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Abstract An extented Bohr Hamiltonian, by considering
the Deformation-Dependent Mass Formalism with three dif-
ferent mass parameters one for each collective mode, is used
to investigate the bands structure of the 165Er nucleus. By tak-
ing into account the Coriolis interaction, the staggering of γ

band energy levels built on the 11/2−[505] orbital obtained
within this theoretical approach has a similar behavior to
that observed from experiment. E2 transition probabilities
are also predicted for a future experimental test.

1 Introduction

One of the most fundamental issues in theoretical nuclear
physics is being to describe collective states of atomic nuclei.
In this context, Bohr-Mottelson Model [1,2] provides a pow-
erful tool to achieve such a goal alongside the Interacting
Boson Model (IBM) [3]. Indeed, solving the Schrödinger
equation corresponding to the collective Bohr Hamiltonian
is one of the most reliable methods in studying the struc-
ture of deformed nuclei [4,5]. So, many versions of Bohr
Hamiltonian, using new concepts, are elaborated [6–15]. By
analyzing experimental data and comparing them with theo-
retical calculations, such new approaches proved to be useful
for a correct description of the properties of nuclei.
The presence of quadrupole shape oscillations is known to be
the origin of β andγ bands in nuclei [2]. Theβ-band is caused
by a shape oscillations in axially symmetric nuclei, while
the γ -band is caused by non-axial shape oscillations. The
energy staggering between the odd-even states of the gamma-
vibration band are considered as one of the key observables to
distinguish different modes of collective excitations [16–18].
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In Ref. [19], the authors have studied the collective single-
particle structure of the deformed odd nuclei using different
mass parameters for different modes of motion in a nucleus,
originating from Ref. [9], instead of the same mass parameter
for all the vibration and rotation modes. This extended model
was applied for the 163,165Er nuclei to calculate excited-
state energies and E2 transition probabilities, but in a simple
model where the quantum numbers K and Ω of the projec-
tion of angular momentum of a nucleus and that of an exter-
nal nucleon respectively, are good quantum numbers. Also,
the Coriolis interaction had not been included in the Hamil-
tonian. This calculation did not show a staggering for the
gamma band of 165Er which is observed in the experimental
spectrum, especially when L (the total angular momentum
of the nucleus) increases.

In our earlier work [20], we have studied the structure
of nuclear excited states of four heavy odd mass nuclei
153,155Eu, 163Dy and 173Yb using an extended collective
quadrupole Bohr Hamiltonian with different deformation-
dependent mass parameters, where the mass parameters for
the three collective mode motions are taken as different, and
allowing the mass to depend on the nuclear deformation.
The Coriolis interaction between the rotational and single-
particle motions is taken into account in the case where K
the projection of the angular momentum on the third axis
connected with a nucleus and that of the external nucleon Ω

are not conserved. The Davidson potential [21] is used for β

shape and the harmonic oscillator potential for the γ one.
The Er isotopes near the stability line have a large

quadrupole deformation and exhibit both rotational and
vibrational motions [22–24]. Thus, it is desirable to apply the
model elaborated in Ref. [20] on the 165Er nucleus by calcu-
lating excited-state energies and E2 transition probabilities
and then focus on the staggering in γ -band. The choice of
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this nucleus is due to the availability of experimental data for
excited-state energies and for the γ -band especially.

The paper is organized in the following way: In Sect. 2 we
give an outline of the used model. Numerical calculations
for energy spectra compared with experimental data and for
predicted E2 transition probabilities are presented and dis-
cussed in Sect. 3. In addition, an analysis of the staggering
effect in γ -band is also presented. Finally, Sect. 4 is devoted
to the conclusion.

