Gamow eigenfunctions are exponentially
decreasing with time. Gamow developed a phenomenologi-
cal approach because, in the conventional quantum mechan-
ical approach, the eigenvalues of self-adjoint operators are
real. In 1939, Siegert [3] defined resonant states as solu-
tions of the stationary Schrodinger equation regular at the
origin and satisfying asymptotic outgoing boundary condi-
tion. Owing to the complex eigenvalue, the asymptotic term
of the Siegert wave function has an exponentially diverging
term. In what follows, using the standard potential scattering
theory we show how to derive the resonant Gamow—Siegert
wave functions corresponding to the complex eigenvalues
from the scattering eigenfunctions. They play an important
role in the following up discussions. In particular, I will dis-
cuss the normalization of the Gamow—Siegert wave func-
tions for Coulomb plus nuclear potentials and the generalized
completeness relationship, which includes bound states, res-
onances, and continuum states at complex energies. The nor-
malizable Gamow-Siegert resonance wave functions allow
us to establish a relationship between the ANC and the res-
onance width. That is why it is clear why the notion of the
ANC is so essential in the analysis of resonance processes.
In papers Michel et al. [4] and [5], a new application of the
Gamow-Siegert wave functions emerged: the nuclear shell
model, which is based on the Berggren’s generalized com-
pleteness condition (Berggren [6]). The Berggren’s complete
set includes bound states, resonances, and continuum states.
Full review of the Gamow Shell Model is available in Michel
et al. [7], Michel and Ptoszajczak [8]. Recently, the Gamow
Shell Model was extended for studying of proton and neu-
tron radiative capture reactions using the coupled channel
representation (Fossez et al. [9], Michel et al. [10]). How-
ever, Berggren considered only short-range (nuclear) inter-
action, which was also employed in earlier Gamow Shell
Model papers. In 2008, Michel proved completeness of the
eigenfunctions of the Schrodinger equation with potentials
possessing Coulomb tail. To prove it, he introduced the cut-
off radius R, which was eventually taken to infinity. How-
ever, the subtle point is the behavior of the wave functions
at k = 0 in the limit R — oo. The proof is quite intricate.
Earlier, in 2008, Mukhamedzhanov and Akin proved that the
Coulomb scattering wave functions form a complete basis
(Mukhamedzhanov and Akin [11]). It allows one to extend
the Berggren’s generelazied completeness relationship for

the eigenfunction of the Schrodinger equation with nuclear
plus Coulomb potentials. The Berggren’s generalized com-
plete set is the foundation of Gamow Shell Model method
(Michel and Ploszajczak [8]).

2.2 From scattering to resonance wave functions

In this section we derive the Gamow—Siegert resonance wave
functions for the sum of the Coulomb plus nuclear potentials
taking into account that in the previous publications (Siegert
[3] and Berggren [6]) these wave functions were considered
only for short-range potentials. We start from the regular
non-resonant scattering wave functions, which are solutions
of the radial Schrodinger equation

d2g (k, 1 +1
%—V(r)wz(k,r)— (:; )(pl(k,r)

= —k* ik, ). (1)

Here V (r) is given by the sum of the Coulomb and short-
range nuclear potentials. The regular solutions are defined
up to a normalization factor. We seek a solution of Eq. (1) in
the following form:

1 -
o) = 5= [ A0 7 k)

=D w0 P )] @
with the boundary condition

lim ¢i(k, r) ~ ARy 3)

fl(i) (k, r) are the singular at the origin Jost solutions satis-
fying the boundary condition:

lim fl(i) (k,r) = lim flC(i) (k.r) = eilkr—nn@kn)]
=00 r—00
“)
where the Coulomb Jost functions flc(i) (k, r) are defined in

Eq. (A.17) and (A19) from review [1].
The Jost functions are defined as

) = lim F2ikn) [P &, ). 5)
Atreal k
1700 = £ (). ©)

From Eq. (2) follows that
Pk = WL &, ), @ik, ], )

@ Springer
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where W[ " (k, r), @1(k, r)]is the Wronskian of £ (k, r)
and g (k, r), and WLk, r), £k r)) = —2i k.

Jost solution fl+ (k, r) and Jost function fl+ k) (f; (k, 1)
and f;” (k)) have a cut along the negative (positive) imaginary
axis in the complex & plane. Hence the wave function ¢y (k, )
is not analytical in the complex k plane where it has a cut
along the entire imaginary axis (Mentkovsky [12] and review
[1]). We consider this wave function only for Rek > 0.

The elastic scattering S-matrix element is given by

(=) k
st = 1 ®. @®)

Let k = k, be the zero point of the Jost function fl(+) k).
This point is a pole of the S-matrix corresponding to bound
state or resonance. From

k—ky, .
FP0 =" f ) (k= k) ©)
follows
(=)

k—ky i (k) A

Sitk) ~" — == (10)
fl (kn) (k - kn) — A

. -+

Here fl(H (ky) = 4 T ® and A; is the residue of the

=Kn

S-matrix at the pole k = k.
From Eq. (2) we get the wave function corresponding to
ky:

@1 (kn, ) =" £ UKy 1), (11)
2ik,
c= ——. (12)
117 ()

It is important to emphasize that left and right-hand sides of
Eq. (11) are regular at r = 0. For k,, = kg the resonance
wave function ¢;(kg, r) is the Gamow-Siegert wave func-
tion (plGS(kR, r). kg = ko — i k; is the momentum of the
resonance, kg = Rek > 0 and k; = Imkg > O.

According to Newton [13],

7P k) = (=D 20k, N2,

N? = /dr golz(k,l, r).

(13)
(14)

We now derive the coefficient ¢ in terms of the ANC for
resonance state (n = R). In the next subsection, we prove
that the Gamow-Siegert wave functions are normalizable.
From now on, we assume that N = 1.

The behavior of the elastic scattering S-matrix at k — kg
isdefined by Eq. (10) with the residue in the pole A; expressed
in terms of the ANC of resonance state, see Eq. (40) below.

@ Springer

Equations (10), (12), (13) and (40) are all that are needed to
write

=) (=) 2
_ fl (kR) . [f] (kR)] _ _l.2]+1 e TR Clz,

A[ = — =1
i) 4Dk
(15)
and
c = mRI2 (16)

We introduced the ANC in Eq. (15) using the results of sub-
section 3.1. In view of Eq. (11), we have

0P kg, r) = e TR Cp £ (kg ). (17)

In the nuclear interior the wave function ¢;(kg, r) can be
found as a regular solution of the Schrédinger equation with
the complex eigenvalue Eg. However, in the external region
where the nuclear interaction can be neglected,

oS kg, r) = e Cp f5D kg, 1)

r>Rep

=" CW_ipg,1+12(=2ikgr)

r—>o00 .
~ e ﬂ']R/ZClelp(kRJ)‘

~

(18)

The channel radius R.;, > Ry, where Ry isthe a— A nuclear
interaction radius. ng = Z,Za &2 w/kg is the Coulomb
parameter for the resonant state, Z,e and Z e are charges
of particles forming resonance state and & = g4 is their
reduced mass. Also

plkg,r) =krr —ng InQ2kgr). (19)

Because both bound states and resonances are the poles of the
scattering S-matrix, the resonance wave function golG s (kr, 1)
can be obtained from the bound state one by replacing the
bound-state wave number « in Eq. (98) review [1] with —i kg.

We introduced the ANC C; for the resonance state as the
amplitude of the tail of the Gamow—Siegert wave function.
In Sect. 3.1 we prove that the residue of the elastic scatter-
ing S-matrix in the resonance pole is expressed in terms of
the ANC (). Being completely accurate, we should use the
single-particle normalization coefficient here rather than the
ANC (j, which is the normalization constant for the overlap
function. The ANC is related to the single-particle ANC by
Eq. (111) from review [1]. We assume here that the SF of the
resonance state is unity. That is why the usage of C; as the
normalization constant of the wave function <plG S(kg, r) in
the outer region is justified.
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2.3 Normalization of resonance Gamow—Siegert wave
functions for charged particles

We continue to consider Gamow-Siegert solutions of the
Schrodinger equation with complex eigenvalues, which are
regular at the origin and satisfy the purely outgoing asymp-
totic condition. These wave functions alike the continuum
wave functions are not L? integrable, and a particular proce-
dure (Zel’dovich’s exponential regulator (Baz et al. [14]))?
ought to be introduced to normalize Gamow—Siegert wave
functions.

To normalize resonant wave functions, we need to intro-
duce the dual wave functions ¢; (k, r), which are also solu-
tions of Eq. (1)3:

G5k, ) = oS (k, 1)I* = o7 5* (k*, 7). 1)

To include not square integrable vectors, one can use
the so-called equipped Hilbert space, also called the rigged
Hilbert space, introduced by Gelfand and Vilenkin [15], Mau-
rin [16], see Appendix A. The rigged Hilbert space allows
one to work both with the continuum wave functions and
eigenfunctions with complex eigenvalues. Even generalized
functions (distributions), for example, Dirac delta-functions,
belong to the rigged Hilbert space. Then resonances are con-
nected with the point spectrum of complex-scaled Hamilto-
nians, see Appendix C.

In Appendix B we show that Zel’dovich regularization
procedure permits us to normalize the Gamow—Siegert reso-
nance wave functions for Coulomb plus nuclear potentials:

o0
lim dre P (695 (k, NT* OS5 (k. 1) = 1.

oo __
IO _—
B—+0 Jo

(22)

Here the factor e #"” isa regulator of the integral.
Zel’dovich’s regularization method is not unique, and
other regularization techniques can be used. In particular,
more general exponential regulator exp(—pr"), n > 2,
can be used. It will allow one to include more distant res-
onances. Another interesting regularization technique is the
so-called complex scaling method (CSM), see Appendix C.

2 Note that Zel’dovich’s exponential regulator e=#" ? with B — +0,is

. . n
a particular case of a more general Abel’s exponential regulator e #"",
where n > 1.

3 We need to explicitly explain how to take complex conjugation of
functions with complex arguments. Let u (k) be an analytic function in
the complex plane with Taylor expansion

ulk) =" a, k" (20)
n=0
Then u*(k) = io: ay k™ and [u(k)]* = % ay (kK")*.
n=0 n=0

The existence of the norm of the Gamow-Siegert wave
functions is all that is needed to write

R .
- R
0 _ GS /12 2
1 —/dr[‘PZ ()] +C1W
0
eiZer B
x lim [ dr ——e P =1, (23)
B—>—+0 ri2ng

R

where o5 (r) [¢75 (1)1* = [¢5(r)]?, and

o0
ﬂgnlo dr eiszrr—ZiT]R e—ﬂrz (24)
R
R™21 1k i2kg R R 1
.~ 1 —0 ] 25
i2kg © [ Y ((2kRR)2) 25

The asymptotic expansion in power of 2i kg R in Eq. (25) is
obtained by integrating by parts of the integral in Eq. (24).
Then from Eq. (23) for R — o0 one gets

R

[arwemr=1-ict
0

e_n NR

krR) 21K 2kg

eiZkR R

=1—Cle ™ —2; QPirkr R (26

R
The fact that the Gamow-Siegert wave functions for charged
particles can be normalized has significant consequences in
a few important derivations.

2.4 Berggren’s contour and generalized completeness
relationship

Berggren [6] generalized the completeness relationship
for short-range potentials by including discrete resonance
Gamow-Siegert states. It is achieved by deforming the inte-
gration contour over the continuum to the fourth quadrant.
Using Cauchy’s integral theorem, one can single out res-
onances (see subsection 3.2 and Mukhamedzhanov and
Kadyrov [17]) and add them to the sum over the bound
states. The price one pays for including the resonant states is
the deformation of the integration contour into the complex
plane. Considering that the Gamow—Siegert wave functions
are normalizable, see previous Sect. 2.3, we can generalize
Berggren’s method for the Coulomb plus short-range poten-
tial. The deformed integration contour C is shown in Fig. 1.

Including the resonance states leads to the generalized
completeness relationship

8¢ =)= ou() ou(r) + Y _ 165 ¢ 957 (r)
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Rek

Fig. 1 The deformed integration contour C allowing one to include
resonance states in the completeness relationship

1
tos / dk e ™Gk, O k), (27)
g
C

validating Berggren’s relationship for the Coulomb plus
nuclear potentials. Note that only resonances with kg > kj,
where kg = ko — i k;, are included into sum (27).

3 Residue in resonance pole of S-matrix and ANC for
resonance state

Inreview [1]), the ANCs for bound states were considered. In
this section, we extend the notion of the ANC for resonance
states (we have already done it, without proof, in Sect. 2.2)
and will establish the fundamental connection between the
ANC and the resonance width for resonance states. Engaging
the normalizable Gamow—Siegert resonance wave functions
is an essential part of the proof.

To establish the connection between the ANC and the
resonance width, we employ the behavior of the Coulomb-
modified nuclear scattering amplitude 7V (k) near the res-
onance pole. I refer now the reader to (Eq. (31) review [1])
from which follows that this amplitude has a cut along the
entire imaginary axis in the k-plane, which cuts the scattering
amplitude into two parts. To consider the resonances, we can
use the amplitude at Rek > 0. The behavior of TEN (k) near
the resonance pole is considered.

It is also shown how we can single out the resonance term
from the two-body Green function using the Gamow—Siegert
wave functions. Finally, we consider the asymptotic of the
resonance overlap functions whose amplitudes are expressed
in terms of the resonance state ANC.

@ Springer
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Fig. 2 S-matrix poles: (a) complex energy plane; the resonance and
the virtual state are shown on the second energy sheet; (b) complex
momentum plane

3.1 ANC and resonance width

Let us consider the elastic scattering S-matrix of two spinless
particles a and A. We assume now that at the orbital angu-
lar momentum /, the system a + A has a resonance. From
the fundamental principles of the analyticity, unitarity, and
symmetry of the S-matrix follows locations of its poles in
the complex k plane, see Fig. (2). It has poles corresponding
to bound states located along the positive imaginary axis and
the poles corresponding to resonances situated in the fourth
and third quadrants. Note that the poles in the low half-plane
should be symmetric relative to the negative imaginary axis.

The elastic scattering S-matrix may be written as (see
review [1], subsection 2.4)

Si(k) = SF (k) SEN (k) = SF (k) +2i kTN (k), (28)

where

(566 - 1)

TN (k) = SF (k) St

(29)
is the Coulomb-modified nuclear elastic scattering ampli-
tude, SZCN (k) = &% 57" is the Coulomb-modified nuclear
elastic scattering S-matrix and Slc(k) e o is the
Coulomb scattering S-matrix.

’Z;CN (k) is defined as (see review [1]), Eq. (31))

. N 1 1 2 .
TN () = e st [LEE LI qen a0y
Owing to the presence of the factor ¢~ 7%ig" Rek ye con-

clude that ’ZECN (k) has a discontinuity along the entire imag-
inary axis in the k plane dividing it into different analytical
functions. One is in the left half-plane (Rek < 0), and the
other is in the right half-plane (Rek > 0). The renormal-
ized scattering amplitude f;CN (k) is an analytic function on
the physical sheet of the Riemann surface (Imk > 0) where
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its analytic structure is similar to the pure nuclear scatter-
ing amplitude. However, in the low half-plane (Imk < 0)
the scattering amplitude ’flCN (k) has a discontinuity along
the negative imaginary axis. Similar to the nuclear scattering
amplitude, it may have resonance poles in the 3rd and 4th
quadrants of the k plane. Hence we can find the residue of
the amplitude ’f;CN (k) in these poles. Since these poles are
located away from the cut imposed by the factor ¢~ 7 SignRek
we can also find the residues in the resonance poles of the
amplitude ’Z;CN (k). The same is true for elastic scattering
S-matrix SEV (k).

The most general expression for the elastic scattering S-
matrix is (Baz et al. [14])

2180w k= Kk + kp)

SN (k) = e .
! (k — kr)(k + k%)

3D

Here § lp (k) is the Coulomb-modified nuclear potential (non-
resonant) scattering phase shift. Resonance momentum kg
is related to the resonance energy as Er = Eg —i1/2 =
k%, /(2 ). Ep is the real part of the resonance energy, I'; is
the resonance width in the partial wave /.

From Eq. (31) follows that

A
SEN (k) 2
(k) Py

+ gi1(k), (32)

where g; (k) is a regular function at k = kg. The residues of
the S-matrix and the scattering amplitude in the resonance
pole for the Breit—-Wigner resonance (I'; << Ej) are

Res SCN = A = —ie?i% o) Ko, (33)
ko
and
1 L op
ResTCV = —— A; = — 2o ko) 2 (34)
2i ko 2k3

Now we derive the relationship between the ANC and the
partial resonance width. To this end, we can use the method
presented in review [1], which is quite general, and the infor-
mation about the bound state was introduced only beginning
from Eq. (92) [1]. Since this equation is essential for our
derivation, we write it down again:

R
1 [3¢i(k, R) 0¢i(k, R
/drq?lz(k,r): 1 [ 3@i(k, R) 3¢i(k, R)
2k ok oR

—@i(k, R)

2/\
3¢ (k, R)]. (35)

0k OR
To further simplify this equation, we need to present a

few additional equations. At large real k the elastic scatter-
ing wave function ¢;(k, r) (Eq. (2.90), review [1]) can be

replaced by its leading asymptotic term which contains the
ingoing and outgoing waves:

Grtk.r) ~ ity [750 = (=1 57 e 40 ], 36)

where 7 is the Coulomb parameter of the interacting nuclei,
Cj(k) is some normalization constant whose meaning is
determined below. To adapt the derivation for the resonance
state we consider Eq. (36) for k — kg. In view of Egs. (28)
and (33), we get the radiation condition

Grkg, r) =" Cy(kg) P kR, (37)

Comparing this equation with Eq. (18) one can easily verify
that

C;=Cre mR2, (38)

Note that the scattering wave function ¢;(k, r) at large
r at real momentum k contains ingoing and outgoing waves
and is not normalizable in the entire space while ¢;(kg, 7)
asymptotically contains only the outgoing wave and regular
at r = 0. Hence this wave function is the Gamow-Siegert
resonance wave function.

Substituting Egs. (36) and (32) into the right-hand-side of
Eq. (35) and performing the differentiation over k and R and
taking k = kg one gets

R
f dr (98 kg, P =i (=1 C2(kr)/ A
0
i .
2 pliptkr, R) 39
[ 2k e (39)

Comparing Egs. (26), (38) and (39) we find that the residue
in the resonance pole is expressed in terms of the standard
ANC Cy:

Res SN = A) = —i?!T1 ek 2, (40)
This relationship is universal and valid for bound state poles
and resonances.

Equations Eqgs. (33) and (40) are all that are needed to

write the relationship between the ANC and the resonance
width for the Breit—Wigner resonance:

CF = im2l 7 210 kn) ki I @1
R

This equation is valid for the Breit—Wigner resonance. Then
in the external region Eq. (18) takes the form:

Rz‘ . — i sP
<p1GS(kR, ") r>Ren =1 gmnr/2 i8] (ke % T,

@ Springer
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X W_ing 1+172(=2i kg r)

— i1 i 8 kr) kirl fICH)(kR,r)
R

_ s tn \/5 O1(kr. 7). (42)

where we took into account that

O1(k,r) = e 712 fEH (& 1)

. 1 .
— efznl/Z ez T Nsign Rek W—in,l+1/2(_2ik")~

(43)

We can replace kg — ko, especially in the nonresonant
scattering phase shift Slp , for the Breit—-Wigner resonance
under consideration.

Now we show how to relate the ANC C; to the resonance
width I'; for general case. We use the following definitions:

Eo = [k — (kn)?]/ 2 ),
Iy =2koks/1a. (44)

From Eq. (31) at k — kg we get the residue in the reso-
nance pole:

A= —2ikptr [(1+ )4+ (1 + 3~ V4!

< ¢il2 87 (kp)—1 arctan(rR)]’ (45)
TR = ;—éo Equation (45) expresses the residue of the elastic

scattering S-matrix in terms of the resonance energy and the
resonance width for broad resonances.

Recovering now all the quantum numbers one gets for a
narrow resonance (tg << 1) the residue of the elastic scat-
tering S-matrix element in the resonance pole (up to terms
of order ~ 1)

g _ieziaj’ *2) HaA

i, = B Laaigjpi
IpjB kaA(O) aAlpjpJp
_ 21+l —7 naa B 2
= —i e a ()(CaAlBjBJB) (46)
and

B 2 . 2p wnan 287, kaay)
(Canty jpap) =i 218 €T MaA0 "

HaA FuA Ip jB JB

47)
kaa()

where /g, jp and Jp are the quantum numbers of the res-
onance B = (aA): orbital angular momentum, total angu-
lar momentum of particle a and total spin of the resonance,
respectively. 'y a1, j, 75 18 the resonance width for the reso-
nance decay B — a + A, 8 (kaa (o)) is the potential (non-
resonant) scattering phase shift at the real resonance relative

@ Springer

momentum ka4 0y Naa©) = Za Za €* aa/kaa 0)- Equa-
tion (47) is general and valid for arbitrary SF.

3.2 Resonance part of Green function in terms of
Gamow-Siegert wave functions

We now take up another interesting application of the
Gamow-Siegert wave functions. We consider the Green
function describing the propagation of two spinless particles
and show how to single out the Green function resonance part,
modifying the spectral decomposition of the Green function.
The resonance part will be expressed in terms of the Gamow—
Siegert wave functions.

The starting point is a formula for the two-body Green’s
function resolvent:

Gy = — (48)
z—T -V

where 7 is the kinetic energy operator of the relative motion
of the interactiing particles, V = V¢ + V¥ is their inter-
action potential given by the sum of the Coulomb and
nuclear potentials. The spectral decomposition of the two-
body Green function taken in the coordinate representation
is

dk ’\I/(l:)(r’) >< \I!l(;)(r)‘

Cr.mB) =21 | 53 TE—R)@w +10

(49)

The scattering wave function \I/l((_) (r) is a solution of the
Schrodinger equation

w7 () (kZ/(z W V) —0 (50)

corresponding to the relative kinetic energy k%/(2 i), u is
the reduced mass of the interacting particles. Note that in
the spectral decomposition (49) we can use \IJI(:F) (r) wave

functions rather than \I—'li_)(r). As a reminder, the partial-

wave expansion of \Ill((_)(r) is given by

v =v @ =4x i Y (R Y, @)

Imy

I
x = W0 (51)

with the partial-wave scattering wave function
_ i _
v = -5 AR AR (0] REE)

Also \Dl((_)*(r) = lI/(_Jlr{) (r). The elastic scattering S-matrix
element S;' does not have a resonance pole on the second



Eur. Phys. J. A (2023) 59:43

Page 11 of 56 43

energy sheet at E = ER. It also follows from the unitarity
condition §;S; = 1 from which it is clear that at the res-
onance pole of S; the conjugated S} has zero. Hence in the
product

WO ) = e 17k =8 A )]

<A =8 fPwen] (53

only the term —ﬁ fl(_)*(k, S fl(+) (k, r) contains
the resonance in the fourth quadrant in the complex k-plane
(fourth quadrant of the second energy sheet).

We need to do the following steps to single out the reso-
nance term from the spectral decomposition (49) of the Green

function.

1. First we perform the integration over the solid angle Q2 k.

2. Then, we select the term containing the S-matrix element
S; which has a resonance pole on the second Riemann
sheet at the relative energy E = Eg = Eog —iI"/2, where
I is the total resonance width. In the momentum plane
this resonance pole occurs at the relative momentum kr =
ko —iky.

3. When k — kg the integration contour over kK moves down
to the fourth quadrant pinching the contour to the pole at
kr. Taking the residue at the pole £ = ER one can single
out the resonance contribution to G(r/, r; E) .

Now we can proceed to the practical realization of the out-
lined scheme.
After integration over 2 x Eq. (49) reduces to

, ! ey
G, E) = o— ; Vo @) Yi, (B)
A7 ) =870 07k [ A7 ) = 8100 £k )]
E—k2/2p) +i0

oo

dk[

o

(54)

To be definite, assume that a resonance occurs at [ = [j.
Then the resonance contribution to G (r, r; E) comes from
the partial Green function

1
/dk
2nr'r

where we took into account that at real k& fl(_)* (k, r) =

PP, S ®) £ k1)

G " riE)=
o i E) E—K2/Q2 ) +i0

(55)

fl(+) (k, r). The S-matrix elastic scattering element Sy, (k)
for the single-channel, single-level case is given by Eq. (87),
see below.

At k — kg the integration contour over k moves down
to the fourth quadrant pinching the contour to the resonance
pole k = kg. Note that this pole corresponds to the pole in
the energy plane at £ = Ep located in the fourth quadrant
of the second energy sheet. Substituting Eq. (87) for Sy, (k)
and taking the residue in the resonance pole we get what we
sought:

Gi(r'. ri E) = GR(r'. ri E)+ GR (', ri E), (56)
where
/ 8
G, 11 E) = — ¢ () Z< ¢R(I’)|’ 57)
E— kR/(2 23]

¢%(r) = ¢S (r)/r and

oGS (r) = /30 ,/% T £ ke, ), (58)
505y = 710 [T [0 (kg )]’ (59)

kg

are the Gamow-Siegert resonant wave functions. Note that
Pr(r) is the Gamow-Siegert wave function from the dual
basis. The Jost solution flg'H (kr, r) is regular in the origin
(r = 0). For narrow resonances kg can be replaced by k.

