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Abstract Potential energy surfaces of even–even super-
heavy nuclei are evaluated within the macroscopic-
microscopic approximation. A very rapidly converging ana-
lytical Fourier-type shape parametrization is used to describe
nuclear shapes throughout the periodic table, including
those of fissioning nuclei. The Lublin Strasbourg Drop
and another effective liquid-drop type mass formula are
used to determine the macroscopic part of nuclear energy.
The Yukawa-folded single-particle potential, the Strutinsky
shell-correction method, and the BCS approximation for
including pairing correlations are used to obtain microscopic
energy corrections. The evaluated nuclear binding energies,
fission-barrier heights, and Qα energies show a relatively
good agreement with the experimental data. A simple one-
dimensional WKB model à la Świa̧tecki is used to estimate
spontaneous fission lifetimes, while α decay probabilities are
obtained within a Gamow-type model.

1 Introduction

Superheavy nuclei (SHN) have been a challenge for nuclear
physicists, both theoreticians and experimentalists, for the
last five or six decades, but speculations about their exis-
tence go back to the end of the 19th and the beginning of the
20th century [1,2]. An extensive review of the properties of
these nuclei, including the papers dealing with this subject
can be found in Ref. [3] and many other review papers as e.g.
[4–6], which allow us to avoid giving a long list of theoreti-
cal and experimental papers related to SHN. We shall instead
concentrate on the problem of extrapolating what we know
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from lighter nuclei to the region of superheavy elements. We
would like, in particular, to demonstrate that a reliable predic-
tion of nuclear ground-state masses is crucial for a depend-
able description of spontaneous fission and α-decay proba-
bilities. All calculations reported in this paper are based on
the macroscopic-microscopic(macro-micro) model [7], and
we show how using different modern liquid-drop (LD) type
models impacts on our predictions of masses and fission bar-
rier heights of the SHN. An analysis of the single-particle
spectra obtained in different mean-field and self-consistent
calculations shows that the magic numbers predicted for the
region of SHN are very contingent on the model used. To take
into account the degeneracy of single-particle levels turns out
to be essential, when analyzing nuclear spectra. We will show
that the nuclear shell-correction energy is, in this respect, a
much better-suited tool to find the magic numbers in a given
region of nuclei.

Our paper is organized as follows. The Fourier shape
parametrization [8] that has been shown [9,10] to provide
an excellent description of the shape of nuclei throughout
the nuclear chart, including the very elongated and necked-
in forms that appear in very heavy fissile nuclei, is presented
in some detail in Sect. 2. Section 3 introduces two models,
namely the well known Lublin-Strasbourg Drop (LSD) [11]
and one of the drop models presented in 2006 by Moretto
et al. [12], to describe the macroscopic nuclear energy. The
potential energy surfaces (PES) of the SHN are evaluated
including the microscopic shell and pairing energy correc-
tions. The analysis of the PES’s allows to determine the fis-
sion barrier heights and Qα energy values which we present
in Sect. 4. Spontaneous fission lifetimes as obtained in a
simple WKB type model are compared in Sect. 5 with the
available experimental data, while α-decay lifetimes evalu-
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ated in a Gamow-type model are presented in Sect. 6. Section
7 finally gives some conclusions and outlooks.

2 Fourier shape parametrization

A proper low-dimensional description of the shape of a
nucleus that can undergo fission is probably one of the most
challenging tasks with which nuclear physicists have been
confronted since the early paper of Bohr and Wheeler [13]
on nuclear fission theory. Many different parametrizations
have been proposed to describe the shapes of deformed
nuclei (see Ref. [14] for an extensive review of fre-
quently used parametrizations). In the present paper, we are
using a straightforward and rapidly convergent Fourier type
parametrization as first presented in Refs. [8,9].

A typical shape of a strongly elongated nucleus is shown
in Fig. 1, where the distance ρs(z) from the z-axis to its
surface is displayed as a function of the z coordinate, while
the dashed line shows a spheroid having the same length and
volume. We assume that for axially symmetric shapes the
function ρs(z) is described by the following Fourier series:

ρ2
s (z) = R2

0

∞∑

n=1

[
a2n cos

(
(2n − 1)π

2

z − zsh
z0

)

+ a2n+1 sin

(
2nπ

2

z − zsh
z0

)]
, (1)

where the expansion coefficients aν are treated as free defor-
mation parameters. The half-length z0 of the shape is evalu-
ated from the aν parameters imposing the condition that the
volume of the nuclear shape needs to be conserved, while zsh

ensures that the center of mass of the deformed nucleus is
located at the origin of the coordinate system, with R0 being
the radius of the spherical nucleus having the same volume.