2 Outline of the model

The Schrödinger equation corresponding to the Bohr Hamil-
tonian with three deformation-dependent mass coefficients
for an odd-mass nucleus is given by [13,15]
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where 〈i |B0|i〉 defines the mass parameters Brot , Bβ and
Bγ for g.s. (i ≡ g.s.), β-vibrational state (i ≡ β) and γ -
vibrational state (i ≡ γ ) respectively [6]. f is the defor-
mation function, it depends only on the radial coordinate
β. Then, only the β part of the resulting equation will be
affected. L is the total angular momentum of the nucleus,
L1,L2, and L3 are its projections on the principal axes of
the nucleus. j , j1, j2, and j3 are the operator of a single
nucleon external to the core, and its projections. 〈T 〉 is the
average value of a function of the distance between the single
nucleon and the center of the nuclear core over internal states
of the external nucleon, assuming zero nuclear surface oscil-
lations [25,26]. Hp is the spherically symmetric part of the
Hamiltonian of the external nucleon [25]. Originated from
the construction procedure of the kinetic energy term within
Deformation Dependent Mass Formalism (DDMF), δ and λ

are free parameters [11].
The potential is taken in this form

V (β, γ ) = U (β) + f 2

β2 W (γ ), (3)

where

U (β) = V0

( β

β0
− β0
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)2
(4)

and

W (γ ) = 1

2
(β4

0Cγ )γ 2 (5)

β0 is the position of the minimum of the potential in β,Cγ is a
free parameter, and V0 represents the depth of the minimum,
located at β0.

For the deformation function, we use the following special
form:

f = 1 + aβ2, a << 1 (6)

where a is the deformation parameter. This specific form is
required in the case of the Davidson potential (4) in order
to get exact solvability in the framework of Supersymmetric
Quantum Mechanics [11]. Other potentials require different
forms for this function, see, for example, [12] for the Kratzer
potential.

The eigenvalues of the Hamiltonian in Eq. (1) are deter-
mined by the following expression:
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h̄2 Λ + 2gβ, (9)

where gβ = BβV0β
2
0

h̄2 , τ distinguishes different states of the
same L , nβ is the quantum number of β-vibrations, and εp
is the corresponding energy of Hp in units of h̄2/Bββ2

0 used
here to be a parameter as in Ref. [27] which determines the
distance between the single-particle spherical orbits.
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The eigenvalues of the γ -vibrational part of the Hamilto-
nian plus the term of the rotational energy are determined by
the following expression:

Bβ

h̄2 Λ = 2

g

Bβ

Bγ

(1 + 2nγ + |m|) + m2

3

Bβ

Bγ

+ ε|m|Lτ , (10)

where g = 1
β2

0

h̄√
BγCγ

and nγ is the quantum number of γ -

vibrations. The values of m are connected with K and Ω

through the condition K − Ω = 2m, where m should be an
integer.

The following determinant is calculated in order to deter-
mine eigenvalues and eigenfunction of the rotational part of
the Hamiltonian:
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and ξ = h̄2

6Bββ3
0 〈T 〉 . Because of the quantum numbers K and

Ω which are not conserved in this present considerations, not
only the diagonal elements of the Hamiltonian but also non-
diagonal ones do contribute to the energies and E2 transition
probabilities. The diagonal elements are given as follows:
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The nondiagonal elements are
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The bands are classified by the quantum numbers nβ , nγ and
m, such as the g.s. band with nβ = 0, nγ = 0, m = 0; the
β-band with nβ = 1,nγ = 0, m = 0; and the γ -band with
nβ = 0, nγ = 0,m = 1.

The corresponding wave function is

Ψ = β−(1+Bβ/Bγ )Rnβ ,L(β)

×
∑
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where

Rnβ ,L(β) = β
1
2 (1+q)(1 + aβ2)

−nβ− 1
2 (1+ Bβ

Bγ
)− 1

4 (p+q)

×φ(β), (16)

Table 1 The values of the parameters used in calculations

ξ g gβ Bβ/Brot Bβ/Bγ Δεp a β0

g.s. 0.00 0.0373 12.0

0.0224 0.0810 545 10.4 2.60 β 0.00 2.32 × 10−16 5.23

γ 18.6 0.0999 1.05
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g ) are hypergeometrical functions,
D(θi ) is the Wigner function, ϕ(x) is the wave function of
single-particle state, Amτ

LK are the coefficients of the expan-
sion of the wave function [28], and Nnβ with Nnγ ,|m| are nor-
malization constants of radial and angular wave functions,
respectively.