3.3 ANC:s and overlap functions for resonance states

Equations obtained in Sect. 3.1, which express the residues
of the S-matrix elastic element in terms of the ANCs of the
bound states and resonances, provide the most general and
model-independent definition of the ANCs. From other side,
we introduced the ANC as the amplitude of the tail of the
two-body Gamow-Siegert resonance functions.

To introduce the ANC for composite particles we need to
engage the overlap functions (see review [1]). Formally the
radial resonance overlap function for the Breit—-Wigner reso-
nance in the external region (rg4 > Rehaa), where Repaa) 18
the channel radius in the channel a + A) can be obtained from
Eq. (107), review [1] by the substitution ky4 = —i kqa (r):

Taa 1 j 15 KaAR), Tar)
W_i NaA(R) 1g+1/2(=2i kaa (R)Tar)

B
= Clin - (60)
i k —i In(2i &,
FaA—>00 CB _71 %MR)/zel aA (R) TaA— i NaA(R) IN(2i kga (R) TaA)
aAlpjplp €

TaA

(61)
This asymptotic behavior agrees with the asymptotic behav-

ior of the resonant Gamow wave function given by Eq. (18).
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4 Resonance wave functions and S-matrix in R-matrix
approach

One of the most effective and powerful methods to treat res-
onance processes is the R-matrix method. In a number of
cases, in this section and the sections below, we will employ
the R-matrix approach. There have been few systematic and
excellent reviews on the R-matrix method. First and fore-
most of them is a “bible” of the R-matrix method by Lane
and Thomas [18]. It is also worth mentioning the reviews
by Vogt [19], Descouvemont and Baye [20]. One of the sig-
nificant practical contributions of the R-matrix method has
been made by Barker ( see Barker [21], Barker and Kajino
[22] and references therein). Azuma et al. [23] developed
the most advanced R-matrix code AZURE. It is necessary
to single out an excellent work by Brune [24] in which the
ANC in the R-matrix formalism was considered. Finally, I
need to refer the reader to another very important work by
Maxaux and Weidenmiiller [25]. In some derivations below
we followed these works.

The first application of the R-matrix method are the mul-
tichannel scattering wave functions. The R-matrix approach
is based on splitting the configuration space into the inter-
nal and external subspaces. That is why it makes sense to
consider separately internal and the external scattering wave
functions and then their matching at the channel radius.

4.1 Internal scattering wave function

A general equation for the internal wave function contains the
sum over total angular momentum Jr and its projection Mr.
Since we are interested in a wave function \I/;;) describing
a resonance in the system F = b 4 B, we consider only
the internal wave function at given Jr, at which resonance
occurs in the presence of a few levels and two channels. We
also use the LS-coupling scheme, that is, the channel spin
representation, which is customary in the R-matrix approach.
In the internal region in the state with the total momentum
JF, channel spin s (its projection my) in the initial channel

¢ = b + B the wave function \IJ,;) can be written as

Jptint)y 27 [ ke
W == [=<
o ke He Mg lmy

N
X Yy (ke) D7 oestgp (BN [AB)],, X

v,t=1

_i(shs_ _C
10 —oq) il <smg Imy|Jp Mp >

JFMF
e .

(62)

Here X7 ™F is an eigenfunction of the Hamiltonian in the
internal region describing the compound system F = b + B
coupled with open channels and excited to the discrete level

@ Springer

with the total angular momentum J and its projection Mz ,*
N 1is the number of the levels included, og is the Coulomb
scattering phase shift in channel ¢, A is the R-matrix level
matrix:

A ENe = (By = B = Y e vee [ Se(Ee) — B
+i PeEe, R (63)

Here ) is the sum over all the open coupled channels, E, is

the R-;natrix energy of the level v, y, . is the formal reduced
width amplitude of the level v in channel c, S’C(EC) is the
level shift, B, is the level-independent boundary condition,
P.(E¢, Rep(cey) is the R-matrix penetrability factor in chan-
nel c. Also s is the channel spin, / (m;) is the resonance
orbital angular momentum (its projection), E. = Epp and
k. = kpp are the relative energy and momentum of particles
band B, . = upp, I'yc(E,) is the formal (R-matrix) par-
tial resonance width of the level v in the channel ¢ = b+ B,
5£f is the hard-sphere scattering phase shift in the channel ¢
given by

Ii(ke, Ren(e))

Ol(kc’ Rch(c))

G[(kc, Rch(c)) —i Fi(ke, Rch(c)) eizﬂfz
Gi(ke, Reney)) + 1 Fi(ke, Ren(e))

P (sh C
6_21 (617;_061) =

’

(64)

where ag is the Coulomb scattering phase shift in the chan-
nel ¢, I;(k., rc) and Oy (k., r.) are the Coulomb ingoing and
outgoing Jost singular solutions, Fj(k., rc) and G;(kc, r¢)
are regular and singular Coulomb solutions, R is the
channel radius in the channel c.

A separable form for \IJCJ r ,(,l;'xlt) reflects the fact that we
consider the b + B interaction proceeding through resonance
states. The entry channel of this scattering is the channel
¢ = b + B. The inverse level matrix contains contribu-
tion from all N resonance levels. In a simple one-level case
it reduces to the well-known Breit—Wigner type resonance
propagator. All the open channels coupled to ¢ contribute
to X ,]F MF and determine possible exit channel contributions
into resonance scattering. We assume that the initial channel
b + B is coupled via the resonance scattering to two chan-
nels, c = b+ B and ¢/ = n + A. Hence in the internal
region, where these open channels are coupled, X ,JF MF can
be written as a nonorthogonal sum:

1 -
JrpMp __ . - Jr Mp -
D D L T b (63)
&5 Im;
4 1t is shown in [25] how to calculate X7 ™F in the shell-model

approach.
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Here A5 is the antisymmetrization operator between the
nucleons of the fragments in the channel ¢. For example,
for the channel c = b + B

<. b+ B\ °’ R
Ae:Absz( b) > (=DPP, (66)

P is the operator of the permutations of the nucleons of
b and B. Sum p stands for all the possible permutations
of one, two,... b nucleons from each nucleus. Then (—1)?
determines the parity of the permutaion (p = —1 for odd
and p = 1 for even permutaions). Also &; is the product
of the antisymmetrized bound-state wave functions of the
fragments in the channel ¢, ¢ = ¢, ¢/, u cesiip is the wave
function of the relative motion of the fragments in the state
{§1 JF} in some adopted potential with the same boundary
condition as X7 JEMe e T r are the channel spin, orbital
angular momentum and the total angular momentum of the
fragments in channel c.

The channel spin-angular wave function (in L S-coupling)

¢JF M‘f in the channel {¢ 5] m;} is given by

M B -
(f)g?imf: E <Ssm;lmj| Jp Mp > Yim[(?z‘)
s ml—
X Yesm;- (67)

Yesm; is the channel-spin wave function in the channel
{c § mz}. For example, in channel {c s m}

Yesmy = Y < Jp My Jg Mplsmg >

My Mp
X Yy, My Vg Mg - (68)

Here 1, »; is the spin wave function of particle i, s (my)
is the channel spin (its projection) of channel ¢, r. = rpp
is the radius-vector connecting c.m.(s) of particles b and B.
The sum over m; in Eq. (67) is formal because m; and Mp
are fixed in this equation.

We introduce now the projection of the wave function
\Ifc(im) with the incident channel ¢ on the two-cluster channel
C: Ve =< A; $5|\I/C(im) > . Then

JFGint) _ _ 2 Jp(int)
cimye =< Ac&IVlmg >
k _i(shs__C
= -< e Ger—oq) il <smg Imy|Jp Mg >
c He Mpim
al JpM
L 1/2 —1 ~JFMFE
X Yo (ko) Y Tyest gy (BN [AT] 82807,
v,7=1

(69)

=JFMF A JrM
Bl =< Ag&|XrTE >

= N: < &|X/FMr > (70)

Here the orbital angular momenta/ in the incident channel
and [ in the exit channel are fixed. Nz = [%]1/2, A
and A; are the number of nucleons of the fragments of the
channel ¢. Here we used the fact that A is the Hermitian
(self-adjoint) operator. That is why it can be moved from
the bra to ket state acting on X IrME Since X717 M7 is fully

antisymmetrized, A; X" MF = N xIrMr
4.2 Reduced width amplitudes
We adopt the channel radius R large enough to neglect

antisymmetrization between the nucleons of the fragments
of channel ¢ at rz = Rz, that is,

AT M)

lm~ Ues

re=Ren()

Ia A M ~
~ N 5L¢ Pm; “esip

slmg;

(71)

re=Ren@)

Assuming that the overlap of channels ¢ and ¢’ at the chan-

nel radius is negligible, we get the projection of X; IrME on
channel ¢ at 7z = Repe):
glr ¥ e (Rete) = Nz < & | XJrMF
res re=Rg
1 Jr M
= R Z ¢5§1~mf cesiay (Ren@)
cnic ~
l
(72)

where we used Eq. (71). Here Uy 5Ty (Repe) is the R-
matrix level T wave function, which the closest to resonance
level under consideration.

Atrz = Rep ), by definition,
u

cesltr (Ren@) = V2 1& Ren@ Ve e57 gy (73)

where y_::7 Ir is the formal reduced width amplitude of the
level 7 in the channel & § I J. Thus in the R-matrix approach
the reduced width amplitude is introduced as the boundary
value (at R p(z)) of the internal radial wave function. It is
useful to remind that the system of units 7 = ¢ = 1 is being
used throughout the paper if not specified otherwise. Then

~Jr M Jp M
B0 (Rebe) = Ne < &|X{r M >

V5=Rg
1 JFMF
"~ Ruw - Oeiim, VEHE Ren@ Vegsige-

(74)
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Thus we can express the component E:;%; _(R) taken at
the channel radius rz; = Rj (s in terms of the sum of the
reduced widths amplitudes in all allowed partial waves [ in
the channel ¢ at given Jr and §.

4.3 External scattering wave function

Now we proceed to the expression for the \I/c(+) in the external

region, where re > Rep(e) Or rer > Rep(er). In the external

region the wave function ngﬂfgfﬂ with fixed channel spin

and its projection in the incident channel ¢ can be written as

wEnE _gO

csmg csmg

\IJ(EXZ)(-H (75)

csmgir

where the first term is the incident wave and the second term
is the sum of the outgoing waves in all the open channels.
The incident term is

WO = azg, S N il <smy lmy I Mp >

Jr Mg Lmymg
X < smgr lmy|Jp MFp
e2i0‘§ Fy(ke, re)
T
X Yim, (Fc) besmys (76)

> Y/ (ko)

where F; is the regular Coulomb solution. The subscript ¢
means that the incident wave is in channel c¢. The sum over
myr is a formal because

Z <smgIm;|JFp Mg > < smg Ilmj|Jp MF >
JFMF

= 8mS myr - (77)

Note that here we use the incident wave with the unit ampli-
tude rather than with the unit flux density. The compo-
nent \IICJSF l(f:::) C(g)l myr which corresponds to the exit channel
{c sl mgy} and fixed JF, projected on &. reduces to

TJF(”U(O)

cslms;cslms//

=4nr Z il <smg lmy|Jp Mp >
My my
e
1% Fithe, ro)
kere

X Yim, (Fc) pes mgy - (78)

X < smgn lml|JF MF > Yl*m](f((;)

Thus the incident wave is the pure Coulomb scattering wave
function in the incident channel c¢. Taking into account that

€% Oy (ker re) — €% Iy (ke re)

Fike,re) = 25

(79)
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JF (ext)(0)

cslmgicslmgn in the form

one can rewrite YT

I (ext)(O) 27

cslmgicslmgn ke re

il Z <smglm;|Jp M >
Mg my
<smg Imj|Jp M >

A ; C
X ¥ (ko) [ ik, re) = €271 Oy ke, 1)
)] my (Te) pes mg - (80)

The second term in Eq. (75) is given by the sum of the
outgoing waves in the open channels:

2w ve |
W = . > ch & >
‘e € JFMpflimgm[mi
il <smg im|Jp Mp > Y, (ko)
. C J
5 [e,zacz 8¢ 85507, — Sé‘;i_”l(kc)] O1(ke. 7e)
< ?m; lel”|JF MF > Yl~m[-(f5)¢f§m§' (81)

Here S’F i [(kc) is the S-matrix element for transition
cslics

{cslJp} — {¢51JF}). Note that we consider the outgo-
ing waves in the channel with given total angular momentum
Jr, initial channel spin s (its projection m) and final channel
spin § (its projection my). Since only two open channels are
taken into account here, we will write explicitly the outgoing
waves in both channels.

4.4 S-matrix in R-matrix approach

Now we have everything to derive the expression for the
matrix elements of the S-matrix in the R-matrix approach.
Since the wave function \Ilc(.'H is continuous we can equate
the projections of the internal and external wave functions at
the channel radius R.j:

JF(int) _ ~nJr(ext)(0)
c;:l ms;cslmSu(RCh(C)) - Tc;:lms;cslmxu(RCh(C))

(ext)(+)
+ Tcixlms;cslmx//(RCh(C))’ (82)

This equation boils down to

N
_:(shs _ _C _
e 00 N T g1 g (BN AT V2 ke Rengey
v, 7=1
X VeeslJp = i [Il(kc» Rch(c))
— ST, 1ke) Orlke. Rencey))- (83)

Assembling Eq. (64),

Tresisp(Ee) =2 Pey(Ee, Rene) Viesi s, (84)

and the Coulomb-centrifugal barrier penetrability
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kc Rch(c)

Pei(Ec, Ren(e)) =
T T F2 ke, Reney) + G kes Rence))

(85)

into Eq. (83) we get the elastic scattering S-matrix element:

s/r

2 cshs C
cvl'cvl(k") = 6721 @ci=0a)

N
<1+i > Cvesiap(ENA[ATY,. [rmuF(Ec)]‘/z).
v, =1

(86)

For simpler single-channel, single-level case Eq. (86) turns
into familiar resonant S-matrix expression:

S (k) = -2 6l—o$ Eoo = Ec +iTesi(EQ)/2
cslicslNe Eo) —E.—iTe51(Eo)/2’
87

where Ey () is the real part of the complex resonance energy
in the channel c. This equation is different from the Breit
-Wigner S-matrix formula for a single resonance because
it contains the energy-dependent resonance width ' 5;(E,)
rather than I'¢ ¢/, which appears in the Breit—-Wigner expres-
sion. The presence of I'. 5 ; (E.) reflects a simple fact that the
resonance S-matrix in the R-matrix approach takes effec-
tively into account a background absent in the Breit—Wigner
approximation.
From Eq. (87) follows the unitarity of the S-matrix:

[S7E ) oy k)T STE o Gee) = 1. (88)

Note that [SZ‘; I cs l(kc)]* does not posses a resonance pole
in the fourth quadrant of the energy plane.
From equality

Jp(int)
csmg;c’ s my

(Rene)) = esimtl i, (Rene) — (89)

cslmg;c’'s

we obtain the reaction matrix element:

s’r

csl;c's

N
: (shs C _s(shs _ __C
ko) =i e i) ¢ HOsy o) Z
=1
X [Tyestap(EOV[AT] [Teeyr e (B2 (90)
To derive this equation we took into account that

s(shs _ _C
Op(ker, Renery) = e Cv =)

VU (e, Rege) P2+ [Gorlher, Renen) P

= i G5 ko Ry gy
Pc’l’(Ec’v Rch(c’))

The obtained matrix elements of the S-matrix confirm that
the relative normalization of the internal and external wave
parts of \I—’;;) are correct and one can use them to calculate
the reaction amplitude proceeding through resonance states.

5 ANC and reduced widths in the R-matrix approach

Now we can consider the important ingredients of the R-
matrix approach: the reduced width amplitude, the logarith-
mic derivative of the outgoing Coulomb solution, and the
ANC. We derive an important relationship between these
quantities both for bound and resonance states. We define
the formal and observable single-particle reduced widths
used in the R-matrix formalism and their connections to the
single-particle ANC and full ANC via the Whittaker function
describing the external part of the bound-state wave function.
While the derivation is standard for the bound state, it is not
the case for the resonance state and requires employing the
normalizable Gamow-Siegert resonance wave functions. To
avoid complications, we consider only narrow resonances.
Again, as in Sect. 3, but using a different approach, we obtain
the relationship between the ANC and the resonance width.

5.1 Reduced width and ANC for bound state

One of the main ingredients of the R-matrix is the reduced
width amplitude, which has been introduced in Sect. 4.2. We
start our consideration from the single-particle reduced width
amplitude

u(k,r)

Rch
\/m Ren / dr u? (k, r)
0

which is the amplitude of the resonant or bound-state wave
functions at the channel radius R, assuming that the wave
function is normalized to unity in the internal region 0 < r <
Rep. ()71Sp )2 is the reduced width. The single-particle wave
function u; (k, r) is given by

~Sp

Y

, 92)

u(k,ry=2ikeyk, r)
=[1O® )+ 0 s ® P w D] ©3)

where fl(i) (k, r) are the Jost (singular at the origin r = 0)
solutions. The wave function ¢; (k, r) has been introduced in
Eq. (2).

In the R-matrix method in which the coordinate space
is split into the internal and external regions, it is custom-
ary to normalize the wave function in the internal region,
although the bound-state and the resonant wave functions
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(see Sect. 2.3) can be normalized to unity in the whole coor-
dinate space.

Often is used the dimensionless formal single-particle
reduced width

Rep ul(k, r)
Rch :

2 / dru?(k, r)
0

Another important equation is the logarithmic derivative
of u;(k,r) taken at r > R.;. In this region fli(k, r)y =
FEF k, r) and

@) =R (77 = (94)

Lk, ry = e ™2 fEO ), (95)
O1(k, r)y = e 712 fEO e r). (96)
Then Eq. (93) yields

-1 dr;(k,r) dOy(k,r)
dinuk,r) _ S (E) g0 — 40gkn o7

dr STUE) Lk, r) — Ok, )

Below, we will show how to introduce the ANC for bound
states and resonances in the R-matrix approach. First, we
consider the radial Schrodinger equation

1 d2 centr C
(£+ sp gz O -V ) ik, r)

= VN u(k, 1), (98)
where E is the relative kinetic energy of the interacting parti-
cles, VN (r), V€(r)and V™ (r) are the nuclear, Coulomb
and the centrifugal potentials.

Now we write down the Schrodinger equation (98) for
two different energies E;, i = 1,2, and two correspond-
ing wave functions u;;y(k,r), i = 1,2, multiply from the
left the Schrodinger equation for u;1)(k, r) (u;2)(k, r)) by
uy2)(k, r) (uy1)(k, r)) and subtract the second equation from
the first one:

1 d duy2)(k, )
——[ul(l)(k,r)lm—r

2u dr d
= (E1 — E) uiqy(k, r) uy2)(k, r).

duyy(k, r)
—uy)y(k,r) L]

dr
99

Integrating both sides of Eq. (99) over r from r to r, we
obtain

dIn (MI(Z) (k, r)) B dIn (ul(l)(k, r))]
dr dr

1
o upry ke, ryuyyk, r) [

r1
r

= (E] — E2) /dr up(ry ke, r)ugy (k, r).

r

(100)

@ Springer

rn

Taking the limit £y — E» (thatis, u;1)(k, r) — uj)(k, 7))
leads to

r

rn 2
= druj(k,r).

rl

dln (u;(k, r)
) (At oly]

1 2
ol e (2t

2p

ri

(101)

Taking ri = 0 and r, = R.j,, and recalling that u; (k, 0) =
0 we get

Ren

_i[u%(k,r)a%(wﬂ = [ orsin.

dr

r=Rcp

(102)

The R-matrix formalism developed for resonance states
can be extended for bound states for which k = ix, E =
—«2/2u = —e. In this case the bound-state wave function
can be normalized to unity over the whole coordinate space:

R.p, [ee)
/drulz(i/c,r)+/ drulin,r)=1. (103)
0 Rch

Taking r1 = R., and rp = oo in Eq. (101), and recalling that
. r—00
ui(ik,ry = 0we get

o0

. 1 . 38(E)
2 2
/ druj(ic,r) = >4 Rop uy (i i, Rep) E lpe_s’
Rch
(104)
where
dIn (ul(i K, r)) dln (01 (i k, r))
dr r=Rep o dr r=R¢p,
— $(E ’ . 105
1(E) E— ) (105)

Introducing the wave function normalized over the inter-
nal region

. ui(k,r)

uyk,r) = P (106)
[ druitk,r)
0

we can rewrite Eq. (104) as

r 38,(E)

driid(i, r) = (772 22022 . 107
f riflen =@ S| (107)
Ren

Here 7, is defined in Eq. (92).
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Since in the R-matrix approach the bound-state wave func-
tion u; (i k, r) should be normalized over the internal space
rather than over the entire coordinate space, we can express
the normalization integral over the entire region in terms of
the normalization integral over the internal region:

00 00 Ren
Ié’oz/drulz(ilc,r)z |:1+/ drﬁlz(i/c,r)] / drul2(i/c,r)
0 Ren 0
N Rej,
=[1+(;7,”’)2% E?e] f drudix, r). (108)
0

To satisfy normalization condition (103) one can introduce
u? (i 16, Ren)
15~
is expressed in terms of the single-particle ANC b;. To show

it we write

. Asymptotic of this single-particle wave function

uptie, R _, o 7'"?
I1$° = SR Ren ~sp\2 38
0 L+ @ 55|,

= b7 W2 122K Ra), (109)

n?* is the Coulomb parameter of the bound state.

The formal single-particle reduced width (7;7)?

to the single-particle observable width (yfp )2:

is related

7")?

L+ @2 5z

" = (110)

E=—
Then the single-particle ANC is

2t Rep

b =
(2K Ren)

(Vlsp)2~

(111)

2

W—r/b",l +1/2
Recalling the SF S introduced in review [1], we get the

relationship between the ANC and the observable width:

2 Rep 2
Vl )
2(2K Rc‘h)

C12 = (112)

2
W—an JA+1/
where the observable reduced width yf is related to the
observable single-particle reduced width via the SF S:

n*=sy"? (113)
and
C} =sb?. (114)

Finally, for r > R,

Wﬁnbs‘1+1/2(2K r)

gl/2 u(iK,r) _
W_nbs’l_;'_l/z(zl( Rth)

N

5.2 Reduced width, ANC and resonance width for
resonance state

2 Ren v (115)

The derivation of Egs. (111) and (112) can be generalized
for resonance states. To this end, we replace the bound-
state wave function u; (i «, r) with the normalizable Gamow—
Siegert one. There is some point that should be discussed
about the extension of the results of Sect. 5.1 for reso-
nance states. The standard R-matrix approach deals with real
energies while applying the Gamow—Siegert wave functions
requires some opportunistic step in the R-matrix formalism:
operating with complex resonance energy Eg. To avoid the
complication of using complex energy, we consider only the
Breit—Wigner resonances (I'/Eg << 1). Then we can treat
the imaginary part I" as an infinitesimal parameter.

Let us consider, for example, an important relationship
(105) introduced for bound states. A specific of the bound
states is that the asymptotic of the bound-state wave function
has only the real outgoing wave O;(i k r) in contrast to scat-
tering wave functions. The Gamow-Siegert wave function in
the external region also has only the outgoing wave O; (i kg)
and for the resonance state

k., (dln (ufS kR,r)))

| — Ry, (dln(Ol(kO,r))>

dr
A~ ’ .
l( ) E=Ey

r=Rcp r=Rcp

(116)

Correspondingly, Eq. (112) generalized for the narrow reso-
nance states takes the form

2 Repy
2 2
Cl = 3 L2 R Y-
W*ino,l+l/2(_ i ko Ren)

(117)

This equation obtained in the R-matrix approach also fol-
lows from Eq. (41) derived in the potential approach. To this
end, we need to recall Egs. (85) and (43).

Let us now assemble these equations into Eq. (117) to
obtain

. rohs C
Clz — 72 gm0 =20 [ (ko) =0 (ko) L2 I, (118)
0

which is valid for Breit-Wigner resonances (I" << Ep).
Equation (118) is the same as Eq. (41) in which the sub-
stitution kg — ko has been done. Note that the potential
phase shift 81” (kg) is replaced by the potential scattering
phase shift in the R-matrix formalism —81]” (ko) + Ulc (ko),
where —8;” (ko) is the hard-sphere scattering phase shift.
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Thus the relationship, which has been derived in Sect. 3.1
using the analytical expression for the S-matrix and poten-
tial approach, can be obtained using the R-matrix formalism
employing the Gamow-Siegert wave functions.

6 Single-channel, single-level elastic resonance
scattering

Having discussed reduced widths and elastic scattering S-
matrix, we are now in a position to discuss the simplest
single-channel, single-level resonance elastic scattering S-
matrix and elastic scattering amplitude. We obtain the near-
resonance behavior of the elastic scattering amplitude in
terms of the observable resonance width. Another interest-
ing case to address is the elastic scattering in the presence of
the subthreshold bound state (aka subthreshold resonance).
We derive the expression for the elastic scattering amplitude
at energy £ — 0 and explain why the low-energy elastic
scattering amplitude behaves as there is a resonance at neg-
ative energy in the presence of the subthreshold bound state.
Also, we derive the expression for the residue of the elastic
scattering amplitude in the subthreshold pole in the energy
plane. It allows us to express the ANC of the subthreshold
bound state in terms of the reduced width of the subthresh-
old bound state and the observable partial resonance width of
the subthreshold resonance at positive energies. Finally, the
expression for the radiative capture cross-section and astro-
physical factor to subthreshold resonance expressed in terms
of the ANC is derived. These equations underscore the role
of the ANC in the analysis of the resonance elastic scattering
in the presence of the subthreshold resonance.