Non-axial shapes can easily be taken into account by
assuming that the cross-section of the nuclear surface per-
pendicular to the z-axis has the form of an ellipse with half-
axis a and b. One can then define a non-axiality deformation
parameter η as:

Fig. 1 Shape of a very elongated fissioning nucleus

η = b − a

a + b
. (2)

In the case of a non-axial nuclear shape the volume conserva-
tion condition implies that ρ2

s (z) = a(z)b(z). The following
equation then gives the non-axial shape:

�2(z, ϕ) = ρ2
s (z)

1 − η2

1 + η2 + 2η cos(2ϕ)
, (3)

where one assumes that the non-axiality parameter η is
independent on z. The rapid convergence of the Fourier
parametrization (1) for any realistic nuclear shape is strik-
ing, as has been demonstrated in Ref. [9].

In practical calculations, instead of the aν deformation
parameters, it is more convenient to use the following com-
binations:

q2 = a(0)
2 /a2 − a2/a

(0)
2 ,

q3 = a3,

q4 = a4 +
√

(q2/9)2 + (a(0)
4 )2,

q5 = a5 − (q2 − 2)a3/10,

q6 = a6 −
√

(q2/100)2 + (a(0)
6 )2,

(4)

where the a(0)
2n = (−1)n−132/[π(2n − 1)]3 are the Fourier

expansion coefficients of a sphere. The new qν deformation
parameters have the following physical interpretation:
	 q2 : elongation of the nucleus,
	 q3 : left-right asymmetry,
	 q4 : neck formation,
	 q5 and q6 regulate the deformation of fission fragments.

These parameters were chosen in such a way that the
liquid-drop path to fission corresponds approximately to
q3 = q4 = q5 = q6 = 0 and the spherical shape is obtained
when all qν vanish.

3 Total nuclear energy

We have performed calculations using the macro-micro
model approach of the total nuclear energy [15]:

Etot = Emac + Ep
shell + En

shell + Ep
pair + En

pair , (5)

where Emac is the macroscopic part of the energy, while Eshell

and Epair describe the microscopic shell and pairing energy
corrections for protons and neutrons.

3.1 Liquid-drop type mass formula

In what follows, two types of macroscopic models have been
used: the Lublin-Strasbourg Drop (LSD) [11] which has been
shown to represent one of the most performant liquid-drop
type models on the one hand, and one of the five LD formulas
proposed in 2012 by Moretto et al. [12], namely the version (i)
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which has, contrary to most existing LD formulas, the same
isospin-square dependence of the volume and surface terms
and does not contain any curvature contribution. Both these
modern versions of the nuclear LD model which have the
particularity to reproduce rather well not only nuclear masses
but also the fission-barrier heights in the actinide region [16],
will allow us to compare their extrapolations from the known
nuclear region to one of the superheavy nuclei.

The LSD model [11] contains, in addition to the tradi-
tional volume, surface, and Coulomb terms, a curvature and
a congruence (Wigner) energy term

MLSD(Z , N ; qi ) = ZMH + NMn − belec Z
2.39

+ bvol (1 − κvol I
2 ) A

+ bsurf (1 − κsurf I
2 ) A2/3Bsurf(qi )

+ bcur (1 − κcur I 2 ) A1/3Bcur(qi )

+ 3

5

e2Z2

r ch
0 A1/3

BCoul(qi ) − C4
Z2

A

+Econg(Z , N ) + Eodd

+Emicr(Z , N ; qi ) . (6)

Here the nuclear deformation is identified by the parameter
set {qi } in (4), I = (N − Z)/A is the reduced isospin,
and Mn and MH are respectively the masses of the neutron
and the hydrogen atom. The coefficient of the electron-shell
binding energy is belec = 0.00001433 MeV, and the odd–
even term Eodd and the congruence (Wigner) energy, given
as Econg(Z , N ) = 10 exp(−4.2 |I |) MeV, are taken from
Ref. [17]. The ground-state microscopic-energy corrections
Emicr(Z , N ; qi ) are finally taken from the tables presented
by Möller at al. in Ref. [18]. The remaining LD parameters
of the LSD mass formula have been adjusted to obtain the
best possible fit of the 2766 nuclear masses with Z≥8 and
N≥8, experimentally known by the time of the mass fit of
Ref. [11].