Using the relationship between hypergeometric functions
and generalized Jacobi polynomials on one side, and between
hypergeometric functions and the Laguerre polynomials on
the other side, we have
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Table 2 The calculated values of E(Lg.s)/E(7/2−
g.s.), E(Lβ)/E(7/2−

g.s.) and E(Lγ )/E(7/2−
g.s.) compared with experimental data [22,23,31] for

165Er

g.s.-band β-band γ -band

Lg.s. Calc Expt. [22] Lβ Calc Expt. [31] Lγ Calc Expt. [23]

9/2− 2.26 2.26 5/2− 6.45 6.18 11/2− 8.38 7.06

11/2− 3.70 3.79 7/2− 7.45 7.41 13/2− 10.14 9.06

13/2− 5.47 5.58 9/2− 8.74 8.85 15/2− 12.15 11.32

15/2− 7.23 7.64 11/2− 10.24 10.60 17/2− 14.40 13.82

17/2− 9.57 9.90 13/2− 12.11 19/2− 16.88 16.55

19/2− 11.49 12.45 15/2− 13.99 21/2− 19.57 19.50

21/2− 14.55 15.12 17/2− 16.49 23/2− 22.46 22.63

23/2− 16.48 18.13 19/2− 18.56 25/2− 25.55 25.95

25/2− 20.44 21.13 21/2− 21.82 27/2− 28.82 29.41

27/2− 22.25 24.55 23/2− 23.87 29/2− 32.27 33.04

29/2− 27.25 27.79 25/2− 28.01 31/2− 35.88 36.77

31/2− 28.86 31.63 27/2− 29.88 33/2− 39.65

33/2− 35.00 35.00 29/2− 34.96 35/2− 43.57

35/2− 36.38 39.24 31/2− 36.57 37/2− 47.64

37/2− 43.72 42.69 33/2− 42.58 39/2− 51.84

39/2− 44.85 47.32 35/2− 43.90 41/2− 56.19

41/2− 53.42 50.92 37/2− 50.78 43/2− 60.67

43/2− 54.32 55.91 39/2− 51.81 45/2− 65.29

45/2− 64.09 59.81 41/2− 59.47 47/2− 70.04

and

Nnγ ,|m| =
[2

3

nγ !
g1+|m|Γ (|m| + nγ )

]1/2
. (23)

B(E2) transition rate, taking into account the nonconserva-
tion of K [29], is given by

B(E2; nβLnγ K |m| −→ n′
βL

′n′
γ K

′|m′|) = 5t2

16π

×
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L ′K ′G
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I 2
nβ L ,n′

β L
′C

2
nγ ,|m|,n′

γ ,|m′|, (24)

where t is a scaling factor, G =< L , K , 2, K ′ −K |L ′, K ′ >

is the Clebsch-Gordan coefficient dictating the angular
momentum selection rules, while Inβ L ,n′

β L
′ andCnγ ,|m|,n′

γ ,|m′|
are integrals over the shape variables β and γ with integration
measures [13],

Inβ L ,n′
β L

′ =
∫

βRnβ ,L(β)Rn′
β ,L ′(β) dβ, (25)

Cnγ ,|m|,n′
γ ,|m′| =

∫
sinγχnγ |m|χn′

γ |m′||sin3γ |dγ . (26)

3 Results and discussions

3.1 Excited-state energies

For this model, K and Ω are not conserved, then the value of
j affects the energy spectrum and the wave functions. 165Er
has the 5/2−[523] ground state determined from the Nilsson
model [30] and a γ band built on 11/2−[505] orbital [23]
giving importance to f7/2 and h11/2 orbits for the negative-
parity states of this nucleus.

Both the excited-state energies E(L) and reduced tran-
sition probabilities B(E2; L → L ′) depend on the mass
parameter ratios Bβ/Brot and Bβ/Bγ , and on the param-
eters ξ , g and gβ . Without taking into account DDMF, we
determine the values of those free parameters with the condi-
tion that the value of Bγ /Brot to be close to 4 as it is the case
for even-mass Er isotopes [8], by adjusting them in order to
reproduce the optimal experimental spectrum. For this aim,
we have used the root-mean-square (r.m.s) coefficient which
describes the average deviation between theoretical predic-
tions and experimental data:

σ =
√∑n

i=1(Ei (exp) − Ei (th))2

(n − 1)E(7/2−
g.s.)

2
, (27)
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Fig. 1 The theoretical values of energy levels in units of E(7/2−
g.s.) in both cases with and without DDMF compared with experimental data

[22,23,31] for 165Er

where Ei (exp) is the experimental energy of the i th level,
Ei (th) the corresponding theoretical value, n the maximum
number of considered levels and E(7/2−

g.s.) the energy of the
first excited state.