6.1 Single-level, single-channel elastic scattering S-matrix
and amplitude

Let us consider a single-level, single-channel case. The elas-
tic scattering S-matrix can be written as

Si(E) = SfP(E) SF(E), (19
where
SRP(E) = ¢~ 2111 E)=of (B)] (120)

is the potential elastic scattering S-matrix in the R-matrix
formalism and

— E—7")(SQ(E) — i PI(E, Rep)]

SIR(E):e2i5,N(E): E I
E; —E — (3ZD2S)E) +i PI(E. Rep]
(121)

@ Springer

is the resonance part of the R-matrix elastic scattering S-
matrix. Here S)(E) = S;(E) — B, B is the boundary con-
dition, )71S P — )7f P(Ey) is the single-particle reduced width
amplitude corresponding to the level energy Ej, §;(E) =
) IN (E)— 8;” (E) +(TZC (E) is the total partial scattering phase
shift, SIN (E) is the partial nuclear scattering phase shift.
In what follows, to simplify notations, we omit an explicit
indication of the energy dependence of 81’” (E) and alC(E ).
Note that in the R-matrix approach, the adopted the channel
radius R, is assumed to be so large that the nuclear inter-
action between the interacting particles can be neglected. To
calculate the barrier penetrability P;(E, R.,)(E) at smaller
R.j, one needs to take into account the nuclear interaction.
Since the nuclear potential is negative, the height of the bar-
rier decreases. However, it is not easy to calculate the effect
of the nuclear interaction because it depends on the energy,
parameters of the nuclear potential, and the orbital angular
momentum.

From Eq. (121) follows that the partial nuclear scattering
phase shift is

~SPN\2
") fl(E,ARch) } Caw
Ei —E — (3")2[SI(E) — B]

BIN(E) = arctan |:

The formal single-particle resonance widths is

)7 (E) = 2 Fi(E, Rep) [77" (E)T. (123)
We remind that in the R-matrix method, the dependence of
the resonance width on E appears because the background
is included in the resonance S-matrix.

The phase shift SIN (Eg) = /2 defines the real part of
the resonance energy
Eo = E1 — (3")*181(Eo) — B], (124)
where ()71S I )Z[S'I(EO) — B] is the energy shift determining
the difference between the level energy Ep and the real part
of the resonance energy Ej.

Assume now that the level energy E1 = Ejp. Then the
formal single-particle resonance widths is f‘;p = f’;p (Ep).

Now we can introduce the observable reduced width and
observable resonance width. Since E1 = Ey, the energy shift
is zero at E = E. Hence B = S’Z(El). Then for £ — E;

E1 — E — (3")*[Su(E) — S1(ED)]

—spn ASI(E)
%E—E[l spy2 SOLLE) ] 125
(Eq Y1+ 7D aE lies, (125)
Substitute it into Eq. (122) we get
N")? PI(E, Rep)
SN(E) = arct , 126
1 (E) arcan[ E_E ] (126)
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where
e _ ")

d$;(E (127)
~8
1 (7/1[7)2 é( )

o

E=E;

is the observable single-particle reduced width. Introducing
the observable reduced width

vi=sy")? (128)
we get the observable resonance width:
Iy =Ti(ED) = 2y P(E1, Ren). (129)

It is also called the experimental width and is equal to the
full width at half maximum of a resonance peak. For Breit—
Wigner resonances this observable resonance width and the
ANC are related by Eq. (118).

Introduction of the SF S in Eq. (128) requires additional
comments. From the beginning we worked in the single-
particle approach. It means that the SF is assumed to be
equal to unity. However, the observable reduced width and
the resonance width should be compared to the corresponding
experimental quantities. That is why we need to correct the
single-particle approach by adding the SF of the resonance
state. It makes sense to call this SF phenomenological one
because it can be obtained by comparing the single-particle
observable quantities with the experimental counterparts.

Now we introduce the elastic scattering amplitude in the
R-matrix method. To this end we consider

S —1
Ti(E) = ;ik =77E)+ 7" (), (130)
where
—2i[85—cC] _ 1
TR (E) = < L (131)

2ik

is the potential scattering amplitude. The single-channel elas-
tic scattering amplitude ZR (E) in the standard R-matrix

form reduces to
s SR(E) — 1

TR(sp)(E) _ e721[81”701 1=l

! 2ik

L o2 8 —af)

2k

27" PI(E, Ren)

Ei —E — (5")2[S1(E) — B +i Pi(E, Rep)]’
(132)

To underscore that this equation is obtained in the single-
particle approximation, we added the superscript “(sp)” in
t]; R(sp) ( E)

Assume that the level energy E is the resonance energy
and B = S(E1). Then for E — Ej using approximation
(125) we can rewrite

sp\2
,]}R(sp) (E) = L o—2i @ —of) 2@y )" PI(E, Ren)

2k Ei—E—i(y")2P(E, Rep)
sp
_ i T E) (133)
= . ~SP N
2k Ey—E—il})'(E))2

6.2 Subthreshold resonance

Now we consider a very interesting and important case when
elastic scattering occurs in the presence of a loosely bound
state, which reveals itself at low energies as a resonance.
Nuclear excited states below the particle emission threshold
typically undergo decay to lower lying states. These decays
result in the initial excited states having their natural width.
In the case when y emission is the only open decay channel,
the natural radiative width I'), is typically ~ eV. If a particle-
bound excited state lies very close to the particle threshold,
the natural width can result in the tail of the wave function
extending above the particle threshold. As a result of this tail,
the subthreshold bound state can behave like a resonance state
in a capture reaction. Such states are often referred to as sub-
threshold resonance states and can play an essential role in
determining reaction rates of interest in nuclear astrophysics.
Consider the capture of particle a by particle A at very low
relative kinetic energy E,4 and assume that there is a sub-
threshold bound state Bj in the system (a A). There are three
possible mechanisms by which the capture can occur:

(i) direct radiative capture to the ground state B,
(i1) radiative capture to the ground state through the sub-
threshold resonance,
(iii) direct radiative capture into the subthreshold bound state
with y emission.

Process (i) corresponds to the emission of a photon with the
energy equal to the difference between the initial energy E, 4
and the final energy —e,4 where €, 4 is the binding energy
of the ground state B = (aA):
Ey = Eqp + €aa. (134)
Process (ii) is the two-step process. In the first step, the non-
radiative capture of particle a occurs at positive energies to
the tail of the subthreshold bound state B; = (aA),, which
reveals itself as the subthreshold resonance. In the second
step, the subthreshold resonance undergoes y decay into the
ground state B = (aA). Note that only one gamma is emitted
in the process (ii), and it occurs after capture into the sub-
threshold B state. The energy of the emitted photon is given
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by the same Eq. (134) since the initial and final states of the
process (ii) are the same as in the process (i).

Process (iii) is a two-step process resulting initially in a pho-
ton with energy
Ey = Eqp + &, (135)
where &; is the binding energy of the subthreshold bound state
B;. This subthreshold bound state By is then deexcited to the
ground state ¢ by emitting a photon with energy e,4 — &;.
Again, the total energy of the emitted protons is the same as
in the two previous processes.

Note that in mechanisms (ii) and (iii), the capture occurs
in the same state, but in the (ii) process, this state reveals
itself as a resonance, while in (iii), it acts as an actual bound
state. All three of these capture processes occur in nature
and are important in determining reaction rates for nuclear
astrophysics.

Below we derive the equation relating the ANC of the
subthreshold bound state to the resonance width, which is
an extension of the relationship (47) between the ANC and
the width of the Breit—Wigner resonance above the threshold.
The equations presented below are valid for elastic scattering
amplitudes in K- and R-matrix theory at negative energies,
and they can be used to find the ANC by extrapolating elas-
tic scattering phase shifts to the pole corresponding to the
subthreshold bound state.

The subscript/superscript s stands for the subthreshold
bound state. The low-energy elastic scattering amplitude in
the presence of the subthreshold bound state is given by Eq.
(132) in which (3,7)? is the single-particle formal reduced
width of the subthreshold bound state with the binding energy
&s. If we choose E1 = —¢; and the boundary condition
parameter B = S (—&s), in the low-energy region where the
linear approximation is valid

d S;(E)

SI(E) — Sj(—¢5) ~
1(E) — Si(—&y) dE e,

(E + &5). (136)

Then at small E the R-matrix elastic scattering amplitude

e 2o 2 P(E, Ry (")

2k es +E+i(y")2 P(E, Rep)
(137)

7P E) = -

6.3 Residue of elastic scattering amplitude in subthreshold
pole

To further discuss the properties of the elastic scattering
amplitude we note that it has a pole at £ = —g; because
P;(E, R.p) vanishes for E < 0. Hence we can find a residue
of the elastic scattering amplitude in this pole. To this end,
one should extrapolate Eq. (137) down to the bound state pole

@ Springer

at E = —eg;. The penetrability factor P;(E, R), which
contains | Qi(E, Ren)|> = [F/(E, Re)* + [GI(E, Ren) %,
is not an analytic function. We take in the denominator
P/ (E,R.;y) = 0at E < 0, since in the denominator the
imaginary part contains the penetrability factor, and then we
recall that P;(E, R.p,) is the imaginary part of the logarith-
mic derivative of O;(k, r) taken at r = R.j, which is real at
negative energies.
However, in the numerator we have

k Rep,

. ohs C
e—2t &) o, )PI(E’ Rep) = T C
e 219 [Gy(k, Rep) +i F(k, Rep) 12

_ k Rep
[0k, Rep)?’ (138)

where O;(k, R.,) defined by Eq. (96) is an analytic function
in the entire complex plane, |k| < oo, except for the cut
along the imaginary negative axis Imk < 0 and the pointk =
0. Hence we can extrapolate Eq. (138) to the subthreshold
bound state pole k =i ks located in the upper half k plane,
bypassing the singular point at k = 0.

From Eq. (96) follows thatatk = i kg, where kg = /2 u&s
is the subthreshold bound-state wave number,

Oikg, 1) = e T2 21T W_ o hQuyr).  (139)

Here W_ys 141/2(2 ks Rep) is the Whittaker function, n* =
(Z4 Z4/137) /s and ks are the a — A Coulomb parameter
of the subthreshold state (aA)g, u is the reduced mass of a
and A, Z;j e is the charge of nucleus ;.

At negative energies near this pole, we get

k—i s
7 (E) R
SPN\2
BRI RS Ren (v ) 5 ! (140)
[W?nxler]/z(Z Ks Rch)] E + 85
' ‘ . R. SPN\2 1
il g RS/ MO MY}
KX [W_,]x’l_’_l/z(z Ks Rch)] k - lK‘Y
o1 b
— inl jimn® _~ 1 142
re ¢ 2Ky k — ik ' ( :
where
~5p\2
") = v (143)

L+ ("2 (B /AE |,
is the observed single-particle reduced width of the sub-
threshold resonance and

¥")?

b? =2 1 Rep
! CIW_ s 14122 ks Ren) 12

(144)

is the single-particle ANC of the subthreshold bound state.
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Equation (144)is obtained by comparing Eqs. (142), (141)
and Eq. (36) from review [1]. Since we use the single-particle
approximation, the single-particle ANC b; rather than the
ANC Cj appears in Eq. (142).

Then the ANC is
2
Vi
C? =sb?> =2 u Ry,
: ! P IW_ 141722 kg Ren) P
> 2
_ Yi S67, (145)
Ren [W_ s 141722 k5 Rep) ]
where y is related to (y,7)? via Eq. (128) and
6f =RV} (146)

Thus, introducing the SF S of the subthreshold bound state,
we derived the relationship between the ANC and the observ-
able reduced width.

The full elastic scattering amplitude at k — i k; takes the
form:

7 (E) = s 7“7 (E)

CRS eiml i 1 Ren (v) 1
Ks [W _ps 141722 ks Rep)1? k — is
(147)
o1 c?
el l (148)

2k k—ikg

The observable partial resonance width of the subthresh-
old resonance is given by

: Ren 2
0 (B) = 2 PUE, R 7 = PE, Ron) = (1 (Ren))
1 2 w2
= P/(E, Rep) 1 Re Cl W_nS[.H/z(ZKs» Ren),
C

(149)

where we took into account that the external part of the radial
overlap function of the bound-state wave function of (a A);,
a and A takes the form

190)=¢C

W_ysi+12QKs 1) (150)
r

Equation (149) has a fundamental importance. It shows
that the subthreshold bound state at E > 0 behaves as a
resonance with the resonance width expressed in terms of
the radial overlap function of this bound state at r = R.
Note that I';(E) > 0 for E > 0 and vanishes at £ < 0. The
physical importance of I'; (E) will be clear when we consider
the radioactive capture reactions.

6.4 Radiative capture cross-section and astrophysical factor
to subthreshold resonance

We can find now the behavior of the cross-section for the
radiative capture from the continuum channel i to the sub-
threshold resonance at E — 0. The cross-section for this
capture is given by

T I‘y I
k2 (E+¢)>+T2/4

7 (k>2’ 7nn(|F(l+in+1|>2 r, c?
— | — e

wk \ ks Fl+14n ) (E+eg)>+T2/4
E=0 » 7Kg e 27N (ns)i r, C,2

~ 151
IMZ E [TU+1+1)2 (E+e)2 (15D

oyi(E) =187 pu|Ti P =1

~5

where [ = 21 + 1.

The astrophysical S-factor used in nuclear astrophysics
for the radiative capture to the subthreshold resonance takes
the form >

S(E)=Ee*™ ", (E)
E—0 72k, ! r, c?
p2,y DA+ 14091 (E+e5)?

(152)

One can see that the S-factor for the radiative capture to
the subthreshold bound state increases toward low E with a
peak at E = 0. This behavior is similar to the behavior of
a resonance at E &~ (. That is why the subthreshold bound
state can be considered as a subthreshold resonance.

7 Two-channel resonance scattering and reactions

To discuss further the resonance processes within the R-
matrix approach, we now consider the two-channel, single-
level resonance elastic scattering and reaction generalizing
results obtained in Sect. 6. The expressions for the resonance
pole of the scattering amplitude and the observable resonance
width are presented. We also take into account the presence
of the subthreshold resonance. The two-channel, multi-level
resonant reaction is also included.

7.1 Resonance scattering

Now we consider the elastic scattering a + A — a + A
in the presence of the subthreshold bound state F* in the
channel i = a + A which is coupled to the second channel
f = b+ B. The relative kinetic energies in the channels i

5 It is noteworthy that the astrophysical factor is used in nuclear astro-
physics to elucidate the difference between different approaches, which
is not seen if one uses the cross-sections. However, in practical appli-
cations, cross-sections are used.
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and f are related by Ey = Epp = E; + Q, where O =
my +ma —mp —mp > 0, E; (j =i, f) is the relative
kinetic energy of particles in the channel j. We assume that
Q > 0, that is, the channel f is open for E; > 0. For the
sake of simplicity, we assume that the channel radius is the
same in channels i and f.

The resonance part of the elastic scattering amplitude in
the channel i = a + A in the single-level, two-channel R-
matrix approach, is

7;i:2_1166721'(51’”70,C)
2P (7"

Ei—E— Y (7")?[8(Ee) — Be+i Pl
c=i, f

(153)

where 7.7 is the formal single-particle reduced width in the
channel ¢ = i, f. P. = P, .(E., R¢y) is the penetrability
factor in the channel c, I, is the orbital angular momentum
in channel c. There are two fitting parameters in the single-
level, two-channel R-matrix fit: y;” and y ;" at fixed channel
radius R.j.

Again, we assume that E| is the resonance energy and use
the boundary condition B, = S’C(E 1). The energy E; = E;
in the channel i corresponds to £y = Q + E in the channel
f. Assuming a linear energy dependence of S.(E.) at small
E; close to E1, we get

sp\2
Ty ~ 1 o216 =) 2P (r") - ’
2k E\—E—i ) (v )? P,
c=i, f
(154)
where
S5\
(yeh? = — ;yﬂ) (155)
I+ 3 ) [dS’(E’)/dE’]|E,:E1

t=i, f

is the observable single-particle reduced width in the channel
c. Then the observable resonance width in the channel c is
P =Te(Ey) =2P:Sc (v")%. (156)

S is the SF in the channel ¢, and the total observable width
is
=rE) =i +Ty. (157)

One can find from Eq. (154) the pole of the elastic scat-
tering amplitude for the two-channel, one-level case:

Er=Ei—i ) (©")P. (158)

c=i, f
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This pole is shifted further from the real axis due to the
presence of the additional imaginary term, —i Py (y;p )2,
We recall that in Eq. (158) P, and (y.”)? are calculated at

E; = E;.
7.2 Subthreshold resonance

The elastic scattering amplitude for two-channel and single-
level case, when one of the channels is contributed by the
subthreshold resonance in channel i takes the form

T, = z_lk e—zi(a,’”—a,c)
2P (77)?

—ei) — Ei — Y (72 [Se(Ee) — B +i P

c=i, f

(159)

Again, here we use the boundary condition B, =
SC(—EI'(S)) and £ = —Ei(s)s €i(s) is the binding energy of
the subthreshold state in the channel i, (7.7)? is the for-
mal single-particle reduced width in the channel c. Note that
we use this choice for the energy level E in all the cases
considered below. The energy E; = —¢;(s) in the channel
i corresponds to Ey = Q — &;(;) in the channel f. It is
assumed that in the channel f Ey = Q — g;() > 0, that
is, the subthreshold bound state in the channel i corresponds
to a resonance in the channel f. Assuming a linear energy
dependence of S‘C(EC) at small E;, we get

Sp\2
Ti~ - 200 ) P (")
123 . p ’
2k giy + Ei +i Y. Pe(ye')?
c=i, f

(160)

where the observed single-particle reduced width in the chan-

nel c is

Py 7"’

L+ 3 NHASHEN/AE gy,
=i, f

(ve .36l

Ei¢s) = —¢i(s) and E g5y = O — ¢&;(5). Correspondingly, the
observed partial resonance width in the channel ¢

Fe(Ee) =2 P Sc(ve')?, (162)
with the total width
L(E;) =T (E) +T(Ey). (163)

This equation requires additional comments. Atenergy E; =
—&i¢s) <0 Ti(E;)) =0and I'(E;) = T'y(Ey). Only for
E;i >0 T (E;) >0 and I'(E;) = L) (Ei) + T r(Ef).
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The presence of the open channel coupled to the elastic
scattering channel generates an additional term ¢ = f in
the denominators of Eqgs. (153), (160) and (155). It results
in shifting of the pole of the elastic scattering amplitude
from E; = —¢;;) < 0 to the complex plane E;r) =
—¢&is) — i Py (J/;p)2 where Py = Pr(Q — €i(s), Ren).
Extrapolating 7;; to this pole and assuming that Py (y P2
is small and can be neglected in all the factors except the
resonance denominator we get from Eq. (140)

Ren (Vly(ls]) )2

(W s 141722 ki) Ren)]?
1

ei) + Ei +i Pr(r}))?

. R
_etnlelnn

T ~

(164)

Again, the ANC, as a residue in the pole of the scattering
amplitude is given by Eq. (145) in which (yl(s))2 should be
replaced by (yi(s))*:

(its)® = Si ()™ (165)

7.3 Resonant reactions

Presented in this subsection equations for the reaction ampli-
tudes proceeding through the intermediate resonance F* are
the standard R-matrix equations. Let us consider now the
resonant reaction
a+A— F*— b+ B. (166)
The two-channel, single-level R-matrix amplitude describ-
ing the resonant reaction in which in the initial state the col-

liding particles a and A can be obtained by generalizing Eq.
(153):

1 _ishs__Cshs__C
,Tfi: e i(8" —o; +8f crf)

2k
VPr v VR

Ei—Ei— Y (7" [Sc(E) — Be +i Pe]
c=i, f

. (167)

Again we assume that level energy E is the real part of the
resonance energy in the channel i = a4 A. Then the behavior
of Tr; at E; — E; can be handled in much the same way as
it was done for the elastic scattering:

sp sp
Ty = L iab—atasp—afy_ VPrvy Py
AS Ey—Ei—i Yomi p 22 P
(168)
where (y.7)? is given by Eq. (161).

The astrophysical S-factor is

S(E)(keVb) = E ™ o ; (E;)
_ JR )Lz 2 e’” ni 20
- N Mau .
Jd ]A Mi

Pr P (v} ")

~ ~ 2 2
(Br=Ei=Xossy 02 8B = 3eET) +[ Ly 22 P |
(169)

where o 7; (E;) is the cross-section for the reaction (166), Jg
is the spin of the resonance at E; = Ej, J; is the spin of
particle i, J = 2J + 1, i = paa, Mau = 931.5 MeV
is the atomic mass unit, Ay = 0.2118 fm is the nucleon
Compton wavelength, ; = 1,4 is the Coulomb parameter of
the a + A in the continuum. All the reduced width amplitudes
are expressed in MeV!/2.

Now we consider 2 interfering levels and two channels in
each level. All the quantities related to the levels v and t have
additional subscripts v or 7, correspondingly. We assume
that the level T = 1 corresponds to the subthreshold state
in the channel i = a + A, which decays to a resonant state
corresponding to the level T = 1 in the channel f = b + B.
The level 2 describes the resonance in the channel a + A,
which decays into the resonant state in the channel f = b+B.
The level t = 2 lies higher than the level 7 = 1 but both
levels do interfere. The reaction amplitude is given by

Tf,':%efi(a’hs C+5hs )r\/—
1

L AT T (170)
VT
where
[A],, = (E1 = E)due
— > PP [SE) = Be+iP). (17D)
c=i, f
The corresponding astrophysical S(E;) factor is
J, 20
S(E)(keVb) = =K 32 m2, ™1 = p, p,
Ja Ja Mi
2
‘ Z yfv vr ylbf (172)

7.4 Reactions proceeding through subthreshold resonance

Based on the previously obtained equations we obtain the
corresponding astrophysical factors which will be used in the
next section to analyze the experimental data obtained from
direct and indirect measurements of the important astrophys-
ical reaction « + °C — 70(1/2%, E = 6.356MeV) —
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n 4 190. Note that presented here expressions for the astro-

physical factors are written in the convenient R-matrix form

and can be used by experimentalists for analysis of similar

reactions proceeding through the subthreshold resonance.
Let us consider now the resonant reaction

a+A—>F,—>b+ B (173)

with Q > 0, proceeding through an intermediate resonance,
which is a resonance in the exit channel f and a subthreshold
bound state Fy = (a A); in the initial channel ;. We assume
also that Q — g;(5) > 0, that is, the channel f is open at the
subthreshold bound-state pole in the channel i.

We consider two interfering levels, 7 = 1 and 2, and two
channels in each level. All the quantities related to the levels
v = 1 and 2 have additional subscripts 1 or 2, correspond-
ingly. We assume that the level 7 = 1 corresponds to the
subthreshold state in the channel i = a + A, which decays
to a resonant state corresponding to the level 7 = 1 in the
channel f = b + B. The level 2 describes the resonance in
the channel a + A, which decays into the resonant state in the
channel f = b+ B. Thelevel t = 2 lies higher than the level
T = 1 but both levels do interfere. The reaction amplitude is
given by

(shs C | shs C
Tpi=—2ie 'O 0 57 —op)

\/P>f\/FlZ Y [A_l]vr Vit
AT

(174)

with

['A]vt = (_S(S) —E)év:

i

- Z Yev Vet [SC(EC) - S‘C(—Ei(s)) +i Pc]~

c=i, f
(175)
The corresponding astrophysical S(E;) factor is
I, 20
S(Eqp)(keVb) = —5 3% m2, ™0 = p, p,
JaJa i
2
> v AT, e | (176)
VT

where J, is the spin of the subthreshold resonance.
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8 Astrophysical factor of 13C(oc, n)10 reaction
8.1 Astrophysical reaction 13C(«, n)10

It is now time to demonstrate how the equations presented
in the previous section for the reaction amplitude proceeding
through the subthreshold resonance can be used for the anal-
ysis of the important astrophysical reaction '*C(x, 1n)'°0
reaction, which is considered to be the main neutron sup-
ply to build up heavy elements from iron-peak seed nuclei
in AGB stars. At temperature 0.9 x 108 K the so-called
Gamow window (Illiadis [26], Bertulani and Kajino [27]) of
the 13C(«, n)'%0 reaction is within ~ 140 — 230 keV with
the most effective energy at &~ 190 keV. The dominant con-
tribution to the '3C(a, n)'90 reaction at astrophysical ener-
gies comes from the state 170(1/2*, E, = 6356 + 8keV),
where E, is the excitation energy. Taking into account that
the o — 13C threshold is located at 6359.2 keV one finds that
this 1/27 level is the located at E, 13c = —3 £ 8 keV, that is,
it can be or subthreshold bound state or a resonance (Tilley et
al. [28]). This location of the level 170(1/2%) was adopted in
(Heil et al. [29]). If this level is the subthreshold bound state,
then its reduced width is related to the ANC of this level.