The LD type formulae [12] of Moretto and coworkers have
the following form:

MMLD(Z , N ; qi ) = ZMH + NMn

+
[
bvolA + asurf A

2/3Bsurf(qi ) + acur A
1/3Bcur(qi )

]

·
[
1 − κ|N − Z |(|N − Z | + 2)/A2

]

+aCoul
Z(Z − 1)

A1/3 BCoul(qi ) ± δ√
A

+ Emicr(Z , N ; qi ).
(7)

Here the volume, surface, and curvature terms carry the same
reduced isospin dependence, and the electron binding energy
is absent. The last two terms describe the odd–even mass
difference and the microscopic correction energy, which is
the same as in Eq. (6). The term |N − Z |(|N − Z | + 2)

origins from the requirement that the nuclear part of the total

energy has to depend on the square of the isospin of a nucleus:
< τ̂ 2 >= τ(τ + 1), where τ = |N − Z |/2, and < τ̂ 2 >=
|N − Z |(|N − Z | + 2)/4. Note that the linear term |N − Z |
in Eq. (7) corresponds to the Wigner (congruence) energy
present in the Eq. (6). A standard deformation dependence
of surface, curvature and Coulomb energies, absent in the
original paper [12], is added in the present investigation.

Five different sets of parameters were fitted in Ref. [12]
to 2076 nuclear masses but only one of them (i) with the
parameters shown in the table below:

avol [MeV] asurf [MeV] acur [MeV] κ [–] aCoul [MeV] δ [MeV]

− 15.597 17.32 0.0 1.8048 0.7060 11.4

is able to reproduce the experimental barrier heights with
a quality similar to the one of the LSD model, as it was
shown in Ref. [16]. In what follows, we will only consider
this parameter set, labeled MLD hereafter, to compare its
results with the ones of the LSD mass formula and to predict
properties of SHN.

The difference between the mass estimates obtained in the
MLD and LSD models for actinide and superheavy nuclei is
shown in Fig. 2. Crosses mark known isotopes. The solid line
indicates the β-stability line, while dashed lines correspond
to constant A values. The difference between both estimates
is smaller than 0.2 MeV in actinide nuclei while it becomes
slightly larger but does not exceed 0.6 MeV around the heav-
iest known SHN. α-decay chains correspond to vertical lines
in Fig. 2 with an almost constant energy difference between
both mass estimates for known elements with Z≥102, thus
indicating that α-decay Qα energies will be very similar for
both LD models in the SHN region.

Fig. 2 Difference between the MLD and LSD estimates of nuclear
masses. Crosses mark the experimentally known isotopes. Constant A
values are represented by dashed lines, while the β-stable nuclei are to
be found around the solid line
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Fig. 3 Difference between the LD barrier heights evaluated using the
LSD (6) and MLD (7) formulas

Liquid-drop fission barrier heights evaluated using the
MLD model turn out to be slightly larger than those of LSD,
as can be seen in Fig. 3 but the difference does not exceed
0.2 MeV in the superheavy region.

The very close estimation of the masses and the barrier
heights of the SHN obtained in both modern LD models gives
a certain guarantee that our description of the macroscopic
part of the energy is reasonably accurate.

3.2 Microscopic part of the energy

Strutinsky type shell corrections are obtained as usual by
subtracting the average energy Ẽ from the sum of the energies

ek of the occupied single-particle (s.p.) levels

Eshell =
∑

occ

ek − Ẽ . (8)

The energies ek in (8) are the eigenvalues of a mean-field
Hamiltonian with a mean-field potential [19]. The average
energy Ẽ is evaluated using the Strutinsky prescription [7,
20,21]. The pairing-energy correction is determined as the
difference between the BCS energy and the s.p. energy sum
from which the average pairing energy is subtracted [7]

Epair = EBCS −
∑

occ

ek − Ẽpair. (9)

In the BCS approximation, the ground-state energy of a sys-
tem with an even number of particles is given by

EBCS =
∑

k>0

2ekv
2
k − G

(
∑

k>0

ukvk

)2

− G
∑

k>0

v4
k − Eϕ

0 ,

(10)

where the sums run over the pairs of s.p. levels belonging to
the pairing window defined below. The coefficients vk and

uk =
√

1 − v2
k are the BCS occupation amplitudes, and Eϕ

0
is the energy correction due to the particle number projection
performed in the GCM+GOA approximation [22]

Eϕ
0 =

∑
k>0[(ek − λ)(u2

k − v2
k ) + 2Δukvk + Gv4

k ]/E2
k∑

k>0 E−2
k

. (11)

Here, Ek = √
(ek − λ)2 + Δ2 is the quasi-particle energy

and Δ and λ the pairing gap and Fermi energy, respectively.
The average projected pairing energy, for a pairing window,