By introduction of DDMF, the optimal values of both
parameters a and β0 are evaluated through r.m.s fits of energy
levels by making use of Eq. (27) for each band (g.s., β and
γ -band). Note that, the values of the free parameters δ and λ

are null as in [11–15]. The obtained values of the parameters
used in the calculation are given in Table 1. The large values
of the position of the minimum of the potential β0 are due to
the dependence of the inertia coefficient on deformation. The
inertia coefficient decreases with increase of β. It means that
the velocity of the motion in β is larger where deformation
is larger, and smaller where deformation is smaller. There-
fore, nucleus spends more time at smaller deformations. This
decreases the effective value of deformation.

The comparison of the calculated values of energies
E(Lg.s), E(Lβ) and E(Lγ ) in units of E(7/2−

g.s.) for the
three bands with the available experimental data [22,23,31]
is given in Table 2.

For the ground-state band, the calculated excited-state
energies in units of E(7/2−

g.s.) are given for the sequence
9/2−, 11/2−, ..., 45/2− of spins and parities Lπ

g.s. for which
the corresponding experimental values are available [22]. It
shows that the theoretical results agree globally with experi-
mental data. The value of the r.m.s coefficient presenting the

Fig. 2 Energy levels of γ -band as a function of parameter g in units
of E(7/2−

g.s.) for differnt Lγ for 165Er
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Fig. 3 Energy levels of g.s.-band as a function of parameter g in units of E(7/2−
g.s.) for differnt Lg.s. for 165Er

deviations between experimental and theoretical data does
not exceed σg.s. = 1.83 bearing in mind that the presently
adopted model is so complicated compared to that of the ref.
[19]. It should also be noted that the introduction of DDMF
allowed to increase the spacing between paired states as the
angular momentum increases which is conform to the cal-
culated spectrum of Ref. [27] for 153Eu and 155Eu nuclei
while this pattern is not seen in experiment as we can observe
in Fig. 1. For example, the differences of energies between
every two neighboring levels 33/2−–35/2−, 37/2−–39/2−
and 41/2−–43/2− are respectively equal to 1.38, 1.13 and
0.90 in E(7/2−

g.s.) units while for the case without taken into
account the DDMF it will be equal to 1.31, 1.03 and 0.79
respectively.

For the β-band, only four states have been measured
[31]. The calculated values of excited energies relative to
E(7/2−

g.s.) energy are given up to the Lβ = 41/2− state. It is
clearly shown that our results are closer to the experimental
values (σβ = 0.27).

The available experimental data for E(Lγ )/E(7/2−
g.s.) of

γ -band are up to Lγ = 31/2− state [23]. The results of the
calculations for this band are given up to Lγ = 47/2− state.

Fig. 4 The experimental and the theoreticals values of the quantity
S(Lγ ) given by Eq (28) obtained for the γ -band of 165Er plotted as
functions of the angular momentum

One can see that the agreement with the experiment is good
(σγ = 0.77).

In the model of Ref. [19], the parameter g affects only
the γ -band where the locations of the levels are very sen-
sitive to it. For our model this parameter has also an effect
on the locations of γ -band levels as shown in Fig. 2, where
energy levels E(Lγ ) as a function of parameter g in units of

123



Eur. Phys. J. A (2022) 58 :19 Page 7 of 8 19

Table 3 The theoretical predictions of B(E2; Lg.s. + 2 → Lg.s.) and B(E2; Lβ → Lg.s.) in units of B(E2; 9/2−
g.s. → 5/2−

g.s.) in both cases with

and without DDMF for 165Er

B(E2;Lg.s.+2→Lg.s.)

B(E2;9/2−
g.s.→5/2−

g.s.)

B(E2;Lβ→Lg.s.)