However, Faestermann et al. [30] determined that this level
is actually a resonance located at £, 13c = 4.7 £ 3 keV with
the total observable width of I' = 136 + 5 keV. Note that
[y, of this resonance with /; = 1 is negligibly small because
it contains the penetrability factor P;. Hence, I' = I',,. If
this level is a resonance located slightly above the threshold,
then the reduced width is related to the resonance partial o«
width. This resonance is not of a Breit—-Wigner type, and it
does not make sense to use the ANC as a characteristic of
this resonance.

Here we present the calculations of the astrophysical S-
factors for the '*C(a, n)'®0 using the equations derived
above. We fit the data (Tippella and La Cognata [31]) using
both assumptions that the threshold level 1/27 is the sub-
threshold state located at —3 keV and the resonance state at
4.7 keV. For the subthreshold state we use parameters from
Heil et al. [29], while for the resonance state we adopted
parameters from Faestermann et al. [30]. The resonances
included in the analysis of this reaction are (1 2t =
1, E, = 6.356 MeV), (5/27, 1 =2, E, = 7.165 MeV),
(3/2%,1; =1, E, = 7.216 MeV), (5/2%,; = 3, E; =
7.379 MeV) and (5/27, [; = 2, E, = 7.382 MeV). Only
two resonances, the second and the last one have the same
quantum numbers and do interfere. Their interference can be
taken into account using the S-factor given by Eq. (176). For
non-interfering resonances we use the sum of the S-factors
corresponding to different resonances.

In Fig. 3 we presented the S-factors contributed by four
different resonant states located at E, 13- > 0. All the param-
eters of these resonances are taken from Heil et al. [29]. We
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S(E,s) [MeV b]

100....I....I....I....I....I....

0 0.2 0.4 0.6 0.8 1
Eunc(MeV)

Fig. 3 The S-factors for the 13C(a, n)1°0 reaction as a function of the
o — 13C relative kinetic energy proceeding through four resonances:
black dotted-dashed line -(5/27, [; = 2, Ex = 7.165 MeV; solid
red line- (3/2%,1; = 1, E, = 7.216 MeV); dashed brown line-
(5/2%,1; = 3, E, = 7.379 MeV); dotted blue line- (5/27, ; =
2, Ey =7.382 MeV). All the resonant parameters are taken from Heil
et al. [29]. First published in Mukhamedzhanov et al. [32]

only slightly modified the o-particle width of the wide res-
onance at E,13c = 0.857 MeV taking it to be 0.12 keV.
The adopted channel radii are R, 13¢)y = 7.5 fm and
R pn160) = 6.0 fm.

Figure 3 shows that the contributions of all the narrow
resonances are negligible compared to the wide one (red
solid line in Fig. 3). That is why we do not take into account
the interference between two narrow 5/27 resonances. Thus
eventually we can take into account only the wide resonance
(3/2%,1; = 1, Ex = 7.216 MeV) and the near threshold
level (1/2%, [; =1, E, = 6.356 MeV).

8.2 Threshold level 1/2+, =1, E, =6.356 MeV

Now, we discuss the threshold level corresponding to the
excitation energy E, = 6.356 MeV. Until appearance of the
work Faestermann et al. [30] this level was considered to
be the subthreshold resonance located at E, 13c = —3 keV.
However, Faestermann et al. [30] showed that this level was
shifted to the continuum and is found to be a real resonance
located at E,13c = 4.7 keV. The astrophysical factor con-
tributed by this 1/2% state depends on the reduced width
in the entry channel o — 13C of the *C(a, 1n)'°0 reaction
and the reduced width in the exit channel n — 1°0. If we
assume that the level E, = 6.356 MeV is the subthresh-
old bound state then its reduced width in the a-channel
is expressed in terms of the ANC for the virtual decay

70(1/2%, E, 3¢ = —3 keV) — a + '3C. The latest mea-
surement of this subthreshold state ANC (Avilla et al. [33])
gave C‘i 3e = 3.6+£0.7 fm~!, which is the square of the
Coulomb renormalized ANC of the subthreshold bound state.
it is useful to remind readers that at very small binding ener-
gies, the ANC of the subthreshold bound state becomes very
large due to the Coulomb-centrifugal barrier. If the subthresh-
old bound state is located at E,, 13c = —3 keV, then the renor-
malization factor is I'(1 41 +71®)) /1! = 2.406 x 108 for the
o — 13C relative orbital angular momentum [ = 1. Here n°
is the Coulomb parameter of the bound state. That is why it
is more convenient to work with the Coulomb renormalized
ANC rather than with the ANC:

~ Al 2
=(— ) 177
: (F(1+l+n<s>)) : 4

Note that usually, the barrier factor decreases the cross-
section, but the barrier effect on the ANC has the opposite
effect.

In the R-matrix approach the appropriate quantity, which
we need to calculate the astrophysical S-factor, is the observ-
able reduced width y related to the ANC by Eq. (145). To
calculate the reduced width for the subthreshold bound state
it is more convenient to exploit

2 w2
)2 = CrWZ o, 141722 %s Ren) (178)
! 2“ Ren
%2 12
GV 0 1412 Ks Ren) (179)
2 Rep '

For the subthreshold bound state located at —3 keV and the
channel radius R., = 7.5 fm W_ o, l+1/2(2 ks Rep) =
2.44122 x 10736 while

WE 77(5)» 3/2(2 Ks Rc/’l)

rAd+14n9)
= W2,k Rap) = 0.0587.

[ -n
(180)
Correspondingly,
Cyi3c W_ ,](s),l+1/2(2 ks Ren)
= C~'a 13C W_ n(s)’l+l/2(2 K(s) Ren)
=0.111fm~ /2. (181)

Thus the subthreshold reduced width is not affected by the
Coulomb barrier because the significant increase of the ANC
by the Coulomb barrier is compensated by the corresponding
decrease of the Whittaker function. Hence Eq. (179) is very
appropriate for the practical calculations for subthreshold
states.
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The reduced width changes very little as a function of the
binding energy if we assume that the threshold level 1/2%
is the bound state. This circumstance can be used to find the
reduced width of the nearby resonance state. First, we gen-
erate the o —'3 C single-particle bound-state wave function
with the binding energy 3 keV. To this end, one can use the
o —'3 C Woods-Saxon potential. The generated bound state
has three nodes at » > 0. Following the R-matrix procedure,
the adopted internal region is takentobe 0 < r < R}, where
Ren, = 5.2 fm is the location of the last peak of the internal
wave function. The calculated wave function is normalized
over the internal region. The obtained value can reasonably
estimate the single-particle reduced width amplitude. After
that we adopt the binding energy as low as 0.1 keV and
repeat all the calculations using the well-depth procedure,
which finds the potential depths corresponding to the selected
bound state. The value of the single-particle reduced width
decreased only by 2.5% compared to the value for the 3 keV
binding energy. Because the reduced width of the resonance
state at 4.7 keV is unknown and we are not able to reproduce
this state using a single-particle Woods-Saxon potential, as
we did for the bound states, we assume that the reduced
width for the resonance state is close to the reduced width
for the 3 keV binding energy, which is 3.3 keV!/? for the
ANC C,i5c = 1.9 fm~'/% and R., = 7.5 fm. After that
we can fit the indirect THM data ( Tippella and La Cognata
[31]) assuming that the threshold state is the resonance 4.7
keV varying the reduced width in the interval (2.81 — 3.6)
keV/2 at Rej, = 7.5 fm.

Figure 4 shows the S-factor for the reaction BC(a, n)'%0
assuming that the threshold level is the 4.57 keV resonance.
Our numerical values of the S(0) factors are:

(1) for 1/2%, =3 keV and ', = 158.1 keV [29], S(0)
7.627353 x 10° MeVb;

(2) for 1/27, 47 keV and T, = 136 keV [30], S(0) =
7.511’%?6 x 10° MeVb. Thus, even the TH data, which
provides the astrophysical factor at significantly lower
energies than direct measurements [29], cannot answer
the question whether the threshold level is a subthreshold

bound state or resonance.

9 Connection between Breit—-Wigner resonance width
and ANC of mirror resonance and bound states from
Pinkston—Satchler equation

9.1 Introduction
The width of a narrow resonance can be expressed in terms
of the ANC of the Gamow—Siegert wave function (Sect. 3.1).

Thatis why we can extend the relationship between the ANCs
of mirror bound states to the relationship between resonance
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S(E, 1) [MeV b]

Eamc(MeV)

Fig. 4 Astrophysical S-factor for the '3C(«, 1n)'°O reaction as a func-
tion of the & — 13C relative kinetic energy. Square black boxes, solid
green dots and shaded orange band are data from Refs. Drotlieff et al.
[36], Heil et al. [29] and Tippella and La Cognata [31], respectively.
Red solid lines correspond to our calculations for the fit to the lower
and upper limits of the TH data considering 1/27 state as —3 keV sub-
threshold resonance with I';, = 158.1 keV [29]. The lower and upper
limits of the square of the ANC are 2.89 fm~! and 4.7 fm~!, respec-
tively. Whereas, the blue dotted-dashed lines correspond to the current
fit to TH data, considering 1/27 state as 4.7 keV threshold resonance
with ', = 136 keV (Faestermann et al. [30]). The corresponding lower
and upper values of observable reduced width are 2.81 keV'/% and 3.6
keV'!/2, respectively. For our calculations we have used R, 13c = 7.5 fm
and R, 165 = 6.0 fm. The insert in the figure shows enlarged low-energy
S-factor. First published in Mukhamedzhanov et al. [32]

widths and ANCs of the mirror nuclei (Timofeyuk et al. [34],
Mukhamedzhanov [35]). The calculated resonance widths
and the ANCs depend strongly on the choice of the nucleon—
nucleon (NN) force, but the ratios of the resonance widths
and the ANCs for mirror bound states should not depend on
the adopted NN force, see for details review [1]. Another
important feature of the mirror nuclei is the similarity of the
internal mirror wave functions. Let us consider a mirror pair
in two-body potential model: By = (aj; A1) in the reso-
nance state and the loosely bound nucleus By = (a2 A»).
The mirror resonance state is obtained by replacing one of
the neutrons with a proton. The additional Coulomb inter-
action pushes the bound-state level into a resonance level.
The resonance and binding energy of the mirror states are
significantly smaller than the depth of the nuclear potential.
The Coulomb interaction is almost a constant in the nuclear
interior. Hence, in the nuclear interior, which all that matters
to determine the ratio of the resonance width and the ANC
of the mirror state, the radial behavior of the mirror wave
functions is very similar, and they differ only by normaliza-
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tion. In the outer region, the resonant and bound-state wave
functions vary significantly.

Below, using the Pinkston—Satchler equation (Pinkston
and Satchler [37], Philpott et al. [38]), which has been used in
Sect. 2.9, review [ 1], for the ANCs of the mirror bound states,
we will obtain the ratio of the resonance width and the ANC
of the mirror bound state. This equation had been successfully
employed by Nollett [39] to determine the resonance widths
of light nuclei (5 < A < 9). He used the ab initio variational
Monte Carlo method to calculate the many-body wave func-
tions in the interaction region. Timofeyuk and Descouvemont
[40] applied the Pinkston—Satchler equation with the shell-
model based sorce term to calculate the resonance widths.
The obtained here the ratio of the resonance width and the
ANC of the mirror bound state is expressed in terms of the
ratio of the Wronskians containing the overlap functions of
the mirror resonance and bound states in the internal region.
In this region, the radial behavior of the mirror overlap func-
tions is very similar and can be calculated quite accurately
using ab initio approach. Suppose these overlap functions are
not available. In that case, as an approximation, they can be
replaced by the mirror resonance and bound state wave func-
tions calculated using the two-body potential model with the
same potentials for the resonance and bound states. In the
Wronskian method, which is developed here, one needs the
wave functions only in the internal region, in which it is very
convenient to use the R-matrix method.

Assuming that the radial behavior of the mirror resonant
and bound-state wave functions is identical in the nuclear
interior, one can replace the Wronskian ratio for the reso-
nance width and the ANC of the mirror bound state with the
equation, which does not require knowledge of the internal
resonant and bound-state wave functions (Timofeyuk et al.
[34]).

The connection between the ANC and the resonance width
of the mirror resonance state provides a powerful indirect
method to obtain information that is unavailable directly.
If, for instance, the resonance width is unknown, one can
find it through the known ANC of the mirror state and vice
versa. For example, near the edge of the stability valley, neu-
tron binding energies become so small that the mirror proton
states are resonances. The relationship between the mirror
resonance width and the ANC allows us to find the reso-
nance width from the ANC of the mirror bound state. Also
loosely bound states @ + A become resonances in the mirror
nucleus « + B, where charge Zpe > Z 4e. Using the method
developed below, one can find missing quantities, the res-
onance width of the narrow resonance state, or the mirror
ANC.

9.2 Resonance width from Pinkston—Satchler equation

In Sect. 2.9 [1] the relationships between the mirror proton
and neutron ANCs was derived using the Pinkston—Satchler
equation. Here these relationships are extended for the ratio
for the resonance width and the ANC of the mirror bound
state in terms of the Wronskians, which follows from the
Pinkston—Satchler equation.

Repeating step by step the derivation in Sect. 2.9.1, review
[1], we arrive at the desired equation, which expresses the
ANC of the narrow resonance state in terms of the source
term:

MaA
kaA(R)
Ren

B .
CaAlB jBJB =1

/ draaraa ¢li, (kaA)> Tar) ClgjpliadsTaA),
0

(182)

where ¢>Ii (kaa(), Taa) 1is the regular Coulomb scattering
wave function (review [1]). Using Egs. (2.75), review [1],
and (47) one gets the expression of the resonance width for
narrow resonances in terms of the source term:

— i85 (kgn0) | MaA
€ I A k FaAlBjBJB
aA(0)

Ren
MaA
kaA(0)

=2

/ draaraa Fiy(kaa)s TaA) Qlgjptadats TaA)
0
(183)

where the Coulomb-nuclear phase shift is replaced by the
sold-sphere phase taken at the real part of the resonance
momentum k,4(0). Equations (182) and (183) provide the
ANC or resonance width of the narrow resonance, which
may depend on the channel radius R,j,. For practical calcula-
tions in the next subsection we express the resonance width
in terms of the Wronskian as it was done for the ANC of the
bound state in subsection (2.91), review [1].

9.3 Resonance width in terms of Wronskian
The advantage of Eq. (183) is that to calculate the reso-

nance width one needs to know the microscopic resonant
wave functions only in the nuclear interior where the ab ini-
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tio methods are more accurate than in the external region.
That is why Eq. (183) is so important if microscopic reso-
nant wave functions are available. Now it will be shown that
the radial integral in Eq. (183) can be transformed into the
Wronskian at r,4 = R.j,. Again, repeat all the steps used in
Sect. (2.9.1) [1] we arrive at the final expression for the ANC
of the resonance state in terms of the Wronskian:

ror nuclei. Then the quantum numbers in both nuclei are the
same. We also assume that the channel radius R, is the same
for both mirror nuclei. Using Egs. (2.229), (2.74), (2.227),
review [1], and Eq. (185) we can express the ratio of the res-
onance width and the ANC of the mirror bound state as the
ratio of the corresponding Wronskians:

Uajay 15 jp Jp _ 2Eq 4,0
By 2 -
(Cay ar 15 ji 1s) Haray
2
|K02A2 Wlrayay Lay A 15 js 75 (kay 410)> Tar4r)» Fig (kay4,0). ralAl)]| Fai A, =Ren
x 5 ajAj c , (186)
|ka1A1(0) W[razAz IazAz Ip jB JB (KazAza razAz)a FIB (iKazAza razAz)]|
razAzchh

B _
Contgjpiz =

WIra Lis 1y jy 1 (ar): &1 (Kkar©): 7anl | .

2kaa()

_ 1 rmaws2 inisn

kaa)

e
Wiraa 12, 1 jg Jp Taa)s €70 Fig(kaa)s Taa)l
Fad

In view of Eq. (47), we get for the resonance width of the
narrow resonance:

i 87 (kg
taATaAty js s _ € i (Kas0)
kaa) kaa)

WIraa 12y 1, iy 15 (Fan) Fig (kaa): Tan)]

raA=Rch

(185)

The resonance width calculated using the Wronskian
expression (185) depends on the channel radius and reaches
a constant value as R, increases. However, the sensitivity of
the ratio of the resonance width and the ANC of the mirror
bound state to the variation of the channel radius is signifi-
cantly weaker than that of the resonance width and the ANC
separately. It allows one to use the microscopic or potential-
model wave functions in the internal region to calculate the
ratio of the resonance width and the ANC of the mirror bound
state. In the next section we present three different equations
of this ratio and practical calculations.

9.4 Ratio of resonance width and ANC of mirror bound
state in different approximations

In this part three different equations for the ratio of the res-

onance width and the ANC of the mirror bound state are
presented. Let By = (a; A1) and By = (ay A2) be mir-
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. | R . . .
141 'BJB B
where the ratio — > isdimensionless, Eq, 4, (o) and

ay Az Ip jB 7g)
Ma; A, are expressed in MeV.
Equation (186) allows one to determine the resonance

width if the ANC of the mirror bound state is known and
1

r .
. . Algigd
vice versa. To calculate the ratio —zl =80

. . . Jay A2 lp Jip 75 .
the microscopic radial overlap functions. If these radial over-

lap functions are not available then one can use a standard
potential-model approximation for the overlap functions:

one needs

Taia; 1y jp 75 kay A1 0)s Taa)

1/2
~ Sa{Al ¢M|A1 Ip jB JB(kalAl(O)v ra|A])’ (187)
Loy ay 1 jp 75 (KayAys TaA)
1/2
~ SaiAz BayAs 1p jp Jg (KazAys Tazaz),s (188)

where S; 4, and Sg,4, are the SFs of the mirror reso-
nance and bound states (ajA1) and (axAj), respectively.
®a Ay 15 jg Js KayA1(0)» TayA,) 18 areal internal resonant wave
function calculated in the two-body model (a; A1) using
some phenomenological potential, for example, Woods-
Saxon one, which supports the resonance state under consid-
eration. Ga, A, 1y j5 Jy KayAy» TarA,) is the two-body bound-
state wave function of the bound state (ap A,), which is also
calculated using the same nuclear potential as the mirror reso-
nance state. If the mirror symmetry holds then Sy, o, ~ Sg, 4,

. oAy IpinJd ..
and one gets an approximated %"332 ratio in terms

. i ay Ay g jp I )
of the Wronskians, which does not contain the overlap func-

tions:
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Paivigjpis [2Ean0
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TayAy=Rch
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(189)

TayAy=Rch

We can further simplify Eq. (189). The Coulomb interac-
tion varies very little in the nuclear interior and its effect leads
only to shifting of the energy of the bound state to the contin-
uum. Hence, it can be assumed that Fj, (k4; 4,0)» 7a14,) and
Fiz (i KayAs, TayA,) behave similarly in the nuclear interior
except for the overall normalization, that is

Frp(kay A, 0y Ren)

- Frg (i kay Ay TayAy)-
Flg(l KarAy» Rch) B 2 A

(190)

Fip (kay A,(0): Ta1Ay)

Then

Paavigjpis [2Ean0
B> 2
(Caz A2 1p jB JB) Haas

2
Fiy(kay a0y, Ren)

F'IB (l KarAs» Rch)

KayAs W[bar a1 15 i 75 kaya10)s Tarar)s Fig(i Kayas, Taya,)] ‘

Navratil et al. [41] and references therein) or oscil-
lator shell-model (Timofeyuk [42]) are accurate in the

nuclear interior, using Eq. (186) one can determine the ratio

Vaja) ipjpip

(szzAz Ipip /B 2
functions are not available one can use Eq. (189). Then fol-
lows Eq. (191) and finally Eq. (192). Note that Eq. (192) is
valid only in the region where the mirror resonant and bound
state wave functions do coincide or very close. The advan-
tage of this equation is that it allows one to calculate the
ratio without using the mirror wave functions and extremely

simple to use.

quite accurately. If the microscopic overlap

2

ralAlszfh

kalAl(O) W[d)azAz I jp JB (KazAzs FIB @ KarAs» ruzAz)]‘

5 (191)

razAzchh

Neglecting further the difference between the mirror wave
functions

GarAy 15 jg Ts KayA10)s Tayay) and Py A, 15 5 75 (KazAss Tap )

in the nuclear interior we obtain the approximate expression

for FglAllBjBJB .

2 2
(Caz A2 lpijB JB)

Paavigjpis  [2Ean0
B> 2
(Caz A2 Ip jB JB) Haas

2
Fiy(kay a0y, Ren)
F'lg (l KarAs» Rch)

(192)
This equation provides the easiest way to determine
r, j .
(CBZIA‘I—B’BJBz because to calculate it one needs to know

ay A lp jp /B . .
only the Coulomb wave functions for the resonant and mir-

ror bound states.

In descending accuracy we can rank Eq. (186) as the
most accurate. Taking into account that the microscopic
overlap functions (calculated in the no-core-shell-model (see

Because for the cases considered below the internal

microscopic resonance wave functions are not available, the
r

%’B’Bz ratio is calculated using Eqs. (189) and (192).

ay Ay lBjB./B) . .
It allows one to determine the accuracy of both equations.

10 Comparison of resonance widths and ANCs of
mirror states

Below a few examples of the application of Egs. (189)
and (192) are presented. To simplify the notations from
now on the quantum numbers in the notations for the res-
onance width and the ANC are dropped and just simplified
notations are used: I'q; o, and Cy, 4,. Equation (189) gives
Tay4,/(Cay 4,)? in terms of the ratio of the Wronskians and
provides an exact value for given two-body mirror resonant
and bound-state wave functions. Equation (192) gives the
Taya,/(Cay A2)2 ratio in terms of the Coulomb scattering
wave functions at the real resonance momentum kg, 4, (0)
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Fig. 5 Solid red line: The radial wave function of the (p'2C) 14, res-

onance state; dash blue line: the radial wave function of the mirror
(nlzC)l a3, bound state. r is the distance between N, where N = p, n,

and the c.m. of 12C. First published in Mukhamedzhanov [35]

and the imaginary momentum of the bound state i k4,4,
at the channel radius R.;. Hence, to determine the ratio
Taya,/(Cay 4,)? using Eq. (192) one does not need to know
the mirror resonant and bound-state wave functions. How-
ever, to use this equation one should check whether the mir-
ror wave functions are close. To demonstrate the convergence
of the calculated ratio I';, 4, /(Cy, A2)2 as R, increases the
channel radius R.j has been deliberately increased.

10.1 Comparison of resonance width for
13N(1ds/2) — '2C(0.0MeV) + p and mirror ANC
for virtual decay 13C(1ds/2) — 2C(0.0MeV) +n

As the first example we consider the isobaric analogue states
1ds > in the mirror nuclei 13N and '3C. The resonance energy
of PN(ldsp) is Epicq = 1.6065 MeV with the reso-
nance width of I' , 2c = 0.047 £ 0.0008 MeV (Ajzenberg-
Selove [43]). The neutron binding energy of the mirror state
13C(ld5/2) is ,12c = 1.09635 MeV with the experimental
ANC C2,, . = 0.0225 fm™! (Liu et al. [44]). The experimen-
tal ratio is ', 120/ CZ 15 = (1.1 £0.2) x 1072,

Figure 5 shows the radial wave functions of the mirror
states. Following the R-matrix procedure, both wave func-
tions are normalized to unity over the internal volume with
the radius R, = 3 fm. We see that the mirror wave functions
are very close at distances » < 4 fm what confirms the mirror
symmetry of (plZC)ld;r/z and (nlzC)ld;r/2 systems.

The similarity of the internal mirror wave functions can
be explained. In the nuclear interior the depth of the nuclear
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Fig. 6 The grey band is the experlmental

n 2¢
onance width of the resonance state 3N(1d. s /2) and the ANC of the

mirror bound state 13 C(1d5+/2); the red dash-dotted-dotted line and the
red dash-dotted lines are the low and upper limits of this experimental
ratio; the green dotted line is the adopted experimental value of the ratio
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as a function of R, calculated using Eq. (189); the blue dotted line is
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pubhshed in Mukhamedzhanov [35]

ratio

ratio calculated as a function of R.;, using Eq. (192). First

potential is much larger than the resonance and binding
energies. Hence in the nuclear interior the mirror resonance
and bound-state solutions of the Schrédinger equation cor-
responding to states with the same quantum numbers but
different energies should be very close.

r
In Fig. 6 are shown the ( C” IZC)Z ratios calculated using
12

nisC
Eqgs (189) and (192), which are compared with the experi-
mental ratio. We see that the calculated ratios are quite close

to the experimental one. The ratio calculated using

l
(c )2
the simplified Eq. (192) shows the R.;, dependence and is
equal to 0.0141 at the peak at R, = 3.95 fm. In the case
under consideration the bound-state vpve function does not

have nodes atr > 0. That is why the e )2 ratio calculated

using Eq. (189) is a smooth functlon of Rch This equation

r
(C"l C)z = 0.0135 at R, = 4 fm, which differs very
2c
little from its correct asymptotic value of 0.0143. Our cal-
culations show that the simple Eq. (192) can give the results
close to the V&l{ronsklan method.