Fig. 4 Single-particle levels of
the spherical nucleus 294Og
evaluated using the
Yukawa-folded (l.h.s.) and the
Woods–Saxon (r.h.s) potential
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Fig. 5 Single-particle proton levels of the spherical nucleus 294Og
evaluated self-consistently using the SkIII and SkM* Skyrme and
Gogny D1S forces

of width 2Ω , symmetric in energy relative to the Fermi level,
is equal to

Ẽpair = −1

2
g̃ Δ̃2 + 1

2
g̃ GΔ̃ arctan

(
Ω

Δ̃

)
− log

(
Ω

Δ̃

)
Δ̃

+3

4
G

Ω/Δ̃

1 + (Ω/Δ̃)2
/arctan

(
Ω

Δ̃

)
− 1

4
G , (12)

where g̃ is the average single-particle level density at the
Fermi surface and Δ̃ the average pairing gap corresponding
to a pairing strength G

Δ̃ = 2Ω exp

(
− 1

Gg̃

)
. (13)

All details of the calculation and the parameters used are
described in Ref. [23], where an extended set of maps with
the potential energy surfaces (PES) of superheavy nuclei are
presented. This pairing energy as defined by Eq. (9) has of
course to be evaluated separately for protons and neutrons as
indicated by Eq. (5).

Fig. 6 The same as in Fig. 5 but for neutrons

In our calculation, the single-particle spectra are obtained
by diagonalization of a Hamiltonian with a Yukawa-folded
(YF) potential [19,24] with the same parameters as used in
Ref. [18]. Its s.p. proton and neutron orbitals |nl j〉 of a spheri-
cal 294Og nucleus are compared in Fig. 4 with the levels eval-
uated using the Woods–Saxon (WS) potential with the so-
called universal set of parameters of Ref. [25]. Both energy
spectra are similar. The main difference is seen in the proton
spectrum above the 2f7/2 levels corresponding to the magic
number Z = 114, where the distance between the orbitals is
slightly different. However, the situation is quite different
when one compares these spectra with the ones evaluated in
self-consistent models. In Figs. 5 and 6 they are compared
to the proton and neutron spectra obtained self-consistently
using the Skyrme SIII and SkM* and the finite-range Gogny
D1S interaction. As one can see, the order of the proton’s
orbitals obtained with the SIII set of parameters is similar
to that of the YF potential. However, the energy distances
between the levels are more considerable. The two other
proton s.p. spectra obtained with the SkM* and D1S forces
show different orders of the orbitals around the Fermi energy.
Also, the energy gap corresponding to the magic number
Z = 114 is smaller in these three self-consistent models than
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Fig. 7 Proton (top) and neutron (bottom) shell correction energies of the spherical actinide and superheavy nuclei obtained using the Yukawa-folded
(l.h.s) and the Woods–Saxon (r.h.s) s.p. potentials

in the case of the Yukawa-folded mean-field potential. The
energy gap corresponding to Z = 126 is most pronounced in
the SkM* spectrum. The situation is similar in the neutron
spectra, where energy gaps are visible around N = 168 and
N = 184, but the sequence of orbitals frequently differs from
model to model.

Comparing the different spectra, one should not forget,
however, about the 2 j + 1 degeneracy of the orbitals. The
contribution of a single orbital to the shell energy depends
obviously on its degeneracy and the energy distance from
the Fermi level. The gaps observed in the energy spectra
could be misleading. A better way to judge the magic num-
bers would be to compare the shell-correction energies cor-
responding to the different numbers of protons and neutrons.
The proton (top) and neutron (bottom) shell correction ener-
gies evaluated with the Yukawa-folded (YF) and the Woods–
Saxon (WS) s.p. potentials are presented in the l.h.s. and r.h.s.
columns of Fig. 7, respectively. The proton magic number at
Z = 114 is well visible in the proton shell correction energy
which reaches there around -6 MeV for the YF potential and
−3.5 MeV for the SW one. Similarly, a neutron magic num-
ber N = 178 appears in the neutron shell correction what is

visible in both bottom panels. The neutron shell correction
corresponding to this magic number is around −4 MeV in
the YF case and −5.5 MeV for the WS potential. The shell
corrections at the above proton and neutron magic numbers
change slightly with the mass number A. The proton shell
energy is negative for 110 � Z � 124 and the neutron
one for 164 � N � 184, which indicates that nuclei in
this range of proton and neutron numbers are spherical in
the ground state. Of course, only the complete macroscopic-
microscopic calculation can finally decide whether a given
nucleus is spherical or deformed.

An extended set of 2D cross-sections of the 4D PES’s of
superheavy nuclei obtained in our model can be found in Ref.
[23]. The following section will show only a few examples
of such maps.