B(E2;9/2−
g.s.→5/2−

g.s.)
× 103

Lg.s + 2 → Lg.s Without DDMF With DDMF Lβ → Lg.s Without DDMF With DDMF

11/2− → 7/2− 1.71 1.59 5/2− → 5/2− 24.3 24.3

13/2− → 9/2− 2.20 1.91 9/2− → 5/2− 34.7 34.7

15/2− → 11/2− 2.54 2.07 5/2− → 9/2− 0.59 0.59

17/2− → 13/2− 2.83 2.14 9/2− → 9/2− 1.29 1.29

19/2− → 15/2− 3.03 2.17 13/2− → 9/2− 90.2 90.2

21/2− → 17/2− 3.25 2.15 9/2− → 13/2− 0.03 0.03

23/2− → 19/2− 3.40 2.16 13/2− → 15/2− 1.50 1.50

25/2− → 21/2− 3.58 2.11 17/2− → 13/2− 138 138

E(7/2−
g.s.) for different Lγ are represented (while the other

parameters are fixed as in Table 1). It has also an effect on the
locations of high ground states band levels as shown in Fig. 3,
where energy levels of g.s.-band as a function of parameter g
in units of E(7/2−

g.s.) for differnt Lg.s. are represented. In the
right side of each figure are given the experimental energy
levels, which are of course independent of the g axis, for each
band.

3.2 Staggering in the γ -band

The staggering in theγ -band described by the discrete deriva-
tive of the energy as a function of the angular momentum
given by the following quantity [32]:

S(Lγ ) = E(Lγ ) − 2E(Lγ − 1) + E(Lγ − 2), (28)

is studied in the ref [19]. But the performed theoretical cal-
culations did not prove its existence, as was the case for the
experiment, especially for higher Lγ as we can see in Fig. 4.
So, the adopted theory does not have enough complexity to
recreate such high states. By using the same equation (28)
we give the plot of the quantity S(Lγ ) for our results for
both cases with and without DDMF and compare them with
experiment (Fig. 4).

It is clear that our model allowed us to reproduce well the
shape of the staggering in the γ -band. By consediring the
non-conservation of K and Ω and by taking into account of
the Coriolis interaction gave us this zigzaging effect while
approaching the experimental form, especially for the high
values of Lγ , while the introduction of DDMF increased the
value of S(Lγ ) for each level, giving almost coincidence with
the experiment for the values of the lowest Lγ .

3.3 E2 transition probabilities

The calculated values of reduced E2 intraband transition
probabilities for the ground-state band and interband E2 tran-

sition probabilities from β-band to the ground-state band
in units of B(E2; 9/2−

g.s. → 5/2−
g.s.) within and without

the DDMF are given in Table 3. Within the DDMF, we
have used the same optimal values of the two parameters
a and β0 previously obtained for the energy ratios in the
ground-state band and β-band. For these transitions, we
have Δm = 0. Then, the γ -integral part (Eq. (26)) reduces
to the orthonormality condition of the γ -wave functions:
Cnγ ,|m|,n′

γ ,|m′| = δnγ ,n′
γ
δ|m|,|m′|.

It is clearly shown that the inclusion of the DDMF
decreases the E2 intraband transition probabilities for the
ground-state band where the value of the deformation param-
eter is important. However, this behavior becomes clearer
as the angular momentum increases too. For the case of
interband E2 transition probabilities from β-band to the
ground-state band, there is no effect of the introduction of
DDMF. This is due to the value of the deformation parame-
ter, obtained by the fit for the energy ratios of β-band, which
tends towards zero.

4 Summary

In this paper we have recalculated the energy spectrum
and transition rates for deformed odd-mass 165Er nucleus
using an extented Bohr Hamiltonian, by considiring the
Deformation-Dependent Mass Formalism with three differ-
ent mass parameters for each collective mode in the case
where the quantum numbers K and Ω are not conserved and
taking into account the Coriolis interaction. We have found
a good agreement with the available experimental data for
energy ratios. The values of reduced E2 transition probabili-
ties, where the experimental data are not available, are given
as predictions. The validity of this model was also proved
by the fact that the shape of the staggering at higher spins
in γ -band built on the 11/2−[505] orbital is close to that
obtained by the experiment. The effect of the parameter g
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on energy levels was also discussed. This parameter has a
large effect on the γ -band as a whole. For this model such an
effect is also observed in the ground state band which can be
seen clearly when the angular momentum increases. We can
also mention that, the fact that it is not possible to describe
simultaneously neighboring even-even and odd nuclei in the
framework of the considered model is much more interest-
ing that a possibility to fit the data. Probably, it is an effect
of the odd neutron occupying single particle state with large
quadrupole moment.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Author’s comment: This is a theoretical
study and no experimental data has been listed.]
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