Theratio ) 5 for the ld5 o Was also calculated by Tim-
nl2c
ofeyuk and Descouvemont [45] using the microscopic clus-

ter model for mirror 13C(la@’;z) and 13N(lci;;z) states. The
obtained ratios are 0.0124 4+ 0.0001 for two-cluster model
and 0.0130 for the four-cluster model. Both values are in a
good agreement with the Wronskians ratio 0.0135.

gives
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10.2 Comparison of resonance width for
18Ne(17) — 40(0.0 MeV) + & and mirror ANC for
virtual decay 30(17) — 1#C(0.0 MeV) + «

Here is determined the ratio I'j1sg/ CZ[ e for the mir-

ror states ¥Ne(17) and 80(17). The resonance energy is
E 13 = 1.038 MeV. The binding energy of the bound state
80(17) is g414c = 0.027 MeV. The resonance width and
the ANC of the mirror states are unknown.

The purpose of this section is to show that the ratio
'y 140/ CZ 1ac does not depend on the number of the nodes
of the mirror wave functions. The potential model search
showed that for the given resonance energy and binding
energy for/ = 1 the mirror wave functions have at 7 > 0 the
number of nodes N = 4 or 6. The normalization region of
the mirror wave functions is r < 7.2 fm for N = 6 and
r < 673 fm for N = 4. In Figs. 7 and 8 are shown
the radial wave functions and the ratio I'j14g/ Ci 1ae for
the number of the nodes N = 4 and 6. The presence of
the nodes in the alpha-particle wave functions decreases the
contribution of the nuclear interior making the contribution
of the surface area r > 6 fm dominant. That is why for the
mirror-conjugated «-particle states the accuracy of Eq. (192)
improves.

One can see that the mirror wave functions practically
coincide up to r = 15 fm. It means that the simplified Eq.
(192) can be used up to 15 fm. The ratio I",, 140/C§ 14 calcu-
lated using Eq. (189) is the same for N = 4 and 6. Because
the mirror wave functions practically identical in the exter-
nal region the ratio I', 145/ Cﬁ 14 calculated using the Wron-
skian method (Eq. (189)) has an asymptote. The calculated
for N = 4, 6 ratio reaches its asymptotic value at R, = 7.5
fm which is T 140/ C2 1, = 3.48 x 10°2. The maximum of
I, 14O/C§ e calculated using Eq. (192) at Rep, = 9 fmis
3.42 x 10°2. This comparison demonstrates again that in the
absence of the microscopic internal overlap functions both
the Wronskian and the simplified method given by Eq. (192)
can be used and give very close results.

11 Analytical methods of determination of resonance
parameters

Analysis of the S-matrix pole structure is a powerful method
in quantum physics. The structure of the S-matrix in the com-
plex momentum (or energy) plane correspond to bound, vir-
tual and resonance states, see Fig. 2 and Eq. (31). The relation
between the S-matrix and the Jost functions ]-'l(i) (k) is given
by

.7:1(_)(k)

Sith) = L ——.
! ]:1(+)(k)

(193)
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Fig. 7 Panel (a): the mirror radial wave functions for N = 6; the solid
red line is the (a”O)lf resonance wave function; the dashed blue line
is the radial wave function of the mirror (a'*C) |- bound-state. r is the
distance between the a-particle and the c.m. of the nucleus. Panel (b):
notations are the same as in panel (a) but for N = 4. First published in
Mukhamedzhanov [35]
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Fig. 8 Panel (a): the ratio for the resonance state 3Ne(17)

ratio as a function of R, calculated using Eq. (189); the

(g‘* '40)2 ratio calculated as a function of R,
al4c

using Eq. (192). Panel (b): notations are the same as in panel (a) but for
N = 4. First published in Mukhamedzhanov [35]

The conventional numerical method for bound states is to
search for solutions, which have only an outgoing wave
at pure imaginary momenta in the upper half momentum
plane. The corresponding wave function is an exponentially
decreasing solution whenr — oo. Virtual or resonance states
are described by the wave functions containing only the out-
going waves asymptotically, which exponentially increase
due to the complex momenta. To describe resonance states
the Gamow—Siegert wave function can be used, see 2.3.
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A few different techniques to determine the resonance
energy, width and resonance wave function based on the
solution of the Schrddinger equation have been previously
suggested. One of them is Zel’dovich’s normalization proce-
dure [14], which we discussed in Sect. 2.3. Another method is
the modified CSM (see Appendix C). In this method the nor-
malization of the resonant wave function is achieved using
the rotation of the integration countour over r from R,y
to the complex plane, where the nuclear potential is cut to
zero. First, we refer to the method of solution of the radial
Schroddinger equation to determine resonances suggested by
Vertse et al. [46] (GAMOW code). The method is designed
to find poles corresponding to resonances and subthreshold
resonances. In this method the complex eigenvalue and the
Gamow wave function can be found by integration of the
Schrodinger equation imposing the boundary conditions in
the origin and the asymptotic region. An improved version of
the the GAMOW code has been presented by Iharu et al. [47]
(code ANTI), which was designed to determine parameters
of broad resonances by introducing complex Woods-Saxon
potential.

A pole search has also been used by Michel et al. [48] by
solution of the Schrodinger equation with the short range
interaction for the scattering wave function. The method
allows one to find resonances and even subthreshold reso-
nances.

11.1 The resonance states of SF(1/2F, 5/2%)

Below we illustrate how different theoretical approaches
can be used to determine the parameters of the resonances
SE(1/27F, 5/2%) testing the predictive power of the used
methods. The final goal is a comparison of the theoretical
predictions with the available experimental data on the 'SF
levels.

The resonance >F(1/27) is broad. Determination of a
broad resonance parameters is a well known unsolved prob-
lem in physics. The resonance energy and width for a broad
resonance PF(1/2%) are not defined uniquely and there
are many prescriptions, which have been used in literature
(Barker [49]). The definitions depend not only on the model
used, say potential, R-matrix, microscopic, but even within
a given model the prescriptions for the resonance parame-
ters can be different (Barker [49,50]). That is why when any
compilation includes the broad resonance parameters, the
reference should be done to the prescriptions used to deter-
mine these parameters. The reason for this ambiguity is that
for broad resonances in the physical region the nonresonant
contribution becomes comparable with the resonant one. In
this case the determined resonance energy and width depend
on how much of the background is included into the reso-
nant part. The only way to determine correctly the resonance
energy and width is to single out the resonance pole explic-
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itly in the function fitting the experimental data. It is realized
in the S-matrix pole method.

Here two approaches are addressed based on the definition
of the resonance energy Egp = Eo — i I'/2 as the energy at
which the S-matrix has a pole on the second energy sheet (low
half of the momentum plane): the potential approach based
on the solution of the radial Schrodinger equation and the
analytical expression for the S-matrix. The first one gives the
most accurate definition of the resonance energy and width
within the potential model, while the second one even more
general because it is based only on the analyticity and the
symmetry of the S-matrix.

We remind that a resonance corresponds to the pole of
the S-matrix at kg = ko — i k; located in the fourth quad-
rant of the momentum complex plane. Correspondingly the
resonance energy is

2
ER:k—R:Eo—iE, (194)
21 2
where
k2 — k2
Ey=-2 "1 (195)
2p
and
2kok
=000 (196)
w

Let us discuss the location of broad resonances and their
qualification in more detail. For broad resonances k; becomes
comparable with ko. If k9 = k; then E¢ > 0 and the broad
resonance is located in the fourth quadrant of the momentum
plane, which corresponds to the resonant pole located in the
fourth quadrant on the second Riemann sheet of the energy
plane. Such resonances are called observable. Owing to large
k; (or resonance width I'), their impact on the cross-section
or scattering phase shift is weakened, and the non-resonant
amplitude or phase shift (non-resonant background) becomes
essential. The general expression for the elastic scattering S-
matrix given by Eq. (31) in a vicinity of a single resonance
can be rewritten as

SEN (k) = 21 OF D+8rD+520), (197)
k
Sr(k) = — arctan (198)
k — ko
T _ arctan * %0 (199)
= — | — — arctan
2 ki
is the resonant scattering phase shift,® and
1
84(k) = — arctan Ktk (200)

6 Note that Eq. (198) is valid for k — ko > 0 and any k; while Eq. (199)
is valid for k; > 0 and any k — k.
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For k; > ko corresponding to E, < 0, the resonant pole
is located in the third quadrant on the second energy sheet.
These broad resonances, due to large I', are far from the
negative real energy axis and are not observable and called
unphysical resonances.

For narrow resonances, k; << ko, the phase shift
[64(k)] << 1 can be neglected. In this case, the standard
method, which we call the phase shift method (or “§ = 7 /2”
rule), entails the resonance energy E( the value at which the
scattering phase § (k) passes through 7 /2. The resonant width
is evaluated from the formula I' = 2/(d§/dE) at E = Ey
or as the energy interval corresponding to change of § from
/4 to3m/4.

However, for broad resonances §, (k) cannot be neglected
and the total non-resonant scattering phase shift 5, (k) 48, (k)
becomes dependent on the resonant parameters. This the non-
resonant scattering phase shift may be a large negative so that
the total phase shift 6 (k) cannot reach 7 /2 at k = ko making
the 7 /2 method non-applicable. When calculating the elastic
cross-section or scattering phase shift in the presence of the
broad resonance due to the importance of the non-resonant
phase shift, the cross-section depends not only on the reso-
nance parameters Eq and I" but also on the potential adopted.

Here as a test case, we select resonances representing the
ground state 1/2F and the first exited state 5/2% in °F.
McCleskey et al. [51] showed that for the mirror 15C states at
standard geometrical parameters ro = 1.25 fmanda = 0.65
fm the extracted phenomenological SFs are close to unity.
Hence the 1/2% and 5/27 states in °C, which are mirror
states in !F, are close to the single-particle ones. There-
fore, the potential approach is appropriate to describe these
states and the same Woods-Saxon potential can be utilized
to describe the mirror levels in '>C and '3F (Goldberg et al.
[52]).

The energy at which the absolute value of the internal
wave function reaches its maximum can be identified as the
resonance energy. We call this the |W,,,, | method. Goldberg
et al. [52] defined the width of the resonance by the energy
interval over which the amplitude falls by +/2 relative to the
maximum of the |V, |. For comparison, one can also use
the 7 /2 method.

We also apply the potential S-matrix pole method by solv-
ing the Schrodinger equation with the Woods-Saxon poten-
tial for both '°F resonance states with the J* = 1/2% and
5/2%. Zero of the the Jost function .7-'1(+) (k) = 0 at com-
plex energy give us the resonance pole, see Eq. (193). We
note that in the standard approach, the scattering wave func-
tion is calculated at real energies, where the non-resonant
contribution is significant for broad resonances, while the
Gamow-Siegert wave function is calculated at the complex
energy corresponding to the resonant pole of the S-matrix
located on the second Riemann energy sheet. As a first
approximation, to determine the complex resonance energy

ElL = E} —iT'!/2 the phase shift method is used (or the
|W;nax | method when the § = 7 /2 method is non-applicable).
After that, the Schrodinger equation near the complex energy
E}Q = Eé — i''/2 is solved. The final result of this search
is the complex energy Eg, at which the coefficient of the
incoming wave vanishes. Also, the S-matrix pole search is
utilized using the analytical representation (197) for the S-
matrix (see explanation below).

The S-matrix pole method results for the energies and
widths of the resonance states given in Table 1 are compared
with the previous results obtained using the § = 7 /2 and
|Wnax | methods (Goldberg et al. [52]). The position E and
the width I" of the broad resonance 1/27 depends on the cal-
culation method: the S-matrix pole method gives the values
of the resonance energy and width smaller and more accurate
than the § = 7 /2 and | W, | methods. It is worth noting that
the corrected value of 1.227 MeV for the resonance energy of
the ground state of '>Fis very close to the lower limit obtained
using the isobaric multiplet mass equation (Fortune [53] ).

An important test of the S-matrix pole method is com-
parison of the single-particle ANC determined as an ampli-
tude of the tail of the normalized Gamow-Siegert function
with the ANC determined from the residue of the scatter-
ing amplitude at the pole corresponding to the resonance.
For the normalization of the Gamow—Siegert wave function
Zel’dovich regularization method is used (Baz’ et al. [14]).
Both methods resulted in the same single-particle ANCs
(—0.123 + i 0.153) fm~!/2 and (0.115 + i 0.067) fm~'/?
for the 1/2% and 5/27 states, respectively.

11.2 Model-independent determination of energy and

. +.
width of the broad resonance % in 15F

The limitations of the potential model and the existence of
the phase-equivalent potentials call for a cross-check of the
energy and width for the broad resonance determined from
the potential approach. We define these resonance parame-
ters using the model-independent representation of the elas-
tic scattering S-matrix given by Eq. (197). Since the experi-
mental 25y > phase shift for 140 + p scattering in the reso-
nance energy region is not available, we generate the “quasi-
experimental” 251> phase shift using the Woods-Saxon
potential from Goldberg et al. [52], which reproduces the
140 + p resonance scattering. Its geometry is rg = 1.17 fm,
a = 0.735fm, r¢ = 1.21 fm and the depth V = 53.52 MeV.
The phase shift is shown in Fig 9. Using the S-matrix pole
method from the solution of the Schrodinger equation we
find the resonance energy for this potential Eg = 1.198 MeV
and the resonance width I' = 0.530 MeV. Now we demon-
strate thatusing Eq. (197) we can fit the “quasi-experimental”
phase shift and determine the resonance energy and width.
The potential phase shift in Eq. (197) is approximated by the
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Table 1 Energy and width of the resonances for the I5F states with /7 = 1/2% (the ground state) and 5/2% (the first exited state) calculated by

the use of three different methods (see the text)

JP Eo (MeV) I (MeV) Method
/2% 1.450 1.276 §=m/2
1.29079:98 0.7 W
1.198 0.530 Pole of S-matrix (potential)
1.194 0.531 Pole of S-matrix, Eq. (197)
1.400 0.700 R-matrix (from the scattering phase shift)
1.315 0.679 R-matrix (from the excitation function, R., = 4.5 fm)
1.274 0.510 R-matrix (from the excitation function, ro = 6.0 fm)
2.805 0.304 §=m/2
2.795 £ 0.045 0.298 £+ 0.06
5/2% 2.780 0.293 Pole of S-matrix
2777 0.286 R-matrix (from the excitation function, R.;, = 4.5 fm)
2.762 0.297 R-matrix (from the excitation function, R.;, = 6.0 fm)

polynomial §,(k) = Zi:o b, (k — kg)". So, we have 6 fit-
ting parameters including 4 coefficients b,, Eo and I'. The
final result does not depend on the choice of the center of
the Taylor expansion kg and practically not sensitive to the
starting values of Ep and I". We take here the starting val-
ues kg = 0.25 fm™!, Eg = 1.45 MeV and ' = 1.276
MeV obtained from the § = 7 /2 method, Table 1. The fit
to the “qausiexperimental” phase shift gives the final reso-
nance energy Eg = 1.194 MeV and I' = 0.531 MeV what
is in a perfect agreement with the results obtained using the
potential S-matrix pole method. For the starting search val-
ues Eg = 1.6 Mev and I’ = 1.276 MeV we get the fitted
energy Eg = 1.198 MeV and I' = 0.532 MeV. Thus Eq.
(197) allows one to obtain the energy and width of the broad
resonance using, for example, as input parameters the res-
onance and width obtained by the § = /2, |W,4x|.- The
model-independent result obtained from Eq. (197) gives very
close values to the potential S-matrix pole. Assigning a 10%
uncertainty to the “quasi-experimental” phase shift results in
a similar uncertainty in the determined “quasi-experimental”
phase shift resonance energy and width.

11.3 Comparison with R-matrix approach

The resonant S-matrix obtained from the R-matrix contains
the nonresonant contribution through the energy dependence
of the level shift and resonance width. The extrapolation of
these functions to the complex energy plane makes them
complex. Hence they loose their physical meaning. Thus the
R-matrix approach is not designed for extrapolation to the
resonant pole.

Here we apply the R-matrix approach to determine the
energy and the width of the resonance with the S-matrix pole
method. For an isolated resonance in the single-level, single-
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Fig. 9 The O + p 25 /2 scattering phase shift generated by the
Woods-Saxon potential from [52] and used as the “quasi-experimental
phase shift”. First published in Mukhamedzhanov et al. [54]

channel R-matrix approach the Coulomb-modified nuclear
scattering S-matrix is ( Eq. (87) in simplified notations)

. Ty(E)
eizislhs EO_E+ZIT

CN _
syV(E) = o piTE

(201)
In contrast to the Breit—Wigner equation, the resonance width
in the R-matrix approach depends on the energy. This depen-
dence means that the S-matrix in the R-matrix is richer
than the Breit—-Wigner equation: it also includes the non-
resonant background, which is contributed by the hard-
sphere phase shift and the energy dependence of the res-
onance width. For narrow resonance (I'(Eg) << Ej) the
pole in Eq. (201) Er =~ Eo — i ['(Ep)/2. For a broad res-
onance this resonance energy is not a pole of the S-matrix.
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The equation for the resonant pole in this case is given by
Er = Eg —iT'(ER)/2. At complex Er TI'(Eg) becomes
complex and looses its meaning of the width. For a broad
resonance in the R-matrix method the resonance energy is
defined as Er = Eo — i ['(Ep), which is not a pole of Eq.
(201). Hence, for broad resonances, the difference between
the resonance energy from the S-matrix pole method and the
R-matrix method is expected.

To compare the results for the R-matrix and S-matrix
pole methods for the sfr/z resonance we use the phase shift
generated by the Woods-Saxon potential from Goldberg et
al. [52] as the “quasi-experimental” one and determine the
resonance energy and width by fitting the R-matrix phase
shift to the “quasi-experimental”. The results are shown in
Table 1. The R-matrix resonance energy and width depend
on R.;. At R.;, = 4.5 fm the R-matrix are close to |V, |
results. At R.; = 6.0 the R-matrix results are lower than
the |W,,4x| ones. Both R-matrix and |\W,,,,| methods deter-
mine the resonance energy from the data at real energies
where for broad resonances the contribution of the back-
ground becomes important. The S-matrix pole method deter-
mines the resonance energy and width by extrapolating the
data to the pole in the complex energy (momentum) plane.
In the vicinity of the pole the resonant contribution becomes
dominant compared to the background and determination of
the resonance parameters is more accurate than in the phys-
ical region.

12 Theory of transfer reactions populating resonance
states

12.1 Introduction

Production of unstable nuclei close to proton and neutron drip
lines has become possible in recent years, making deuteron
stripping reactions (d, p) and (d,n) on these nuclei (in
inverse kinematics) not only more feasible as beam inten-
sity increases but also a unique tool to study unstable nuclei
and astrophysical (n, y), (p,y) and (p, «) processes. The
deuteron stripping reactions populating the resonance states
of final nuclei are an important and challenging part of reac-
tions on unstable nuclei.

The standard method of analyzing the nucleon transfer
reactions populating bound states for a long time was the
distorted-wave-Born approximation (DWBA). By standard
DWBA, I mean the approach in which the one-step trans-
fer matrix element is evaluated with incoming and outgoing
distorted waves calculated by fitting the deuteron and proton
elastic scattering with local optical potentials. The transition
operator contains finite range effects and the full complex
remnant term. The main idea of the DWBA is that the tran-
sition matrix element is so small that one can use the first-

order perturbation theory. Since the nuclear potential is quite
large by itself (~ 100 MeV), the smallness of the transition
operator can be fulfilled if the reaction is peripheral enough
that the nondiagonal matrix element representing the transfer
reaction amplitude becomes small.

However, an adequate theory for transfer reactions to res-
onance states has yet to be developed because the resonance
wave function is large in the nuclear interior, where differ-
ent channels are coupled in the nuclear interior. The strip-
ping pattern to resonances can differ from stripping to bound
states. In the outer region, the resonance wave function is the
Gamow-Siegert wave function, whose asymptotic is given
by the outgoing Coulomb scattered wave. To regularize the
reaction matrix elements, one can use the Zel’dovich regu-
larization procedure (see Sect. 2) or CSM (see Appendix C).
Nowadays, the standard DWBA is being replaced by more
advanced approaches such as continuum discretized cou-
pled channels (CDCC) (Rawitscher et al. [55], Kamimura
et al. [56] Austern et al. [S7], Yahiro et al. [58]), adiabatic
distorted wave (ADWA) (Johnson and Soper [59]), coupled
reaction channels (CRC) and the coupled channels in Born
approximation (CCBA) available in FRESCO code (Thomp-
son [60]).

For more than 50 years, transfer reactions to bound states,
and deuteron stripping in particular, have been used to deter-
mine the spectroscopic factors, which measure the weight of
the single-particle state in the overlap function of the initial
and final nuclei. That is why there was always a tempta-
tion to develop a theory of stripping into resonant states that
is fully similar to stripping into bound states. For example,
Bunakov et al. [61] assumed that the SF could be extracted
from deuteron stripping into resonance states. In this case, the
SF is the ratio of the observable and single-particle resonance
widths. However, the SF is not observable and depends on the
single-particle potential used to calculate the single-particle
width. Mukhamedzhanov and Kadyrov [62] showed that SFs
are not invariant under finite-range unitary transformations
and, hence, in the exact approach, nuclear reactions cannot be
a tool to determine spectroscopic factors (review [1]). How-
ever, there is model-independent information, which can be
extracted from deuteron stripping reactions. I mean the ANCs
(resonance widths), which are the amplitudes of the tails of
the Gamow—Siegert wave functions and are invariant under
finite-range unitary transformations. The uncertainties of the
ANCs extracted from (d, p) reactions are investigated by
Lovell and Nunes [63] and Timofeyuk and R. C. Johnson
[64].

Below we describe a theory of deuteron stripping that will
solve the problems mentioned above for the deuteron strip-
ping to resonant states. We start from the consideration of
the conventional DWBA amplitude and then consider the
CDCC one. By splitting the post and prior forms into the
internal post, surface and external prior form we can ana-
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d P

B

Fig. 10 The skeleton diagram describing the stripping reaction Eq.
(202) proceeding through the resonance state in the subsystem F =
n+A=b+8B

lyze the convergence of the resonant DWBA amplitude. The
details of the surface-integral formalism were addressed in
(Kadyrov et al. [65], Mukhamedzhanov [66]). Modification
of the FRESCO by Thompson allows one to analyze contri-
bution of the internal post form, surface term and the external
prior form (Escher et al. [67]).

12.2 Stripping to resonance state. Post form of DWBA
Let us consider the deuteron stripping reaction

d+A—-p+F—->p+b+B, (202)
proceeding through the intermediate resonance in the sub-
system FF = n 4+ A = b + B. Figure 10 shows the skeleton
diagram describing the mechanism of reaction (202).

In this subsection, we consider the post-form DWBA
amplitude of reaction (202), which we split into the internal
and external parts in the subspace over the relative coordinate
between the transferred n and A. Owing to the choice of the
transition operator in the post-form, the internal part turns
out to be small. The outer part, parameterized in terms of the
resonance width (or, equivalently, ANC), will be transformed
into the dominant surface integral encircling the interior vol-
ume and small external prior DWBA amplitude. As a starting
point, we consider the post-form of the reaction amplitude

MPPO (P kgp) =< 1AV, [0 > (203)

Here \IJZ-H) is the exact scattering wave function in the ini-

tial state with the two-body d + A incident wave, CI>5,_) =

( \IJlE B) is the channel wave function in the exit state p +

b+B \IJ,S g isthe exact scattering wave function with the inci-
dent wave in the channel b+ B. AVyp = Vpa+Vp —UpF
is the transition operator in the post form, Vi ; is the inter-
action potential between nuclei i and j, U;; is the optical
potential between nuclei i and j, Xl([+) = Xk+) (r;j) is the

distorted wave describing the relative motion of particles i
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and j interacting via the optical potential U;; with the relative
momentum K;;.

Because we consider the stripping to the resonance state,
which decays into two fragments b and B, there are three
particles ( p, b and B) in the final state. Hence, the kinemat-
ics of the final state of the reaction depends on two Jacobian
momenta, for which we adopt the relative momentum of two
fragments b and B, and the momentum corresponding to the
relative motion of the exiting proton and the center of mass
of the system b + B. Thus the deuteron stripping amplitude
depends on the momentum P = {K,r, Kpp}, which is the
six-dimensional momentum conjugated to the Jacobian coor-
dinates of the system p +b + B X = {r,F, rpp}.

We remind the reader that the exact wave function \IJI.H) is
fully antisymmetrized, but the channel wave function ijf_)
is not antisymmetrized with respect to the exchange of the
exiting proton and nucleons in the system b 4+ B. However,
the scattering wave function llllﬂg) in <I>5,v_) is fully antisym-
metrized. We can drop the antisymmetrization in the channel
wave function because of the fully antisymmetrized exact
wave function in the initial state and fully symmetric transi-
tion operator.

To obtain the post form of the DWBA from Eq. (203) we
replace \IJi(+) with the channel wave function ¢4 ¢4 Xc(i:) in
the initial d + A state:

MPYPOSO(P, Kap) =< x 57 Wi5 1 A Vorlga ¢a x> -
(204)

Note that the integration in Eq. (204) is taken over all the
internal coordinates of nucleus A.