4 Barrier heights and Qα energies

Calculations have been carried out for the superheavy nuclei
with 104 ≤ Z ≤ 128 and 250 ≤ A ≤ 324. The PES
have been evaluated in the 4D deformation parameter space:
(η, q2, q3, q4).
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Fig. 8 PES obtained using the LSD (top) and MLD liquid-drop (bot-
tom) formula of 286Cn on the (q2, η) plane

In Fig. 8 the (q2, η) cross-section of the 4D potential
energy surface of 286Cn [23] is shown using the LSD (top)
and MLD (bottom) form of LD expression. The energies
denoted on the layers are to be understood as relative to the
LD energy of the spherical nucleus. The distance between
layers (solid lines) is 2 MeV, while the intermediate dashed
lines correspond to the half-layers. Both cross-sections (for
LSD and MLD) in Fig. 8 have been evaluated by imposing
left-right symmetry (q3 = 0) and minimizing the energy in
each (q2, η) point with respect to q4. The green lines marked
by β = 0.3 and γ = 10, 30, 60, 120, 150 correspond to the
frequently used (β, γ ) Bohr deformation parameters [26].
As one can see, both PES evaluated in different LD models
are very close and give very similar estimates of the sad-
dle point energy. The ground state of 286Cn turns out to
be nearly spherical. The fission valley goes first via oblate
(γ = 60o) shapes, then goes through a triaxial saddle point
at (β ≈ 0.38, γ ≈ 30o), and a non-axial second minimum
(β ≈ 0.55, γ ≈ 15o) to a second also, non-axial saddle.
Then at elongations q2 ≥ 0.8 the fission valley returns to
axially symmetric shapes (η = γ = 0). Such a situation is
typical for all SHN with Z≥ 110, which are spherical in the
ground-state (see the collection of PES’s in Ref. [23]).

The potential energy surface of 286Cn in the (q2, q3) plane
is shown in Fig. 9. The top panel corresponds again to the
case where the LSD mass formula (5) is used, while the bot-
tom part is obtained with the MLD liquid drop energy, Eq.
(7). Both PES cross-sections are found to be very similar. A

Fig. 9 PES obtained using the LSD (top) and MLD liquid-drop (bot-
tom) formula of 286Cn on the (q2, q3) plane

slightly smaller stiffness in the q3 direction is observed in the
MLD results at small elongations q2, where the beginning of
a valley which could probably lead to an α-decay appears. We
speak here about the beginning of such a valley since some
more deformation parameters would be needed to describe
with reasonable accuracy such a decay mode. Such valleys
were also observed in the Gogny-HFB calculations presented
in Ref. [27]. The main fission mode of 286Cn is a symmetric
one since for a given q2, the minimum of the energy cor-
responds to a reflection symmetric shape (q3 = 0). Apart
from this symmetric path to fission, two asymmetric valleys
appear in Fig. 9. One is at q3 = 0.08, and the second is very
asymmetric (q3 ≈ 0.20), which corresponds to a mass of the
heavy fragment around A = 208. Note that the deformation-
energy estimates obtained for very elongated shapes, close to
the scission configuration (q2 ≈ 2.2), are very close to each
other in the LSD and MLD models.

Similar cross-sections of the PES of the heaviest synthe-
sized nucleus 294Og are shown in Fig. 10. Here we present
only the results obtained with the LSD macroscopic energy
since the MLD model gives very similar PES. A pronounced
reduction of the saddle point energy, more significant than in
the case of 286Cn, due to the breaking of axial and left-right
reflection symmetries, is predicted in this isotope. The path to
fission goes from a spherical ground-state via oblate-shapes,
a triaxial and left-right asymmetric first saddle, a symmetric
second minimum, and an asymmetric second saddle. Two
fission valleys, the deeper one symmetric, the other one very
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Fig. 10 PES obtained using the LSD liquid-drop formula of 294Og on
the (q2, η) (top) (q2, q3) (bottom) planes

Fig. 11 Fission barriers heights of even–even superheavy nuclei with
104 ≤ Z ≤ 126

asymmetric, corresponding to a mass of the heavy fragment
around A = 208, lead to the scission configuration.