To further simplify Eq. (204) we introduce the approxi-
mate projector [p4 >< ¢|. Then we can reduce MPW (post)
to

MPYPOSO (P Kap) =< X57 Tyghaal AV prlda x>,
(205)

where < Tlg Bin a4l =< lIJ< )|¢A > is thereaction component
(in the 51mphﬁed notations omitting quantum numbers) of
the overlap function. The antisymmetrization factor between
the neutron and the nucleons of nucleus A is absorbed into
Tb(B) 4- We also use

< ¢alA VpF|¢A >=< ¢A|VpA|¢A > +Vpn - UpF-
(206)

The potential < ¢4|V,aldpa > is replaced by the optical
potential U 4 to get the standard post-form DWBA transition
operator AV ,r = Upa + Vpy — Upp. Also it useful to

: = _ () ( )* _ ~ )
remind that XpF = X k,p and TbB WA = T(bB;nA),—knA'
Here we need to address one very important point about Eq.
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(205). The bra state of the matrix element contains the overlap
function TIEE? 24- In the external region the radial behavior
of this overlap function is determined by the outgoing wave
Oy (ke , rer) in the exit channel ¢’ = n + A. The amplitude
of the outgoing wave is the S-matrix element corresponding
to the reaction b + B — n + A. For the scattering near
the resonance the momentum k. in the outgoing wave can
be taken equal to the real part of the resonance momentum
in the channel ¢’ : ko = ko). For narrow resonances the
outgoing wave can be replaced by the Gamow-Siegert wave
function.

Now we transform this volume integral into the surface
one following Sect. 8, review [1]. First, we adopt r,4 and
r,F as Jacobian variables and split the configuration space
over r,4 into the internal and external regions, while the
integral over the second Jacobian variable, r, r, is taken over
all the coordinate space. Splitting the reaction amplitude into
internal and external amplitudes, we get

DW (post)

MDW(pDS[)(P, de) — Mint (P, de)

+ Moy PP kan),  (207)
where the internal amplitude MZW(" s i given by
M P (P, Kga)

—<X anA| VpF|¢dXdA > (208)
rnAfRz‘h(nA)
Correspondingly, the external amplitude is given by
DW (po:
Mexl ([JOYZ)(P’ Ka4)
=< X7 Typal AVprlda xi% > (209)

nA> Rch(nA)

Here R4y is the channel radius in the channel n + A
similar to the one introduced in the R-matrix approach, which
separates the internal and external regions.

The splitting of the amplitude into the internal and exter-
nal parts in the subspace over the Jacobian variable r, 4 is
natural and evident. The overlap function T;}{n 4(rna)isthe
only object in the reaction amplitude which provides spectro-
scopic information about the resonance in the system n 4 A.
Owing to the structure of the transition operator, the exter-
nal post-form matrix element M2 7" is dominant com-

pared to a small contribution coming from the internal part
M iL’)JV(posr)
ing.

In the internal matrix element, 1,4 < Rcpna), owing to
the absorption of the protons inside nucleus F = (n A),
effective rp, ~ rpa = rpr > Rp, where R is the radius
of nucleus F. For the protons outside of F and neutrons
inside or on the surface of A each nuclear interaction in the

. This simple observation stems from the follow-

operator AV ,p = Upa + Vpy — Upr is small. Potential
U, is arbitrary, and often U, is chosen to compensate for
Upa so that the transition operator reduces to V. Because
the DWBA is the first order perturbation theory, minimiz-
ing the whole transition operator AV,, r provides smaller
higher order terms and better serves the theory. This choice
is more preferable in the formalism presented here and we
adopt U, r, which minimizes AV ,p = Upa + Vpp — Upr
at 7,4 < Rep(nay making the contribution from the internal
matrix element small compared to the external one.

The external post-form matrix element (r,4 > Renna))

. . DW 1) . .
is dominant. We transform M2 ?*" into an alternative

form, which has a clear advantage for stripping to resonance
states as discussed below, when convergence becomes the
main impediment.

Now we proceed to the transformation of the volume inte-
gral, defining the external matrix element in terms of the dom-
inant surface integral encircling the sphere at r,4 = Repna)
and a small, owing to the structure of the transition operator
in the prior form (see Eq. (216)), external prior-form vol-
ume integral. Note that the transformation is exact within the
DWBA formalism.

To transform the external volume integral to the surface
one, we rewrite the transition operator as

AV[,F =Upa+ Vpn — Upr

= [Vpn + Uaal — [UpF] + (UpA — Uga). (210)
The bracketed operators are the right-hand-side operators in
the Schrodinger equations for the initial and final channel
wave functions in the external region (over the variable r, 4):

(E—=T)¢a x5y = Vo + Uaa) ba 15y (211)
and
Yypma Xpi (E = T) = Upr g Xor 212)

To derive Eq. (212) we took into account that at r,4 >
<«

RuA(ch) TZSE?ZA (Ena— T na) = 0, where E;; and T} j are the
relative kinetic energy and relative kinetic energy operator of
the relative motion of i and j. These equations imply the fol-
lowing connection between the external post-form DWBA
amplitude and the matrix element M? W containing the sur-
face integral:

./\/ler‘;V(pwt)(P, Kya) = M?W(P, 9

+ MEVPTD (P Kay),  (213)
where
MEY P (P Kgy)
=< XpF Typunl AVaalda xis > (214)

TnA>Renna)
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and

<«
MEW (P, kgp) =< x( P pal T

~Fioa x>

rnA>Renna)

215)

Here the transition operator in the prior form A V 44 in the
external region, where the nuclear n — A interaction disap-
pears, takes the form

AVga=Ups —Uqga. (216)
Then the total post DWBA amplitude reduces to
MDW(]J()X[)(P’ de) — MiDn;’V(POSI)(P’ de)

+ MO PP, Kkyp)

+ MY (P, kan). 217

Let us discuss the advantage of this new form of the
DWBA amplitude for the deuteron stripping to resonance
state(s). Because the internal part /\/lllzltw(p o5 g given by the
volume integral, its calculation requires the knowledge of
Tb(';tlz; ) in the internal region. The model dependence of this
function in the nuclear interior (r,4 < Rcp(na)), where dif-
ferent coupled channels do contribute, brings one of the main
problems and the main uncertainty in the calculation of the
internal matrix element. However, as discussed in sec. (3.4)
[1], this matrix element gives a small contribution to the total
post-form amplitude MPW(PosD) owing to the structure of
the transition operator A Vp r and constrain 7,4 < Repna)-
These arguments are also valid when considering the strip-
ping into resonance states. A proper choice of the optical
potential U, and the channel radius R.j(,4) may signifi-
cantly reduce the contribution from the internal post-form
DWBA amplitude. Owing to the structure of the transition
operator A V44, the external matrix element Mﬁﬁ”p 707 in
the prior form is also small and in some cases with a rea-

sonable choice of the channel radius R.;(,4) even can be
neglected. Note that to keep MPW posty small, the channel
DW (prior)

int

radius Ry (,4) cannot be too large and, to keep M,;
small, cannot be too small. Thus with the optimal choice
of the channel radius, the dominant part is the surface part
M? W which contains only one volume integral over r DE-

The idea of replacing the volume integral over r,, 4 with the
surface one reminds the Gauss law in electrodynamics when
the volume integral of the charge density is replaced by the
surface integral determining the electric field flux through the
surface surrounding the volume integral. Using the surface-
integral representation, we can transform a large internal vol-
ume integral (it is large because the internal resonance wave
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function is peaked in the nuclear interior) into a small post-
form volume integral over r,4 and large surface integral.
In our case, the surface integral determines the neutron flux
through the nuclear surface. However, we have the three-
body problem, p, n and nucleus A, and only the neutron is
transferred. Since the proton is not transferred in the deuteron
stripping reaction, the volume integral over r, ¢ is taken over
all the coordinate space.

Equation (217) presenting a new form of the DWBA
amplitude for stripping to resonance states is quite important
for analyzing the stripping to resonance. In this sense, the
usage of the external prior-form amplitude Mg;;v(p ") has
aclear benefit because itis small and better converges than the
external post form. Also the internal amplitude ./\/lleW(p ost)
is small. The main contribution to MPW (25D comes from

the surface term M? W Using the R-matrix representation

of the overlap function T( bBina W€ can express the total
DWBA amplitude in terms of the reduced width amplitudes,
level matrix, boundary condition, and the channel radius (
Mukhamedzhanov [66]), Escher et al. [67]). These parame-
ters are used in a standard R-matrix method to analyze binary
resonant reactions n + A — b + B. Since the reaction under
consideration is the deuteron stripping, the presence of the
deuteron in the initial state and exiting proton causes the dis-
tortions. That is why the reaction amplitude, in addition to the
R-matrix parameters describing the binary subprocess, con-
tains additional factors: distorted waves in the initial and the
final state. Hence we can call the obtained expression for the
DWBA amplitude a generalized R-matrix for the deuteron
stripping to resonance states.

12.3 Stripping to resonance state: prior form of DWBA

Here we show how to derive Eq. (217) from the prior DWBA

amplitude, which is

MPW@rion (p k) =< x 7 W5 1 A Vaalda x>,
(218)

where AVga =< @alVpalpa > + < ¢alVaalpa >
—Uga. As usually, we split the amplitude into internal and
external parts

MPW@rion (p kya) = M P (P, Kaa)
+ MEWPToD (p kah), (219)
with
Mﬁrv(prior) (P de)
= XpF dA ®d XdA > ( )

rnA=<Rcp (nA)
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and

MDW(prior)(P’ de)

ext

=< xy7 Uis " 1A Vaalda 155 > :
p rnA>Renna)

221)

The external matrix element M2 ?"**” in the prior form

is small and, in some cases, with a reasonable choice of the
channel radius R.j(,4) can be neglected. It is important to
analyze the stripping to resonance states because the outer
part in the post form doesn’t converge. In this sense, using
the prior form in the outer part has a clear benefit. The main
contribution to the prior-form amplitude M PV (Prior) comes
from the internal part M 7 ") Since the volume integral
gives the internal part, its calculation requires the knowledge
of \I/lglg,”)(_) in the internal region. The model dependence of
this function in the nuclear interior (r,4 < Renna)), Where
different coupled channels do contribute, brings one of the
main problems and main uncertainty in the calculation of the
internal matrix element. Using the surface integral, we can
rewrite the volume integral of the internal matrix element in
terms of the volume integral in the post form and the domi-
nant surface integral taken over the sphere atr,4 = Rep(na)-
With a reasonable choice of the channel radius R.;,4), the
contribution from the internal volume integral in the post
form can be minimized to make it significantly smaller than
the surface matrix element. The latter can be expressed in
terms of the R-matrix parameters - the observable reduced
width amplitude (ANC), boundary condition, and channel
radius (Mukhamedzhanov [66]). Repeating the steps outlined
in Sect. 12.2 we get

Mip T (P Kan) = MG (P Kaa)
+ MY (P, Kan). (222)

DW (post . . .
Here M. (post) has been previously considered and is given
int p y g

by Eq. (208) while M %" takes the form
(_
MY (P, kan) = = < X7 Typms | T
= -+
- T > , 223
|¢d XdA TnA SRch(nA) ( )

where TY(L;”)(_) =< lIJlgel;”)(_) |¢pa >. The fact that the vol-
ume integral in this equation is the internal one makes trans-
forming this volume matrix element to the surface much
easier than for the post form. The transition operator 7 =
TpF 4+ Tua. Atryg < Rch(nA) and rpp — 00 the integrand
in Eq. (223) vanishes exponentially due to the presence of

¢q. Hence the operator T, is Hermitian (self-adjoint), and
applying the integration by parts over r,r twice, we get

<« —
(=) Arlext) (=) 7 (+)
< Xpr Yopna | Tpr = Tprldaxan > rna<Renna) =0
(224)
Thus M?W(P, kg4) reduces to
<«
MEY (P, kan) =< 137 Tygrs 1 T ua
z )
= Toaldd xgq > (225)
" daa nA<Rcnmna)

Using the Green’s theorem we can transform this volume
integral into the surface one. Note that the volume integral
over I, 4 is constrained by the sphere with the radius r,4 =
Rch(na)- Hence, only one surface integral appears withr, 4 =
Rennay-

Now we can see an important advantage of the prior form
versus the post one by comparing Eqgs. (220) and (221) with
the corresponding post-form Eqgs. (208) and (209). The dif-
ference is in the transition operators. In the post form, due to
the structure of the transition operator A V,, B, the internal
part can be minimized. The dominant contribution in the post
form comes from the external amplitude, where we must deal
with the convergent problem. In the prior form, the transition
operator makes the internal amplitude dominant compared
to small external one. Note that in both forms, post and prior,
the dominant part contains the surface term: the outer ampli-
tude in the post form and the internal one in the prior form.
It explains why one should use the prior form in which the
problem with convergence does not appear for analysis of
transfer reactions.

12.4 Advancing DWBA

The more advanced than DWBA are ADWA and CDCC
method.

12.4.1 ADWA

ADWA was formulated for the deuteron stripping (pickup)
reactions (Johnson and Soper [59]). The idea is to improve
the DWBA amplitude by effectively considering the deuteron
breakup channel in the initial state. It is achieved by using
the d — A distorted wave, which satisfies the two-body d + A
Shrodinger equation with the optical potential Uy (rg4) =
Upa(raa) +Uya(rpa). Each nucleon-nucleus optical poten-
tial is calculated at half the initial d A relative kinetic energy.
Different modifications of the ADWA are considered in [64].
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12.4.2 CDCC
We consider the deuteron stripping reaction

d+A—>p+n+A, (226)
proceeding through the resonant sub-reaction n + A —
F* — n + A. To treat the stripping to resonance states we
use the prior formalism, in which the exact scattering wave
function appears in the final state rather than in the initial
one. Then the reaction amplitude in the three-body model
p + N + A takes the form:

Mprion) — o \pfj) Upa + Vaa — Uaalda x5 >, (227)

where ‘-I-fgf) is the p + n + A scattering wave function in the
final state. The prior-form of the CDCC amplitude is obtained
by replacing \IJ](f) with the CDCC wave function:

pA T Vi — UdA|¢d X;Z) > .

(228)

EOQEC(prior) —< W.?DCC(7)|U

The CDCC method, rather than solving three-body Fad-
deev coupled equations, reduces the problem to a single
Schrodinger equation with the effective Hamiltonian The
final-state CDCC wave function can be written as

Imax

CDCC(— [ i)(—
WEPCO () = Y S ) 1 (1)
i=0

Jmax

—()H (=) —(=)
+ Z 1Ifkm“a (rnA) ijpF(knA)(ppF)'
=l

(229)

Here (]57(3x (ry4) is the i-th bound state wave function of the
system F = (nA) with i = 0 corresponding to the ground
state and Xl?,,),i_) (p,F) are the functions, which describe the
relative motion of p and the (n A) pair in the i-th bound
state. E(ﬁj i_)(r,, 4) is the n — A scattering wave function
obtained by averaging continuous breakup states in the j-
th bin and 71((1’] )F((_k)nA)(p pF) 1s the wave function describing
the relative motion of the proton and the c.m. of the system
n + A in the continuum in the j-th bin. In Eq. (229) the
relative momentum k,r(k,4) of the particles p and F is
related to the n — A relative momentum K, 4 via the energy
conservation law:

k?fF sz
E=FEjpn—¢cpn=E)r—eya= + L (230)
e A T 2a

The n — A interaction is taken as a real single-particle poten-
tial V,, 4, which can support the resonance in the n — A system.

@ Springer

The corresponding scattering wave function is orthogonal to
the bound states generated by this potential.

Note that in practical application we need to use
El(é, )A(S_ ,2:? w (Tna), which is expressed in terms of the binned

radial wave function ﬁ,((i Z(jl),m 7 (rna) given by (Thompson

[60], Thompson annd Nunes [68])

@]
2 nA
—(DH) _ _
kna Slna JF(r"A) - )

TN lun Jr LU-D
nA

dknA

x g L ) ul o (raa)s (231)

where the radial scattering wave function u,((i i\(:z,)m, Iy (rna)

describes the resonance scattering in the bin covering the
: )]

resonar?t region. &5y, g
normalization constant is

(kna) is the weight function. The

koA
N = f dhna I8 5 Gna) . (232)
The adopted normalization constant N ) makes an

slya JF

orthonormal set ﬁ,((i z\(jl),: Iy (rpa) when all the intervals

(k,{ ;1, k,(lQ) are non-overlapping.

The next important step is adoption of the weight func-
tion gs(jle Iy (kna). Two different prescriptions can be used
for the weight function for resonant and non-resonant bins
(Thomson and Nunes [68]). One can use for the non-resonant

bins

gD na) = 7 Bt sp ) (233)
and for the resonance bin
8stuy sp (kna) = € ¥ha e &) sin(8gy g (kna)),  (234)

where 854, , 7, (ki) is the n — A elastic scattering phase shift.
For this phase shift we adopt the hard-sphere scattering phase
shift 8;}’1‘: in the channel n + A, see Eq. (64).

12.5 Stripping to resonance state: reaction
160(a, p)'"0(1d32)

Now we proceed to the calculation of the stripping to reso-
nance state. We select the reaction '°0(d, p)170(1d3/2) at
E; = 36 MeV populating a resonance state E, = 5.085
MeV, which corresponds to the resonance level at 0.94 MeV.
Hence A = '°0 and the resonance orbital angular momen-
tum is [,4 = 2. In all the calcullations shown below we use
the single-particle approach for the n — A resonant scattering
wave function calculated in the Woods-Saxon potential with
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the radial parameter r, = 1.25 fm and diffuseness a = 0.65
fm. All the calculations of the differential cross-sections were
performed using the FRESCO code by Thompson [60]. For
the binned functions see Thompson and Nunes [68].

In the first calculation we compare the post and prior calcu-
lations. The post and prior ADWA and prior CCBA (coupled
channel Born approximation) are used for comparison. The
prior ADWA is the standard prior DWBA in which the initial
deuteron potential is given by the sum of the optical Upy4
and U, 4 potentials calculated at half of the deuteron energy
using the zero-range Johnson-Sopper prescription [59]. In the
prior-form CCBA amplitude the transition operator is taken
to be A V44 and the final-state wave function can be derived
from Eq. (229). To do it we use the partial wave expansion of
the binned n — A continuum scattering wave function leaving
only the resonance partial wave [,4 = 2. The adopted bin
covers the resonance region and Xlgrpe;()én_;) (p,F) correspond-
ing to the resonance bin has asymptotically both incident
and outgoing waves. The continuum resonance wave func-
tion component is coupled with two bound states in 7O: the
ground state 1ds;; and the first excited state 2s1,2. These
terms are given by the sum over i = 0, 1 in Eq. (229). Thus
schematically our final-state CCBA wave function coincides
with the CDCC wave function, see Eq. (229):

CDCC(— 0 0)(—
\IlfD ( )(pva rpA) = ,(IA)(rnA)Xl((p)F( )(ppF)

1 1)(—
+9ua Taa) Xor (P pF)

T s A 0y

(235)

Here, for simplicity, we omitted spins. The radial and
momentum spherical harmonics are absorbed into
—~(res)(—) . 0)(—
wliji (rya). The distorted waves Xlip)p( )(ppF) and

Xlilp)p(i)(p ) have only outgoing waves.

The results of the calculations are shown in Fig. 11.
Dependence of the peak value of the normalized differen-
tial cross-section Ry on the r"ﬂ” (blue short (ADWA) and
long dashed (CCBA) lines) shows that the prior form con-
verges pretty fast being dominantly contributed by the region
rma < 5 fm. The ADWA and CCBA lines (red dotted and

~

green dash), which show the dependence of Ry onr,'{"* con-

firm that the prior form practically converges at r;"{* = 5 fm
with small oscillations at higher r, 4. Because the ADWA
and CCBA calculations used the ADWA prescriptions, the
difference between both methods determines the effect of
the coupling of the continuum resonant wave function in the
final state with two bound states. As we see, this effect is
not significant. The cross-section of the post form (solid red
line) demonstrates very slow convergence despite using the
bin functions, which have additional r, | Al dependence. Thus
Fig. 11 confirms our conclusion made in Sect. 12.3 about the
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Fig. 11 Dependence of the normalized ADWA and CCBA differen-
tial cross-sections R, on r,4 for the deuteron stripping to resonance
1%0(d, p)!’0(1d5)2) at E; = 36 MeV. Blue short and long light-blue
dash-dotted lines — the ratios Ry of the peak prior ADWA and CCBA
differential cross-sections, correspondingly, in which the radial integral
over r,4 is calculated for r,4 > rﬂ”, to the full differential cross-
section. Similarly, magenta dotted and green dashed lines are the ratios
Rx of the peak prior ADWA and CCBA differential cross-sections,
correspondingly, in which the radial integral over 7,4 is calculated in
the inteval 0 < r,4 < r;/{'", to the full differential cross-section. The
red solid line is the Rx dependence on ;i calculated for the post
ADWA form. Hence r,,4 on the abscissa is r,’i’fi” for the blue short and
long dashed lines and 7} for the dotted magenta, dashed green and
solid red lines. First published in Mukhamedzhanov et al. [69]
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Fig. 12 Angular distributions for the deuteron stripping to resonance
190(d, p)"’0(1ds;2) at Eq = 36 MeV. Red solid line is the DWBA,
blue short dashed line is the ADWA, green dashed line is the CCBA.
All the angular distributions are normalized in the region of the for-
ward peak to the experimental one -red dots [70]. First published in
Mukhamedzhanov et al. [69]

advantage of the prior form over the post form when analyz-
ing the resonance (d, p) reactions.

Figure 12 depicts the angular distributions for the reac-
tion °0(d, p)!70(1ds.2) at E; = 36 using prior DWBA,
ADWA and CCBA. As we can see, the impact of the cou-
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pling of the continuum resonance wave function with the
bound states has little effect on the angular distributions. In
the single-particle potential approach for the resonant scatter-
ing wave function the normalization of the theoretical cross-
section to the experimental one determines the SF. From the
normalization of the calculated differential cross-sections to
the experimental one we determined the SFs: S = 0.89 for
the DWBA, S = 0.66 for the ADWA and S = (.73 for the
CCBA. Using the single-particle neutron partial resonance
width Iy, = 128 keV, we get for the observable neutron
widths I";, = 113.9 keV for the DWBA, I';, = 84.5 keV for
the ADWA and I';, = 93.4 keV for the CCBA. The observed
experimental value is I', = 965 keV. Thus the prior CCBA
and ADWA can be used to determine the observable partial
resonance widths.

Figure 13, which is important for the corroboration of our
theoretical findings, checks the dependence of the extracted
neutron resonance width on the radius rg of the n — A
Woods-Saxon potential, which supports the resonance state
O(1d3/2). This test shows how peripheral the deuteron strip-
ping to resonance is. At each 1.0 < r¢9 < 1.7 we calcu-
lated the CCBA differential cross-section, normalized it to
the exterimental one in the stripping peak in the angular dis-
tribution and determined the SF, which is the normalization
factor. For each r¢ from the derivative of the calculated scat-
tering phase shift we determine the single-particle neutron
resonance width and multiplying it by the determined SF we
find the observable resonance width shown in Fig. 13. The
determined neutron resonance width I',, varies with varia-
tion of rg in the realistic interval 1.0 — 1.6 fm by 7% from
the experimental value of 96 keV. Such a relatively small
variation proves that the reaction under consideration is sig-
nificantly peripheral. From Fig. 11 follows that the dominant
contribution comes from the surface area of the target nucleus
160, Figure 14 confirms this observation demonstrating, as it
is expected for peripheral reactions (see Sect. IX, review [1])
strong ro dependence of the SF. Evidently, the dependence
on rp of the SF is much stronger than of I',.

From Fig. 13 one can determine the radial parameter
ro = 1.35 fm at which the extracted width coincides with
the exeprimental one. Taking into account that at ry = 1.35
fm the calculated I';, coincides with the experimental one we
can determine the SF s¥, = 0.66J_’8:%5 )

13 Radiative capture processes

13.1 Introduction

Radiative capture reactions in which a nucleus fuses with
another one accompanied by the emission of the electro-

magnetic radiation, play a very crucial role in nuclear astro-
physics. It is impossible to overestimate the contribution
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Fig. 13 Solid red line- dependence on ry of the neutron res-
onance width extracted from the CCBA calculations of the
1%0(d, p)!70(1d5/2) reaction at E; = 36 MeV. The blue dashed line
is the experimental neutron resonance width of the 1d3> resonance in
170 and the blue strip is the resonance width’s experimental uncertinty.
First published in Mukhamedzhanov et al. [69]
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Fig. 14 Solid red line- dependence on r¢ of the SF extracted from the
CCBA calculations of the 1°0(d, p)170(1d3/2) reaction at E; = 36
MeV. First published in Mukhamedzhanov et al. [69]

of these reactions in stellar nucleosynthesis in stars, stellar
energy production (the Q-values for these reactions are pos-
itive except for the processes involving nuclei far off the val-
ley of stability), in the explosive conditions found in novae,
X-ray bursts, and supernovae. The radiative capture reac-
tions caused by the electromagnetic interaction are signifi-
cantly slower than reactions induced by the strong interac-
tions. Hence these slow reactions control the rate and time of
cycles of nucleosynthesis. At higher temperatures the inten-
sity of high energy thermal photons becomes so large that
these photons can induce the inverse reactions. These inverse
reactions are called photodisintegreation processes. For the
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first time the role of the radiative capture reactions in the pp
chain and CN cycle was addressed in Bethe and Critchfield
[71] and Bethe [72].

There are different types of the radiative capture reactions:

1. Direct radiative capture

at+A— B+y, (236)
which is the one step process leading to the ground or
excited bound states of B. The energy of the emitted
photonis E, = E + g4, where E = E 4 isthea — A
relative kinetic energy in the continuum and &, 4 is the
a — A binding energy in the final state state.

2. Resonant radiative capture reactions are two-step reac-
tions. On the first step a resonance is formed, a + A —
B*, which decays by emitting y to the ground or excited
bound states of B. The energy of the emitted photon is
E, = E+¢44.0wing to the resonance width, the energy
of the emitted photon can deviate E, = Eo + &44,
where E| is the real part of the a — A resonance energy
Er = Eog —il'/2, T is the resonance width.

3. Two-step resonant radiative capture through a subthresh-
old resonance, which is a subthreshold bound state, see
Sect. 6.2. The energy of the emitted photon is £, =
&qA — &5, Where &5 = g44 is the binding energy of the
a — A subthreshold state.

In nuclear astrophysics many important nucleon capture
reactions take place through resonance states which then
decay to bound states. The total capture cross-section for such
reactions is then given by the interference of resonant and
non-resonant contributions. Many theoretical models for res-
onant and non-resonant cross-sections require proper knowl-
edge of the initial and final state, the nature and multipolarity
of the transition, and the radiative width (Lane and Thomas
[18], Holt et al. [73], Barker [22]).

For many nuclei, radiative capture reactions are the only
p- or a-capture processes with positive Q-values. Hence the
reaction rates of these reactions are crucial for determining
the stellar energy production. The radiative capture reactions
represent the most practical application of the indirect ANC
method in nuclear astrophysics. One of the main input parts
of the radiative capture amplitude is the radiative width, one
of the important observables whose precise value is required
to determine the resonance capture cross-sections accurately
and which is often the main source of uncertainty. Thatis why
we start our discussion from the radiative width amplitudes.

To calculate the radiative width the R-matrix approach
is often used (Lane and Thomas [18], Holt et al. [73],
Barker and Kajino [22], Mukhamedzhanov et al. [74],
Mukhamedzhanov and Pang [75]). In the R-matrix approach,
the radiative width amplitude is given by the sum of the

nuclear internal and external (channel) parts. The chan-
nel radiative width amplitude depends only on one model
parameter, namely, the channel radius, and for a given chan-
nel radius, the channel radiative width amplitude is model-
independent. Apart from this, to calculate the channel radia-
tive width amplitude, one needs to know two observables: the
ANC of the final bound state and partial resonance width.
Therefore, with precise knowledge of these quantities, the
channel radiative width amplitude can be calculated quite
accurately. The channel radiative width amplitude is a com-
plex quantity, and its imaginary part puts a lower limit on
the radiative width (Eq. (234), review paper [1]). Contrary,
the internal radiative width amplitude is a real and model-
dependent quantity. The internal radiative width amplitude
is usually a fitting parameter in the R-matrix method.

The combination of the peripheral transfer reactions
allowing one to determine the ANCs and the radiative capture
reactions whose amplitudes are parameterized in terms of the
ANSs extracted from the transfer reactions is the essence of
the indirect ANC method in nuclear astrophysics. In what
follows, we present useful R-matrix equations for radiative
capture amplitudes and then present two different examples
of using the indirect ANC method to determine the astro-
physical factors.

13.2 Radiative capture resonance to bound state

In the R-mtrix approach, the radiative capture amplitude for
“resonance — bound state transition” is given by the radiative
capture amplitude for “resonance — bound state” transition
for multi-level case (it can be extended for multi-channel
case) is given by

_ c
i Uli)ZP[»(k, Rch)kfﬂ/z

Z yy”f<E> [AE)]v: 7

TR(E) =
(237)

Here A(E) is the level matrix ( see Eq. (62) simplified here
by considering only the single-channel case), )7,ji is the for-
mal reduced resonance width ampliitude of the level t and
)7; ', 7, is the formal reduced radiative width amplitude of the
level v with the level energy E, ( Barker and Kajino [22],
Mukhamedzhanov and Pang [75]):

(B) = 2AN May Ren | (L + DL
V”Jf 137 L
1 172 aLs
o REFVZ 1t Zopryan /AT p)

x (=DEFHr i < 1,0 L0, 0

- Ll 1
si i Iy th"‘]
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o
/ drrtt? IfAlf si 97 (") ol g (ks 1)
; rsid,

~Ji ~Ji
=Yyvisiny Yy Jf(ch)(E)’

(238)
where )7)/1"V JyGint) and ;7;[” I5( e (E), are the internal and
external formal reduced radiative width amplitudes, respec-
tively.

We consider the non-spin-flip transition, that is, the chan-
nel spin s; is conserved in the transition. Ay = 0.2118 is
the nucleon Compton wave length, m,, = 931.5 MeV is the
atomic mass unit. < [; 0 L 0|/ 0 > is the Clebsch-Gordan
coefficient, { Ly } is 6 j-symbol. {l; s; J;} ({Lys;i Jr})

I Ji Jy
is the set of quantum number describing the initial resonance
state i (final bound state f). Also W, s, s, (ky, ) is the R-
matrix resonance radial scattering wave function of the the
level v, I fA Iysidy (r) is the radial overlap function of the
bound-state wave functions of nuclei B, a and A.

In the R-matrix the configuration space is split into the
internal and external regions. Correspondingly, the resonance
radiative capture amplitude is split into internal and external
amplitudes:

,Tflf(E) = %g(int)(E) - ,TJ‘IS(ext) (E), (239)
where
. =i, —of
Tﬁ(int,Ch)(E) = —1e i(8y; i ) 2 Pli (ki7 Ren) k)€+1/2
(240)

~jl- “‘J,‘
Z y)/ v Jy (int,ch) [AE)]y - Yz
vt

13.2.1 Internal reduced radiative width

We consider now the internal radiative capture amplitude.
First, from Eq. (238) follows that in the internal region

_ _ [2vmaRen [(LADL 1 rap g
yyujf (int) — 137 L (i)” ch M

X Zegpwany i) (=D < 3,0 LOJL 0 >

X Lilp i ! RdrrL+llB ru (ky,r)
si i Jy RCLthl o aAlysiJy vijsi Ji\kv, ).

(241)

Here
Z; Zj
Zefrwyij = 1" (—lL + (=Dt —2) (242)
ml. m j
determines the effective charge for the electric transition of
the multipolarity L in the system i + j, u = p;j.
The internal resonance radial wave function u,; 5; j. (ky, 1)
oflevel v intheinitial channel i has been already introduced
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in Sect. 4.2. In the R-matrix approach, u,y, g, s, (ky,7r) is a
real wave function, which is calculated at the level energy E,
and momentum k,,, and is normalized to unity over the inter-
nal region 0 < r < R, where r = r, 4. If a few levels do
contribute to the radiative capture amplitude, we can select
the energy of one of the levels equal to the corresponding
real part of the resonance energy E, = Ey (k, = ko), while
all other energy levels are considered to be fitting parame-
ters. Then we can calculate u,, 5, . (ky, r) at the real part of
the resonance energy Ey. The radial overlap function can be
approximated by

B a2 12 Pl 77 (r)
Lintysi gy () = Sips 0y Ppsiap (1) = S, ’

/ r
(243)

where S; rsidy is the SF of the final bound state, ¢1f siJy is
the single-particle bound-state wave function normalized to
unity over the entire region 0 < r < oo, PiysiJy (r) is the
reduced bound-state wave function. Then the single-particle
reduced width amplitude is

~Ji(sp) 2AN may Rep,

_ L+1/2 L [(L+DL
y)/ vJy (int) — 137 Rch K Zeff(L)uA L
L 2307 Lt p+1+J;
R . ) (— f i
X DHu DU p)(=1)

Lip ;| 1
<L;OLO|If0> {Si T Jf} RLh'H
: C

R
X‘/(; drrLgﬂlfSi]f(r)ul)l,'s,']i(ko’r)' (244)

We can rewrite it in a more symmetric form, which will also
be suitable for the “subthreshold resonance — bound state”
transition. To this end, we rewrite the reduced single-particle
bound-state wave function, which is normalized to unity over
the entire space, as

(pl/f Si Jf (V)

[J5° drig],, ,, (O]

(plf K Jf (r) = (245)

where we assume that the single-particle wave function
<pl’f it (r) is not normalized to untiy and its normalization is
providfed by the normalization integral added in the denom-
inator. From

oo Rep
[ ity 0F = [ ariei,, 08
0 0

x (1 PO, /dE)EHf) (246)
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follows that

) gol/fsi.]f(r) ulfS,'Jf(r)
Clysidp(r) = 72 15 /2
(fORch dr [<pl/f 5l (r)]2> Nf/ N
(247)

where u; rsidf (r) is the final state bound-state wave function
normalized to unity over the internal region, and

Np=1+ [fl,f(sl’)]stlf/dE‘E (248)
=—¢

For the bound state

A dln[Olf(i Kf,r)]
Sty =ik Rep ———g—— : 249

lf 1 Kf ch dr r=RCh ( )

Note that
/ 2

Srpeppe L (@1, 5 7, (Ren)]

ly ]
2 12 Rch Rep
f dr[(pl/s‘ J/(r)]
! 2
T 24 R [t1f5; g7 (Ren)] (250)

is the formal reduced width of the bound state B = (a A)
with the binding energy ¢ to which decay of the resonance
occurs. Then

~Ji(sp) 2AN Mgy Repy L+1/2
yvJy (int) 137 ch

[(L+ DL
nk Zeff(LyaA —T

1 < A
X [ () (T ) (=D FHr it
(D
Ly [ } 1
<L;i0LO|lf0 > {
l / si Ji Jy ) REH
R L 1
x / drrtuy s 5, iy (ko) —5 @SD)
0 Ny
and
~J; 1/2 ~Ji(sp)
yy vJy(int) — Slf siJy yy vJg(int)* (252)
Note that y y is a real quantity.

y v Jy (int)
We repeat now the steps developed in Sect. 6.1 and show

how to obtain the observable reduced widths from the single-
particle ones. Let us consider a simple single-level case tak-
ing into account only level 7 in a single-particle approxima-
tion. Then

—i(8, —oF
flfzfr’it))(E) R
2 PI, (k Rch) kL+1/2 V};]T(Ajpf)(,,”) 171'] i
>< ’
E. — E —[70"“PP(8,(E) — By, —i P, (E, Ruy]
(253)
where (Lane and Thomas [18])
dGy, (k
. Fy k) L5 G,y 298D
S§.(E) = k Rep i ,
Fl,- (k, r)+ Gl,- (k,r) r=R¢p
(254)

E is the energy level of the t level. Adopting E; = Ej,
where E| is the real part of the resonance close to the level
7, for E — Eg Eq. (253) takes the form

R i (8, —o )
ftE:;[:t))(E) T

L+1/2 _ J; Ji
2 Pli (k Rch) k * / )/y f(i]l;n)([;lt) T (sp)
X

Eo— E —i P,(E. Ren) [
(255)

Here the observable resonance reduced single-particle width
is

~Ji(sp)12
[yJion]? = ]‘(S[V)fz A] (256)
L+ [7 P a8, |
and
[7Ji6P? = lei; 5 5, (Ren)T? (257)

2:“ Ren

is the formal resonance reduced single-particle width.

The observable reduced internal single-particle radiative
width reduces to the symmetric form regarding the initial and
final wave functions:

~Ji(sp)
Ji(sp) _ TyudypGnn)
Yy tint = N2

i

2AN mau Ren mau Reh pL+1/2 ulz

ch eff(L)aA
/ L+DHL + l)L

Lly [ 1
<L;0LOIf0> {Si ji Jf}RLhH
c

(i )(Jf (1)Lt tsitTi

1 R
L
X 1/2/ drrug e g, () ue g s; J; ko, r),

1/2
Nf N;
(258)
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where

Ni =1+ [plier]2d8, /dE) o (259)
Then

[Vyjir Jf(int)]z = SiysiJy Slisi Ji [Vyjr(sjpf)(mz)]z (260)

and we can write the internal amplitude for the “resonance —
bound state” transition in terms of the observable quantities:

R oGy —of)
Tiinny(E) = —ie g
L+1/2 _J;

2 Py (k, Ren)ky V. v
x ¢ fofg'z?)f (261)
Eg— E —i P,(E. Rep) [y{"*"'T?

Thus the amplitude T Fitint) (E) canberewritten in a sym-
metric form containing factors Ny and N; for both the bound
and resonance states. It is important because the bound-state
wave function was originally normalized to unity over the
entire coordinate space. In contrast, the internal resonance
wave function uy, i, J; (ko, ) is normalized to unity only over
the internal region. Transformation (246) allows us to express
the normalization integral over the entire space in terms of
the normalization integral over the internal region.

We remind that the internal radiative width I‘;" I (int) (E)
is given by '

J; 2

Fny (int

J(E) =2 kL (262)

‘yylf (int)

Note that yyjijf (inpy 1S calculated at fixed energy E = Ej.
That is why the energy dependence of F;" I (inn) (E) on the

initial a — A energy E is entirely due to the factor k}é. Equa-
tion (258) can be generalized for the “subthreshold resonance
— bound state” radiative capture.

13.2.2 Channel reduced radiative width

The observable channel radiative width amplitude, which
determines the radiative capture from resonance to the
ground state occuring at » > R, has been introduced in
review paper [1] and is given by (in the current notations)

Ji E) = AN Mgy (L+1)I: 1

Yyeapen™® =y 37 L in

KE Zegrwan R 2 Chyy g A0
T2 1 () VP&, Ren)

2 2
(L% e, Ra)P + Gy ks Rad ) Wi
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X (2kf Rep) < LOLO|LF0 > (—1)EHrtsiti

Ll I

g1 (263)

<L;0OLOIf0 > { } Jody, lis k).

Here we explicitly indicated that, in contrast to yyj iJ_/ (i)
the channel radiative width dependes on the energy E. Also
CfA lpsidy is the ANC for the virtual decay/synthesis B <>
a+ A, W—n?g‘,lf+1/2 (2K ¢ Rep) is the Whittaker function,
which describes the radial behavior of the bound-state wave
function B = (a A) at raa > Ren, n’jf =ZyZan/(137ky)
is the Coulomb parameter of the bound state B = (aA), Z;
is the number of protons in nucleus i, k; = /2uey is
the wave number of the bound state (aA). Fajh 15 (E) is
the resonance width of the level T, which can be calculated
through the following equation:

P (E, Rep)

264
P, (Eo, Rep) (264)

uArls,( ) aArls,( 0)

where Ftﬁn Iis: (Ep) is the observable resonance width of
the level t.
Also

Jey lisk)y = J7 Ay, lis k)
Fi, (k, Ren) Gy, (k, Ren)

2 i(lf, li)v
F “(k, Ren) + Gy (k, Ren)
(265)
" 1 i L Winl;svl.f*l/z(z “r V)
JL(IB,li;k)ZL—_H drr -
R, Ren W—'il}v~l.f+1/2(2 kf Ren)

ﬂi (k1 r) Fli (kv RCh) + Gl,‘ (kv r) Gl,‘ (k1 RL‘h)
F(k, Ren) + G (k, Ren)

)

(266)
, LT W@
JL(lf’ll’k):L_J,_l drr
R o W*ﬂ_[;csvlj‘+1/2(2 K Ren)
[ Fy(k,r) Gy (k,r) ] 267)
Fi;(k, Ren) Gk, Rep) &

Note that the channel radiative width amplitude, in contrast
to the internal one, is complex.

Equation (263) is used in the R-matrix analysis. After
simple manipulations using Eqs. (A.23) and (A.26), review
[1], and Eq. (71)) this equation can be reduced to

) [AN May (L+ DL
137 FE LH

W Zeppwyan Re) 12 CRy g, \/(ii)(ff)

hs
— (&, *‘71

Ji _
y)/tlf(ch)(E) =e
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x T (E) VK Rep < LOLOJf0 > (—D)EFlrtsit)i

aA 'L'l,-s,-

<L;0OLOJfO> {SLIZJJ: Jl’f}

o
! L
F /drr ’an_’;s,lfﬂ/z(z"f’)Oli(k”’)~

ch R

(268)

ch

Note that in the potential approach the R-matrix phase shift
—(81};5 - Ul,-C) should be replaced by the potential phase shift
) ll,? , which can be calculated using an adopted nuclear +
Coulomb potentials.

The channel reduced radiative width is given by

r E)=2kL]y7 By’ 269
erf(ch)( ) = 14 yyrlf(ch)( ) ( )
and the total radiative width is
A 2
Ji L\, Ji
ry () =2kE |yl B[ (270)

It is clear from Eq. (268) that to calculate the channel
reduced radiative width amplitude y;ir i Ch)(E ) we need
to know only two experimentally measurable quantities, the
ANC, C53,, 5,/ and the resonance width FC{%H”’, (Ep).
Thus, the AN plays an important role in determining
the reduced radiative width because the ANC determines
the normalization of the channel contribution. Assuming
that the experimental radiative width I’ ;" Jy (Ep), the ANC
of the bound state, and the observable resonance width
r uJ/’;Tli Si(Eo) are known, we can determine the internal
reduced radiative width amplitude

J; _ Ji
Yyoiptny = Re Yyt g (ch) (Eo)

Ji Ji
- \/Fy T jf(EO) — [Im Yyt Iy (ch)(EO)]z
(271)

with two possible solutions.

The total resonance amplitude for the radiative capture
“resonance — bound state”, which includes the internal and
channel parts is given by

, L+1/2 ) i
e_i(Sli _O,IC) 2 PI, (kls RCh)k]/ V),IT ]f Vrl

i

TR(E) = —i TR
& Eo—E —i P,(E, Rep) [y P
(272)

13.2.3 Radiative capture through subthreshold resonance

Now we consider the radiative capture to the ground state
through the subthreshold resonance. We remind that the sub-
threshold resonance is a near threshold bound state. At rel-
ative a — A energy E close to the threshold the tail of the

subthreshold state extending to positive energies. Hence the
capture to the bound state at positive initial energies is con-
tributed by the subthreshold bound state. Again, as for the
radiative capture “resonance — bound state”, the reduced
single-particle radiative width amplitude for the radiative
capture for the “subthreshold bound state — bound state”
is

Ji(S)(E) Ji(s) Ji(s) (E)

vy =Yyusnty T Yyusen (273)

Here the superscript s stands for the subthreshold bound state.
The reduced internal radiative width amplitude is given by

. [20N taw Ren | (L+ DL 1
Ji(s) _ N May Rch L+1/2 L
Vy Jyg (int) — 137 L (i)” Rch w Zeff(L)aA

x () (T p) (=D)L Hsitdi

Lly I 1
<L;0LOIsO> {si Ji Jy } RGH

R
1,2 12 1 L
X Siysiap Sivsi 0 G178 A drr®ugy s ;) s 5, (r),

Ny

(274)

where the wave function of the final bound state Ulps; Js (r)

and the wave funcion of the subthreshold bound state

uy, 5; J; (r) are normalized over the internal region (r < Rcp).

Then observable reduced radiative width amplitude for the
transition “subthreshold bound state — bound state”

= Ji (s)
Ty Yy dpGnn

Yy s Ginn = Ni1/2

_ [2Aanmau Ry [(L+DL 1
- 137 L (D!

L+1/2 e
Ch+/ MLZeff(L)aA Unyp)

) Llf 1
<110L0|lf0> {Si J; Jf}RL'H
ch

x R (_1)L+l_/+S1+Ji

172 172 1

X S S —_—
LysiJp PlisiJi 172
PR N 2 NS

R
‘/(-) drrL ”lfs,- Jf(r) uj s; J; (r). (275)

Since now the initial i channel is the subthreshold bound

state, N; is defined by the equations

NS =1+ [pHO6m 248 /dE‘E , (276)
i =—g
. dIn[Oy, (i Ky,
85 = iny Ry LOLG K D) Q77)
! dr r=Rcp
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The reduced observable channel radiative width amplitude
is given by

Ji(s) ()_\/m (L+DL 1

Yaren B =\ 37 I In
B(s e

X (Rep) L1712 Ca/?t)mlr ) () Py (k Rer)

(L% e, R+ 1G (ks Ra)) W_ 1/ Ry Re)

eff(L)aA

« (71)L+1j+$1+-/i <LiOLOJls0> {f: {]/I }f

(278)
where the resonance width Fﬂ;?s[ (E) of the subthreshold
resonance is defined in Eq. (149). In the current notations it
takes the form

1
Ji B
Tl o (B) = Py(E. Ren) (€
WE 7’ li+1/2(2 K5, Ren)
=2P,(E, Rep) [y "1 (279)
Here Cffg l) sidiv Ks and n°® are the ANC, wave number and

the Coulomb parameter of the subthreshold bound state.
w_ 05 L1 /2(2 ks Rep) is the Whittaker function of the sub-
threshold state determining the radial behavior of the sub-
threshold bound state at » > R.; where we can neglect the
nuclear ¢ — A interaction. y/i(*) = Sll,/vz, Y OGP s the
observable reduced width amplitude of the subthreshold res-
onance:

5 7711‘(&)

AT (280)

Y

The amplitude of the resonance capture to the ground state,
which proceeds through the subthreshold resonance, is

T]E‘?)(”” (E) = —i ¢ ' ~of)
1

L+1/2 ~J; T

2 Py (ki Ren) by ™12 37 T(S;f(sgil) Ji6)6p)

X .
~J; :

—& — E — [)/r (517)] [Sls,-(E) — B, —i P,(E, Ren]

(281)
13.2.4 Resonance and radiative width

The resonance width at any £ > 0 defined in Eq. (264) in
simplified notations is

P, (E, Rep)

e e (282)
P, (Eo, Rep)

I'i(E) =

where the observable resonance width is I'/i = I'/i (Ep).
The total observable radiative width F;i = F){i ; f(Eo)
is given by the modulus square of the total reduced radiative

@ Springer

} Jedy,lisk),

width amplitude,

F;iff - ‘yyjlff‘ - ‘Vl’]iff (int) yyjiff (ch) (283)
which further can be written as
I : J 2
Fy'Jf = \YyusGiny — Re[)’yljf (ch)(E)])
+ (v, o)) (284)

J; J[ 3
Re[yyjf (ch)(E)] (real part) and real Yy Ginry €20 inter-
fere either constructively or destructively. Therefore,
(Im [yyjfjf © h)(E )])2 gives the lower limit of the radiative

width I ’
The radf ative width at £ > 0 can be found from

E+€f L i
J( ) = : Ly
vIr Eo+ ¢y vyt

For the decay of the subthreshold resonance to the lower
lying bound state, the energy dependence of the radiative
width is given by

(285)

L
E+¢ :
J (s) f Ji(s)
Ly (E) = (—gf - 8s) . (286)

Ji Ji
where ij(;) = ij(;)( &s).

13.3 Non-resonant radiative capture amplitude

In the R-matrix method the internal non-resonant amplitude
is absorbed into the internal resonance term, so that the non-
resonant capture amplitude is entirely determined by the
channel (external) term (review [1])

AN M —i(—6©)
TNRE) = —i2 | == e " %
s (E) 137E ¢
L (L-f-l)i 1
Z - - =
W™ Leff(LyaA i3 i

X (ky Rep) Y2 /P (E) (— 1)L+t

_ Llg I
<L;0OLO|s0> {Si T Jf}

B
X CaAl_/s;J_/ W—n’}“,lf—&-l/Z(z Ky RCh)

Fy, (k, Ren) Gy, (k, Ren) J' (Ui, Ly) (287)

containing the same ANC as the channel reduced radiative
width amplitude yy J n)(E ). Such a normalization of the
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Fig. 15 Low-lying energy levels of >N relevant for the E1 resonant
and direct radiative capture processes ''C(p, y)'2N. The dashed lines
leading to the ground state are the E1 transitions. The solid lines lead-
ing to the resonances show the proton capture by ''C populating the
resonances 2N(21) and 12N(27)

channel radiative width and non-resonant amplitudes is phys-
ically transparent. Both quantities describe peripheral pro-
cesses and, hence, contain the tail of the overlap function,
whose normalization is given by the corresponding ANC.
Thus in the R-matrix, the ANC controls the overall normal-
ization of the channel radiative width and the non-resonant
radiative capture amplitude. It underscores the ANC’s impor-
tant role in analyzing radiative capture reactions.

13.4 Radiative capture reaction '1C(p, y)1?N

As the first example of the application of the indirect ANC
method within the framework of the R-matrix formalism we
discuss now the radiative capture process ''C(p, y)!*N.
This reaction depletes ''C affecting the chain
11C(/3+ v)“B(p, «)¥Be(*He, *He), which provides an alter-
native pass to bypass 3 o process (Wiescher et al. [76]).

In the ”C(p, y)lzN reaction, direct capture into the
ground state of >N and resonant capture into the first and
second excited states, which are resonances, dominate the
reaction rate at stellar energies. The low-lying energy lev-
els of >N relevant for the E1 resonant and direct radiative
capture process ''C(p, y)'*N are shown in Fig. 15.

The parameters of these resonances are: J[' =21, E(jyo
= 0.359MeV, [; = 1 with the resonance width I‘i nepy
0.0025 MeV (herel; =1, sy = 1 and J; = 2) and Jz” =
27, Epo = 0.589MeV, I, = 0 with Fillcoz = 0.118
MeV. The third excited state corresponding to the resonance
J3 =17, Eqy = 1.199MeV, I3 = O is located to far from
the region of the astrophysical interest £ < 0.7 MeV and its
contribution is neglected.