A significant reduction of the fission barrier height due to
the non-axial and reflection degrees of freedom is observed in
most superheavy nuclei. In Fig. 11 the fission-barrier heights
EB obtained with the LSD model for nuclei with 104 ≤ Z ≤
128 and 250 ≤ A ≤ 324 are displayed in the (A, Z) plane.
These barrier heights defined as the difference between the
highest saddle point and the ground state energy are evaluated
using the flooding technique [28] in the 4D (q2, η, q3, q4)

deformation parameter space. As one can see, the highest
barriers exceeding 8 MeV are found in the region with 112 ≤

Fig. 12 Alpha decay energies Qα of even–even superheavy nuclei with
104 ≤ Z ≤ 126

Z ≤ 118 and 280 ≤ A ≤ 294. Above A ≈ 310 the barriers
practically vanish. The experimental estimates of the lower
limit of the barrier heights obtained in Ref. [29] for a few
SHN are somewhat smaller than our predictions.

The theoretical values of the Qα energies evaluated from
the predicted mass difference of nuclei AXZ and A−4YZ−2

are compared in Fig. 12 with the experimental data (crosses)
taken from Ref. [30]. The agreement of the theoretical values
with the data is generally satisfactory, but with some excep-
tions, where the differences exceed 1 MeV.

5 Spontaneous fission lifetimes in a simple model

Let us remind the reader of the so-called topographical the-
orem of Myers and Świa̧tecki, which states that the mass
of a nucleus at the saddle point is approximately equal to
its macroscopic estimate. According to this statement, the
fission barrier is equal to the difference between the saddle
mass of the nucleus obtained in the macroscopic model and
its experimental mass in the ground state. To verify that state-
ment, a corresponding calculation was performed in Ref. [31]
where the LSD mass formula, Eq. (6), was used to describe
the macroscopic part of the binding energy. The fission bar-
riers extracted experimentally for even–even actinide nuclei
are compared in Fig. 13 with the estimates obtained using
the topographical theorem and the LSD mass formula.

The results of this investigation are striking and prove
the above idea of Myers and Świa̧tecki. The r.m.s. deviation
between the prediction of such simple estimates and the data
is only about 310 keV.

In 1955 Świa̧tecki has made a famous systematic analy-
sis [32] of the spontaneous fission lifetimes. He has noticed,

in particular, that the quantity log10

(
T sf

1/2/y
)

+k δM , where

δM = Mexp−Msph
LD and an adjustable parameter k, is almost a
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Fig. 13 Experimental fission barrier heights compared with the differ-
ence of the LSD saddle and the measured nuclear mass in the ground-
state [31]

Fig. 14 Świa̧tecki systematics of the spontaneous fission lifetimes [32]

linear function of the fissility parameter for even–even nuclei.
The lines representing the results for odd-A and odd–odd
nuclei are then simply shifted by the so-called hindrance
factor, as one can see in Fig. 14 taken from Ref. [32]. It
was shown in Refs. [34,35] that Świa̧tecki like systematics
of spontaneous fission half-lives work surprisingly well for
up-to-date experimental data for actinide nuclei up to Z=102,
when one uses the LSD estimates of spherical nuclei [35]:

log10[T sf
1/2/y] = −4.1 Z + 380.2 − 7.7 δM + h , (14)

Fig. 15 Two-dimensional cross-section of 4D PES of 254Rf (top) with
marked static path to fission (solid blue line). The potential barrier along
this path is shown in the middle panel as a function of the relative dis-
tance between the mass-center of the fragments s = r12/R0. The dashed
line shows the corresponding phenomenological mass parameter in the
reduce mass units (μ), found in Ref. [33]. The potential as function of the
new coordinates x in which the mass parameter is constant (Bxx = 6μ)
is drawn in the bottom panel. The dash-dotted line shows the approxi-
mation of this potential by two parabolas

where h is the hindrance factor equal to 0, 2.5, and 5 for
even–even, odd-A, odd–odd nuclei, respectively.

The question arises, why the Świa̧tecki prescription for
T sf

1/2 works so well? To answer this question, let us construct
a simple model. The fission barrier of a given nucleus can
be found by analyzing the static (minimal energy) or the
dynamic (minimal action integral) [36] path of the PES in
the multidimensional {qi } space, like the one presented in
the top part of Fig. 15, where the (q2, q4) cross-section of the
4D PES of 254Rf is shown. The path (thick blue line) begins
at the ground-state equilibrium point (sl ) and runs up to the
exit point (sr ), where the energy is equal to the ground-state
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energy E0. The fission barrier obtained along the static trajec-
tory, where the energy has been minimized with respect to all
deformation degrees of freedom except q2, is presented in the
middle panel of Fig. 15 as a function of the relative distance
between the mass centers of both fragments s = r12/R0. The
dashed line shows the phenomenological collective inertia
Bss that enters, through the action integral, the calculation of
the spontaneous fission lifetime (see below). It is clear that
along the fission path, each deformation parameter qi (s) is a
function of the path length s. The classical energy H of the
nucleus is the sum of the kinetic and potential V energies:

H = 1

2
Bss(s)ṡ

2 + V (s) , (15)

where Bss is the mass parameter and V the collective poten-
tial energy along the path s. A simple transformation from the
s to a new x coordinate which conserves the kinetics energy:

x(s) =
s∫

ssph

√
Bss(s′)
m

ds′, (16)

ensures that the mass parameter Bxx = m corresponding to
the new coordinate remains constant. One has assumed here
that x = 0 for the sphere. This transformation to a constant
mass parameter is also valid in the quantum Hamiltonian
when one does not take into account the derivatives of the
Bss(s) parameter. The potential V [s(x)] in the new coor-
dinate x , as shown in the bottom panel of Fig. 15, can be
approximated by two (or more like in Ref. [33]) parabolas,
one for each side of the barrier:

Ṽ (x) =
{
Vsadd − 1

2 Cl (x − xB)2 for x < xB,

Vsadd − 1
2 Cr (x − xB)2 for x > xB,

(17)

how it is shown in the bottom part of Fig. 15.
The spontaneous fission half-life is then given by:

T sf
1/2 = ln 2

nP
, (18)

with

P = 1

1 + exp{2S(L)} , (19)

where the WKB action integral along the fission path L(x)
is given by:

S(L) =
sr∫

sl

√
2

h̄2 Bss[V (s) − E0] ds

≈
xr∫

−xl

√
2m

h̄2 [Ṽ (x) − E0] dx .

(20)

Fig. 16 Logarithm of the spontaneous fission half-lives corrected by
the experimental and LSD mass difference as a function of the LSD
barrier height

The penetration probability of the two (inverted parabola)
barriers of height EB is equal to:

S = π

2h̄
EB

(√
m

Cl
+

√
m

Cr

)

= π

h̄
EB

ωl + ωr

2 ωl ωr
≡ π

h̄
EB ω̃−1, (21)

where ωl = √
Cl/m and ωr = √

Cr/m are the inverted
harmonic oscillator frequencies.
For S
1 the logarithm of the spontaneous fission half-lives
takes the form:

log10(T
sf

1/2) = 2π

h̄ω̃
EB − log10[n ln2]

≈ 2π

h̄ω̃
(MLSD

sadd − Mexp) − log10[n ln2], (22)

where n is the number of assaults against the fission barrier.
The final formula for the spontaneous fission half-lives can
then be written as

log10(T
sf

1/2) + 4δM

h̄ω̃
= 4ELSD

B

h̄ω̃
− log10(n ln2) , (23)

where δM = Mexp − M sph
LSD. The above formula can be

approximated similarly as it was done in Ref. [32]:

log10(T
sf

1/2/s) − a δM = f (EB) , (24)

where T sf
1/2 is measured in seconds (s), a is a constant which

has to be found, and f (EB) is an adjustable function which
approximates the left side of this equation.

In Fig. 16 the l.h.s. of Eq. (24) is drawn as function of the
barrier height for all experimentally known Tsf . The coeffi-
cient a is found equal to 4.9 MeV−1 and the function f (EB)

(solid line in Fig. 16) is taken in the form of a second order
polynomial

f (EB) = −25.9 + 14.9 EB − 1.1 E2
B , (25)

where the coefficient of the polynomial have been obtained
by a least-square fit to the data for nuclei with Z ≥ 90. The
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Fig. 17 Logarithm of the spontaneous fission half-lives predicted by
formula (26) and the experimental data as a function of A

logarithm of the spontaneous fission half-lives can thus be
approximated by

log10(T
sf

1/2/s) = 4.9 (Msph
LSD − Mexp) + f (EB) . (26)

The above theoretical estimate of T sf
1/2 is compared with the

experimental data in Fig. 17 for nuclei from Th (Z = 90) to
Ds (Z = 110).

As one can see, the simple one-dimensional WKB model
reproduces the measured lifetimes quite well. Similar esti-
mates of Tsf obtained using the MLD formula (7) are found
to be very close to those obtained with the LSD masses.

6 Alpha decay lifetimes in the Gamow-like model

The lifetimes of nuclei decaying through α or cluster emis-
sion can be estimated quite accurately using a Gamow-like
model [37] as shown in Ref. [38]. Let us recall here the main
assumption of this model: The nucleus B decays into two
parts: C, D:

ABZ −→ A1C Z1 + A2 DZ2 ,

where the charges and the mass numbers of the daughter
nucleus C and of the emitted nucleus D are denoted by
(Z1,A1) and (Z2,A2), respectively.