Two proton ANCs of the ground state of 2N were deter-
mined from the "*N(''C, 12N)!3C peripheral transfer reac-
tion using a 110 MeV ''C radioactive beam (Tang et al.

_ 12
J = 1.4£0.2fm™" and [C 11\11(:13/21]2 -

1/2,3/2 and

12
[77D:0C Ny 101
0.33 £ 0.05 fm~!, where I; =
Jr= 1+,

The radiative width for the first resonance was set at
F;Z/I = 2.6 meV (Lefebvre [78]). The radiative width of

the second resonance in !N decaying to the ground state has
been a controversial subject theoretically. The latest mea-
surement at RIKEN found this width to be 13.06 & 0.5 meV
(Minemura et al. [79]). It is informative to see how the mea-
sured ANC for "N imposes limits on the radiative width of
the second resonance with respect to the experimental value.
We find that I")', = 54 meV for Re, = 5.0 fm. Taking into
account the experimental value of the total radiative width,
one can find the internal contribution from Eq. (271). There
are two solutions, 15 and 112 meV. Assuming that the second
value is too high (Descouvemont [80]), we conclude that the
internal part of the radiative width is 15 meV, and destructive
interference between the real parts of the channel and inter-
nal contributions gives the experimental value, 13 meV. In
this case, the channel contribution alone represents an upper
limit for the radiative width, while the square of the imagi-
nary part of the channel contribution, 1.8 meV, gives a lower
limit.

The relative phase between the direct capture amplitude
and the channel contribution to the y width of the second
resonance is fixed in the R-matrix approach, see Eqs. (287)
and (263). Therefore, when the channel contribution to the y
width dominates, the sign of the interference effects may be
determined unambiguously. For ''C(p, y)'?N, we find that
the nonresonant and resonant capture amplitudes interfere
constructively below the resonance and destructively above
it.

L, sy =

The summed astrophysical S-factor for interfering nonres-
onant capture and resonant capture through the broad second
excited state was calculated from the measured ANC and
the experimental resonance parameters using the R-matrix
expressions presented in previous parts.

The total S-factor is

Stor (E) = SR1(E) + SraNR (5,=2) (E)

+ SNR (si=1)(E). (288)
7y .
SRI(E) = 5703 ———pm, & " TR (289)
JaJa

is the S-factor for the capture through the first resonance.

Ji .
Sr2 NRGsi=2)(E) = 57 2%, A pm?, 2T ITfR:»2 +TNR?
aJA

(290)

is the S-factor due to the interference of the amplitude for
the resonance capture through the second resonance with the
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Fig. 16 S-factorsofthe ''C(p, y)'>N E1 radiative capture process.
The black solid line is the total S-factor S;,; (E). Also are shown the S-
factors contributed by different transitions: magenta dotted line is the S
factor Sg1 (E) for the capture to the ground state of '>N through the first
resonance 2, purple dash-dotted line is the S-factor Sgo (E) due to the
capture through the second resonance 27, blue dash-dotted-dotted line is
the S-factor Sy g (E) corresponding to the direct (nonresonant) capture,
cyan short-dash line is the S-factor Sgo yg(s;=2)(E) corresponding
to the transition from the second resonance and direct capture for the
channel spin s; = 2 and their interference. First published in Tang et al.
[77]

direct (nonresonant) for the channel spin s; = 2. The direct
capture S-factor Sy g (;;=1)(E) for the channel spin s5; = 1
gives additional contribution.

The calculated S-factors for the 'C(p, y)!2N radiative
capture are shown in Fig. 16.

13.5 Radiative capture 2'Ne(p, y)?'Na

The 2°Ne(p, y)*'Na reaction, which is the first reaction
of the Ne-Na cycle, is dominated by the capture to the
ground state (J* = 3/27,E; = 0.00MeV) through
the tail of the subthreshold resonance (J* = 1/2F, =
E, = 2425keV, ¢ = 7.1 £ 0.6keV). Direct capture to
this subthreshold state gives smaller contribution. Direct
captures to other bound states are negligible. The over-
all normalization of the direct captures to the subthresh-
old state in *'Na is defined by the corresponding ANC.
Simultaneously this ANC determines also the proton par-
tial width of the subthreshold resonance. In order to deter-
mine the ANCs for the ground and subthreshold state, the
20Ne(3He, d)?'Nal /27", 2425keV) proton transfer reaction
has been measured at an incident energy of 26.3 MeV of 3He.
The determined the square of the ANC for the ground state
is [C;lNa 1?2 = 0.20 fm~! and for the subthreshold

20Ne21/23/2
1? =7.36 x 1033 fm~!. The adopted

. ZINa
state is [Cp 2Ne0 1/21/2 (
observable subthreshold resonance width for the decay “sub-

@ Springer

threshold resonance — ground state” taken at E = —0.007
keV is 0.16 x 1076 eV, which provides the best fit to the
experimental data from Rolfs at al. [81].

Figure 17 shows the calculated the astrophysical factor
for 2°Ne(p, y)?!'Na. This analysis confirms that the resonant
capture through the subthreshold state at —7.1 £ 0.6 keV
and direct capture to this state give dominant contribution to
the low-energy S-factor. The presence of the near-threshold
bound state at E = —0.007 MeV causes a sharp increase of
the S-factor toward E = 0. Thus, the S-factor behaves like
there is a resonance at E = 0. That is why the subthreshold
bound state can be called the subthreshold resonance.

13.6 15N(p, y)100 radiative capture reaction in the
R-matrix approach and the ANC

Another instructive example of the role of the ANC in
the analysis of the astrophysical radiative capture is the
BN + p — 190 + y radiative capture process. We also
provide a practical guide on how one can analyze radia-
tive capture reactions for two-channel and two-level case
in which the interference effects between resonances and
direct capture amplitudes ought to be taken into account.
The N(p, y)'°0 reaction provides the path to form '°0
in stellar hydrogen burning, thus transforming the CN cycle
into the CNO bi-cycle and CNO tri-cycle. In stellar environ-
ments, the PN(p, y)'°0 reaction proceeds at very low ener-
gies, where it is dominated by resonant capture to the ground
state through the first two interfering J* = 1~ s—wave res-
onances at Eg, = 312 and Ep, = 964 keV, where Ej is the
real part of the resonance energy in the c.m. system. There is
also a small contribution from the direct capture to the ground
state of '°0, which turns out to play an important role due
to the interference with the resonant amplitudes. Figure 18
shows the energy levels for the resonant and direct transitions
P + 15N N 160.

The measurement of the ANC for the 10 — N 4
p using the YO(*He, d)'°O peripheral transfer reaction
induced by the 25.74 MeV 3He beam was reported by
Mukhamedzhanov et al. [83]. This ANC has been used to
fix the non-resonant contribution to the N (p, y)'°0 cap-
ture and it was found that it was impossible to fit the low-
energy data from Rolfs and Rodney [84]. Moreover, it was
underscored that to fit these experimental data one needs to
increase the ANC almost by an order of magnitude. The cal-
culated astrophysical factor using the two-level, two-channel
R-matrix approach led to §(0) = 36.0 &= 6.0 keVb, which is
significantly smaller than S(0) = 64 & 6 keVb reported by
Rolfs and Rodney [84] but in agreement with the older mea-
surements in Hebbard [85]. Correspondingly, it was found
that for every 2200 4 300 cycles of the main CN cycle,
one CN catalyst is lost due to the SN(p, ¥)!'°O reaction,
rather than 1200 = 100 cycles determined from experimental
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Fig. 17 S-factors of the 2’Ne(p, y)?>'Na. The magenta solid squares
and magenta dash-dotted curve are the experimental data points (Rolfs
at al. [81]) and our result for direct capture to the subthreshold state,
respectively; the cyan solid diamonds and cyan dash curve are the exper-
imental data points (Rolfs at al. [81]) and our result for capture to
the ground state through the subthreshold resonance, respectively; the
black solid curve is our total astrophysical factor. First published in
Mukhamedzhanov et al. [82]
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Fig. 18 Low-lying energy levels of °O relevant for the E1 resonant
and direct radiative capture processes *N(p, )'00. The dashed lines
leading to the ground state are the E1 transitions. The solid lines lead-
ing to the resonances show the proton capture by >N populating the
resonances '°0(17)

data (Rolfs and Rodney [84]). These results were confirmed
later by Barker [86]. Two advanced measurements of the
astrophysical factor for the ’N(p, )0 were performed
at the LUNA underground accelerator facility at the Gran
Sasso laboratory (Bemmerer et al. [87,88]) covering only
the low-energy region, E < 230 keV, where E is the relative
p — PN energy. Another study of '>’N(p, y)'°0, which has
been reported in LeBlanc et al. [89], was performed over
a wide energy range at the Notre Dame Nuclear Science
Laboratory (NSL) and the LUNA II facility. The obtained

S(0) = 39.6 £ 2.6 keVb is in a perfect agreement with the
prediction S(0) = 36.0 6.0 keVb (Mukhamedzhanov et al.
[83]) obtained using the R-matrix fit and the indirect ANC
method. In the case under consideration, in the R-matrix
approach the ANC determines the overall normalization of
the non-resonant radiative capture amplitude and the channel
(external) part of the radiative width amplitudes of the both
resonances involved. These amplitudes are small and any siz-
able impact on the astrophysical factor can be achieved only
by a significant variation of the ANC. Note that the contri-
bution of the non-resonant amplitude increases toward low
energies, which is the region of the astrophysical interest.

The expression for the astrophysical factor in the R-matrix
method for the case under consideration can be written as
(Barker and Kajino [22], Lane and Thomas [18]):

A2 j 2 _ioshs__C
S(E)(keVb) = TN Tt May 2T NaA 1() [e i(6°=0;)
JeJa M
J Ji
X Z (Vv;j Jy(int) v, Jf(ext)(E))
v,7=1,2

['A_l ]U'L' YaAtl;s; J; (E)

+ TNRE) + Upc(E)] ’ (291)

wherea = p, A=1N, B="190, u = pga, v, 7=1,2
are coupled levels, J, = J4 = 1/2, J; = Jg = 1 is
the spin of the resonance. The channel spin of the resonance
si =sg =sy =1, [; = [g = 0. In the channel p + >N for
the ground state of 10 we have ly =1, Jy =0. The same
quantum numbers are assigned for the direct E'1 transition
to the ground state, which interferes with the resonant E'1
transition. 7}1\{ R(E) is the non-resonant transition R-matrix
amplitude, see Eq. (287), and ’Tﬁ G (E) is the R-matrix ampli-
tude of the background resonance.

13.7 ANC in R-matrix paradigm

Nuclear data are important input into nuclear astrophysics.
When resonances contribute the analysis of the data usually
are being done within the R-matrix approach. The R-matrix
analysis includes fitting parameters, like particle and radia-
tive reduced widths, resonance energies, channel radii and
boundary conditions. Besides, often non-resonant processes
also contribute to the reaction mechanism. For example, the
radiative capture amplitude in the R-matrix approach con-
sists of three terms: the internal resonance amplitude, which
describes the radiative capture as the process in which the
incident particle penetrates through the barrier into the inter-
nal region of a target, from which radiative decay to lower
lying levels occurs; the external resonance amplitude describ-
ing the formation of the resonance in the external region of
target with subsequent y decay and the non-resonant direct
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capture amplitude, which describes the transition from the
initial continuum to a bound state by emitting y without the
formation of the resonance. This non-resonant term in the
R-matrix approach is contributed only by the matrix element
in the external region, i.e. at distances larger than the channel
radius, because the internal part of the non-resonant ampli-
tude is included into the internal resonance amplitude. The
normalization of the last two amplitudes is governed by the
ANC. Thus the presence of the external resonant and non-
resonant direct radiative captures adds an additional parame-
ter into the R-matrix fit. Definitely the most reliable informa-
tion can be obtained if one performs simultaneous R-matrix
fit in all the open channels or uses available information,
which has been obtained from other open channels analysis.
This information allows us to fix or constrain reduced widths
in some open channels. Since the ANCs in many cases are
available from independent experimental data or theoretical
calculations, it is always important to fix or significantly con-
strain the variation of the ANC. As a practical application of
the procedures described above we analyze the astrophysical
BN(p, y)'°0 reaction.

13.7.1 Unconstrained fits to all the data points

Now we perform two unconstrained fits A(113) to the Notre
Dame-LUNA data (LeBlanc et al. [89]) adding a back-
ground resonance. All the parameters except for the ANC,
channel radii and the background resonance energy are
allowed to vary. To determine the resonance parameters, the
fits are performed with two boundary conditions. First, we
have searched for the best fit for the boundary condition
B. = S:(E;), where Ej is the energy of the second level,
which is taken to be equal to the second resonance energy
E, = Ep, = 0.956 MeV while the first level is varied to
get the best fit. We find the best fit at £; = 0.1662 MeV.
The energy of the included background resonance is 5.07
MeV, the proton reduced width amplitude of the background
resonance is ¥ppg) = —0.3 MeV!/? and the o reduced
width amplitude y, 3Gy = 0.07 MeV'!/2. In the fit A(113)
the search for the best fitting has been performed using uncon-
strained variation of other parameters. After that we can find
the observable partial resonance widths for level v = 2 and
channel ¢ using the standard R-matrix equation

2y2, Pe(Eo,)

Fve= (292)

2 dS./
1+ ZC’=p,0t Yoo ak |E=Eo,

Here E, is the real part of the resonance energy of the level
V.

In the second unconstrained fit A(113), we have searched
for the best fit with the boundary condition B, = S.(E1),
where the energy of the first level E; is near the first reso-
nance at Eg, = 0.3104 MeV adopted in LeBlanc et al. [89]
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Fig. 19 The astrophysical S(E) factor for the BN(p, ¥)1°0 reac-
tion. The black squares are experimental data from Ref. [89]. The red
solid line is our unconstrained R-matrix fit A(113) with the bound-
ary condition B, = S.(E>), which takes into account four interfer-
ing amplitudes: two 1~ resonances at Eg, = 312 and Ep, = 964
keV, a nonresonant term, and background resonance at Eo< 56 = 5.07
MeV. The blue dotted-dashed line is our unconstrained R-matrix fit
A(113) similar to the previous one but with the boundary condition
B. = S¢(E1). The magenta solid line is the non-resonant S(E) factor

for the ANC C:SN = 14.154 fm~!/2. From Mukhamedzhanov et al.
[74]

while the second level is varied to get the best fit. For this
boundary condition we find the best fitat £ = 0.30872 MeV
and E; = 1.0576 MeV. To get the observable widths we use
Eq. (292). In Fig. 19 we demonstrate the astrophysical factors
S(E) obtained from these two unconstrained A(113) fits with
the background resonance included. The red solid line is the
fit corresponding to the boundary condition at E; = 0.956
MeV with the normalized ¥2 = 1.84. For the fit A(113) with
the boundary condition at £1 = 0.30872, the blue dotted-
dashed line, we obtain 52 = 1.76 with S(0) = 37.2 keVb.
This fit goes slightly lower than the red line at low ener-
gies better reproducing the low-energy trend of the data. The
magenta solid line represents the non-resonant S(E) factor
for the ANC C;ng = 14.154 fm~'/? which has been used
for both fits. Thus adopting a physical ANC we correctly fix
the normalization of the external direct capture amplitude
and the channel radiative width amplitude, and adding the
background pole we are able to get a perfect fit.

The added background resonance interferes with resonant
and non-resonant terms and takes effectively into account
the cumulative contributions from distant 1~ levels. It is
demonstrated how thorough R-matrix analysis should be
done applying the procedures used by Barker [86].
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13.7.2 Constrained fits to all data points

Now we discuss two constrained fits B(113). The goal of
these fits is to demonstrate that fixing some parameters at
values obtained from previous works, we still can get as good
fits as unconstrained ones but with better physical parameters.

In the constrained fits B(113) the procedure is the same
as described before for the unconstrained fits. In these fits,
in addition to the fixed channel radii in the proton and «
channels, R(cp(p)) = 5.03 fm and R(cp)) = 7.0 fm, the

ANC C:’SN = 14.154 fm~!/? and the background reso-
nance energy Er,; = 5.07 MeV, we also fix y,¢, c = p, a,
when the boundary condition is chosen near the resonance
energy Eg, . These reduced widths are taken from the analy-
sis of the direct 15N( P, «)!2C data (Rolfs and Rodney [84],
Barker [86]), and indirect Trojan Horse data (La Cognata et
al. [90]). First, we adopt the boundary condition near the sec-
ond resonance at £y = 0.956 MeV with the energy of the first
level E; = 0.170 MeV. For the best fit we get 3> = 1.93 and
S(0) = 38.8 keVb. The radiative width for the background
pole is found to be I'y (pg) = 129.3 eV.

To determine the parameters for the first resonance we
use the boundary condition B, = S.(E1) near the first reso-
nance E1 = 0.30872 MeV and found from the fit the second
energy level E; = 1.0576 MeV. The rest is the same as in fit
A(113). The radiative width for the background resonance
is I'y(gg) = 283.1 eV. For the best constrained fit with the
boundary at the first resonance we get S(0) = 37.2keVb with
%2 = 1.74. We note that the total x 2 for the unconstrained fit
A(113) with the boundary condition B, = S.(E) is slightly
smaller than for the corresponding constrained fit B(113).
However, because for the constrained fit the number of the
fitting parameters are smaller than for the unconstrained one
the normalized 2 for the constrained fit is slightly smaller
than for the unconstrained.

In Fig. 20 the S(E) factors are shown for both constrained
fits B(113). The constrained fits B(113) have parameters
which better agree with the previous estimations (Barker
[86]) than unconstrained fits A(113).
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Fig. 20 The astrophysical S(E) factor for the >N(p, ¥)!°0. The red
solid line is the constrained fit B(113) with the boundary condition B, =
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ANC is C = 14.154 fm~'/2. From Mukhamedzhanov et al. [74]

Appendices
Appendix A: Rigged Hilbert space

A rigged Hilbert space is the so-called Gel’fand triplet
(Gelfand and Vilenkin [15], Maurin [16])
GcH=H cG. (A.D
Here H is the completion of a linear space W with a norm
defined as a scalar product. Completed linear space H means
that the Cauchy sequences converge in the norm topology.
A linear space G is the completion of W in the topology
stronger than the norm topology, that is, G is dense in H.
In other words, it means that every point of H either belongs
to G or is a limit point of G. The topology of the space G is
more stronger then the norm topology because the operators
corresponding to the observables are continuous while in the
norm topology of H are not necessarily continuous. Thus
G is a subspace of H. H' and G' are spaces of antilinear
functionals over the spaces G and H. While H = H the
space G' contains eigenvalues belonging to the continuous
spectrum and complex eigenvalues. Adding G' allows us to
deal with resonances. Gamow-Siegert states, which repre-
sent the generalized eigenvectors with the complex eigen-
values Er = Eog — i ['/2, do not belong to the Hilbert state
‘H. They describe decaying (irreversable) states in the time-
dependent formalism and contain diverging asymptotic in
the coordinate space and, hence, do not belong to the norm
topology. The norm definition of the Gamow—Siegert eigen-
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functions reguires a generalization. In a nutshell, to determine
the norm of such vectors we need to introduce a regulator.
The proof that such generalized norms can be defined for
potentials with the Coulomb tail is given in Sect. 2.3.

Appendix B: Normallization of Gamow-Siegert wave
functions

We prove here that Zel’dovich regularization procedure per-
mits us to normalize the Gamow—Siegert resonance wave
functions for Coulomb plus nuclear potentials:

o
= tim [ dre 7 gk, P OS5k, r) = 1.
B—>+0 Jo
(B.1)
Note that

R
IR(B, 1) = /0 dr e PP (GO, T oSk, 1) (B2)

converges for any R < oo.
It is important to show that the integral

(B, 1) =/oo dre 8" 375 (k, * 95k, r)  (B.3)
R

converges for g — 0.

The introduction of the regularization factor exp(—p r?)
is necessary to provide the convergence of the normaliza-
tion integral for r — oo which otherwise diverges because
exp(i krr) = exp(i kor + k; r). We split the integral (B.1)
into two parts:

R
I3 = / dr oS () 19 (T

0

o0
i2kgr
FCPe® lim | dr ———— ¢ (B.4)
B——+0 2kpgr)i2nr

R

R is assumed to be large enough to approximate the Gamow—
Siegert wave function by its leading asymptotic term (18) at
r > R.

The integral over a finite interval » < R converges, and
in this integral, we can take limit 8 — +0. We must prove
that the second integral can also be determined in the limit
B — +40. Taking into account that
(B.5)

o
nNR = 2(k0+ik[)=)»+i8,

@« «
kg (ko) + (kp)

@ Springer

where o« = Z, Z 4 e? u,and A, § > 0, we get

. i2kgpr
e . e _R,2
IR =C ————— lim [ dr ——e P’
(2kg)i2mR p>+0 riZine
R
o0

/dr ei2k0re2k1rr—21A
R

e IR

=C} ——— i
L @Ir) 2R poto

2
x 128 P17

(B.6)

For neutral particles there is only one exponentially diverging
factor e2¥17 (for r — ©0) in the integrand. Zel’dovich’s
normalization procedure works for ko > k;. The presence of
the oscillating exponential factor exp(i 2 ko ) is crucial for
Zel’dovich’s regularization. However, for charged particles at
complex momentum k we have an additional diverging factor
in the integrand, r>°. We will show now that Zel’dovich’s
method also works for the charged particles. To this end, one
can rewrite Eq. (B.6) as the sum of two terms:

R

Iﬁoz—Clz ———— lim fdreizkorezklrr_ZiA
(2kg)I 2R B—>-+0
0

e~ TR

9]

2 .
X I"Z(Se‘_ﬁr +C127 lim /dre’zkorezk”
2kg)IZNR B—40

e~ TR

w 20k 28 =B (B.7)

The first term in this equation converges, and we can take
the limit 8 — 40 in this term. It is enough to consider the
second term only. For Rek%e >0

o0
lim /dreiZkR’r72i'7R eiﬂrz
B—+0
0
im 28 8 D 2ing+ e F Dysy (- 2LKES
= m 2 —2Z1 e i (=
P NR 2ing—1 V2B
=T(=2ing + (=i 2kg)>m=—1, (B.8)

Thus, we have shown that Zel’dovich’s regularization can
be used to determine the norm of the Gamow-Siegert wave
functions for charged particles. Zel’dovich’s regularization
method is not unique, and other regularization techniques
can be used. In particular, more general exponential regulator
exp(—pBr'™"), n > 2, canbeused. It will allow one to include
more resonances. Gamow-Siegert wave functions can also
be normalized using the so-called complex scaling method
(CSM).



Eur. Phys. J. A (2023) 59:43

Page 55 0of 56 43

Appendix C: Complex scaling method

Gamow-Siegert wave functions have another important
advantage. Since asymptotically, they have only outgoing
waves, we can use the complex scaling method (CSM)
(Aguilar and Combes [91], Balslev and Combes [92], Simon
[93,94]). Note that this method is not applicable if the
asymptotic wave function contains both incident and out-
going waves. We briefly discuss the CSM considering the
two-body case. CSM (also called the complex-coordinate-
rotation method) is based on the rotation of the radial coordi-
nate in the complex r plane making a diverging radial wave
function square integrable eigenfunction of the complex-
scaled Hamiltonian.

This method consists of solving the Schrodinger equation
on a ray in the first quadrant of the radial complex plane
rather than on the real axis of the coordinate r. The axis
rotation angle 6 (if we neglect the potential singularities) is
limited by the angle defined by the resonance parameters,
see below. It is important that the CSM can be applied to
the case of charged particles. This is true only for the point-
like Coulomb-potential, which behaves like 1/r or for the
Coulomb potential of a diffuse sphere. An application of this
method to resonances in nuclear reactions was presented by
Gyarmati and Kruppa [95]. The numerical realization of this
method is a rather complex one.

Let us consider the coordinate rotation operator (known
also as complex scaling operator)

A . 9
U :ezerw.

(C.1)
Then
U fikg. 1) = fitkg.re'%) (C.2)
and
O fitkg.r) % ellkrre®—ng nChpre®)] (C€3)

Let k be the resonance momentum

k= kg = V2u(Eg —iT/2) = \J2u (B} + T2/ /271,

(C.4)

where v = (1/2) arctan(%) is the phase of kg. We have

i[60—v]

krre? =kglre (C.5)
and
eiereiH — ei |kg|r cos[6—v] e—\lersin[G—v]' (C6)

Thus the critical angle of the radius rotation is 6., =
v =1/2 arctan(%). For 6 > 6., the exponential term

e~ kel rsinl0=v] yanishes at r — oo.
; i0 .
The term e ~/7% IMZkr 7 ¢'™) which represents the Coulomb
correction to the asymptotic outgoing wave, can be reduced
to

e~k MQkpre'®) _ —ing nQ2kg|r) yng [0—0cr] (C.7)

Hence the rotation of the radius in the complex plane gener-
. ; i0

ates in the Coulomb term e~/7& M2kr7e'") 4 constant factor

e’ [0=%] Hence we achieved what sought:

lim U fi(kg,r) =0. (C.8)
r—0o0

The asymptotic convergence of the complex-scaled outgo-
ing waves allows one to normalize the Gamow—Siegert res-
onance wave function but we are not going into more detail
about that.
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