A rectangular nuclear potential of depth V0 and radius R
for the nuclear part and a Coulomb potential V (r) for the
outer part, as assumed in Ref. [38], is shown in Fig. 18. The
emitted nucleus, as e.g. an α-particle, has the energy Ek . The
exit point from the barrier is denoted by b. The decay half-life
is then given by:

T α
1/2 = ln 2

λ
· 10h (27)

where λ is the decay width and h is a hindrance factor needed
to describe the decay of odd–even or odd–odd nuclei (h = 0

Fig. 18 Potential barrier tunneling by α particle

Fig. 19 Theoretical estimates α decay half-life times of even–even
heavy nuclei compared with the data (crosses). The experimental values
of T α

1/2 and Qα decay energies are taken here from Ref. [30]

for even–even nuclei). The decay width can be written as

λ = νP , (28)

where ν is the number of assaults against the barrier and P
is the barrier penetration probability. In the WKB approxi-
mation [39] this probability is expressed by:

P = exp

[
− 2

h̄

∫ b

R

√
2μ(V (r) − Ek) dr

]
, (29)

where μ is the reduced mass of the emitted particle. The exit
point from the barrier b corresponds to the place where the
Coulomb potential is equal to the kinetic energy Ek:

b = e2Z1Z2

Ek
(30)

with e2 = 1.44 fm · MeV beeing the square of the elementary
charge.
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The probability of tunneling of the Coulomb barrier of a
spherical nucleus is given by:

P = exp

{
− 2

h̄

√
2μZ1Z2e2b

·
[

arccos
√
R/b −

√
R/b − (R/b)2

]}
. (31)

Here R = r0(A
1/3
1 + A1/3

2 ) is the radius of the square well
shown in Fig. 18. It was assumed in Ref. [38] that the emitted
particle is, in its ground-state, in a square well with relatively
high walls like presented in Fig. 18. This assumption allows
to use of the number of assaults per time-unit against the
barrier corresponding to the ground state frequency of an
infinite square well:

ν ≈ π h̄

2μR2 . (32)

Please note that the only one adjustable parameter in this
model is the radius constant r0 of the square well radius.
A least-square fit performed in Ref. [38] to all known α-
decay lifetimes of even–even nuclei has given r0 = 1.21 fm.
To describe the α-decay of odd-A nuclei, an additional hin-
drance factor was fitted h = 0.216. For odd–odd nuclei,
the hindrance factor is simply doubled. The accuracy of
reproducing the experimental data by this simple model is
merely outstanding. It turns out to be better than that of
Parkhomenko, and Sobiczewski obtained using the Viola-
like formula, which contains for even–even nuclei four
adjustable parameters [38,40]. A similarly good accuracy
for the reproduction of the probability of cluster [38], and
proton decay [41] was obtained without any adjustment of
the radius constant r0. It could be mentioned that, recently,
it was shown that a careful treatment of the preformation
factor of alpha particle in the emitter helps to improve the
calculation of the alpha-decay width (see e.g. Ref. [42]).

In Fig. 19 the logarithmic half-life log10(T
α
1/2) for even–

even superheavy nuclei is shown, where the experimental
data for the lifetimes and Qα are taken from Ref. [30]. It is
shown that the theoretic calculations reproduces quite well
the data if available.

Contrary to the estimates of Poenaru et al. [43] the cluster
emission from the SHN is orders of magnitude less probable
in our model [38,44] than the one for α-decay.

7 Conclusions

The following conclusions can be drawn from our investiga-
tion:

– The Fourier expansion of nuclear shapes offers a very
effective way of describing nuclear deformations, both

at the ground-state and in the vicinity of the scission con-
figuration.

– Two modern liquid drop models: the LSD and MLD give
very close estimates of nuclear masses, barrier heights,
and Qα energies of SHN,

– Further developments of the mean-field potentials are
necessary since the present models predict very differ-
ent magic numbers in superheavy nuclei,

– Shell and pairing effects at the ground-state determine
the heights of fission barriers since the influence of these
microscopic effects on the mass of a nucleus at the saddle
point is practically negligible.

– Spontaneous fission lifetimes of nuclei are mostly deter-
mined by the microscopic energy correction at the
ground-state and the macroscopic fission barrier height.

– A Simple WKB model with only one adjustable param-
eter, namely the radius constant r0, describes well the
alpha emission probabilities in SHN.

Langevin type calculations, based on the macro-micro model
and the 3D Fourier shape parametrization, as well as the self-
consistent method, are carried out in parallel by our group
[23].
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