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Abstract We review the main features of the QCD phase
diagram description, at finite temperature, baryon density and
in the presence of a magnetic field, from the point of view
of effective models, whose main ingredient is chiral sym-
metry. We concentrate our attention on two of these models:
The linear sigma model with quarks and the Nambu–Jona-
Lasinio model. We show that a main ingredient to understand
the characteristics of the phase transitions is the inclusion of
plasma screening effects that capture the physics of collec-
tive, long-wave modes, and thus describe a prime property
of plasmas near transition lines, namely, long distance cor-
relations. Inclusion of plasma screening makes possible to
understand the inverse magnetic catalysis phenomenon even
without the need to consider magnetic field-dependent cou-
pling constants. Screening is also responsible for the emer-
gence of a critical end point in the phase diagram even for
small magnetic field strengths. Although versatile, the NJL
model is also a more limited approach since, being a non-
renormalizable model, a clear separation between pure vac-
uum and medium effects is not always possible. The model
cannot describe inverse magnetic catalysis unless a magnetic
field dependent coupling is included. The location of the crit-
ical end point strongly depends on the choice of the type of
interaction and on the magnetic field dependence of the cor-
responding coupling. Overall, both models provide sensible
tools to explore the properties of magnetized, strongly inter-
acting matter. However, a cross talk among them as well as a
consistent physical approach to determine the model param-
eters is much needed.

a e-mail: ayala@nucleares.unam.mx (corresponding author)

1 Introduction

The study of the different phases that strongly interacting
matter can reach when varying control parameters, such as
temperature, baryon and isospin density, etc., is nowadays
one of the most active fields at the crossroads of nuclear
and particle physics. The interest grew with the recent lattice
QCD (LQCD) discovery of the inverse magnetic catalysis
(IMC) phenomenon, whereby the critical temperature for the
chiral symmetry restoration transition decreases as a func-
tion of the strength of another of the control parameters, an
external magnetic field [1–3]. This discovery has prompeted
research on the properties of the so called magnetized QCD
phase diagram. In addition, the recent successful detection
of gravitational waves [4] from a binary neutron star merger,
has kicked off the era of multi-messenger physics to study
strongly interacting systems. The information obtained by
studying these signals can be combined with information
from heavy-ion experiments to get a clearer picture of the
properties of hadronic matter at high densities, temperatures
and in the presence of magnetic fields.

Magnetic fields contribute to the properties of a large
variety of physical systems including heavy-ion collisions
[5,6], the interior of compact astrophysical objects [7–9,11]
and even the early universe [11–13]. It has been estimated
that the magnetic field strength |eB| in peripheral heavy-
ion collisions reaches values equivalent to a few times the
pion mass squared, both at RHIC and at the LHC [14]. The
effects of such magnetic fields cannot be overlooked in a
complete description of these systems and its understanding
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contributes, at a fundamental level, to a better characteriza-
tion of the properties of QCD matter [15–23].

The QCD phase diagram consists of an idealized pic-
ture, where the transition lines correspond to the boundaries
between different phases of strongly interacting matter. Close
to the phase boundaries, the relevant quark species are the
light quarks u, d and s. A complete description, accounting
for the abundance of these species, should in principle be
given in terms of the chemical potentials associated to each
of these quarks. Nevertheless, under the requirements of beta
equilibrium and charge neutrality, these chemical potentials
are not independent from each other. Therefore, out of the
three chemical potentials only one is independent. Any one of
them can be chosen and the usual choice is the baryon chem-
ical potential μB , related to the quark chemical potential μ

by μ = μB/3.
The shape of the possible transition lines has been conjec-

tured since long ago using several general arguments. One of
them goes as follows: when nuclear matter is heated up, res-
onance hadronic states become excited. The density of states
ρ increases exponentially as a function of the resonance mass
m, namely ρ(m) ∝ exp

{
m/T H

}
, where T H � 0.19 GeV.

This density of states competes with the Boltzmann phase
space occupation factor ρB ∝ exp {−m/T }, namely

ρ(m)ρB(m) = exp
{ m

T H
− m

T

}
, (1)

such that when T > T H , the integration overm becomes sin-
gular. T H plays the role of a limiting temperature known as
the Hagedorn temperature above which the hadronic descrip-
tion breaks down [24]. Applying a similar argument, we can
also estimate the critical line at finite μB . The density of
baryon states ρ(mB) ∝ exp

{
mB/T H

}
, where mB is the

typical baryon mass (of order 1 GeV) should be balanced by
the Boltzmann factor

exp {−(mB − μB)/T } . (2)

Therefore, the line describing the relation between the limit-
ing temperature and baryon chemical potential becomes

T =
(

1 − μB

mB

)
T H . (3)

Another qualitative argument to draw the transition lines
can be provided from QCD in the large number of colors (Nc)
limit, while keeping the number of flavors (N f ) fixed [25].
When the quark chemical potential μ � ΛQCD , baryons
form a dense phase where the pressure is O(Nc). This dense
phase is still confined but chirally symmetric, and is called
the quarkyonic phase. The chiral phase transition happens in
this phase and if a critical end point (CEP) exists then the
deconfining and chiral transitions split from one another at
that point.

LQCD has been successfully applied to find the chi-
ral/deconfining transition temperature for μB = 0. The
result is that a crossover occurs at a pseudocritical temper-
ature Tc(μB = 0) � 155 MeV [26]. Unfortunately, LQCD
calculations cannot be used to determine the position of a
possible CEP, due to the severe sign problem. Neverthe-
less, recent results employing the Taylor series expansion
around μB = 0 or the extrapolation from imaginary to
real μB values, show that the CEP is not to be found for
μB/T ≤ 2 and 145 ≤ T ≤ 155 MeV [27]. A more recent
bound disfavors the existence of a CEP for μB/T ≤ 2 and
T/Tc(μB = 0) > 0.9 [28].

The statistical model [29] can be used to map out the
chemical freeze-out curve in relativistic heavy-ion collisions,
as a function of the collision energy, from fits to particle
ratios. These fits provide the temperature and baryon chem-
ical potential at chemical freeze-out, namely, when parti-
cle scattering does not change the abundance of the differ-
ent hadron species. Remarkably, this curve coincides, within
uncertainties, with the LQCD results for the transition curve
between the confined and the deconfined phases. It is difficult
to believe that this coincidence happens just by chance. It has
been argued that when the phase transition line is crossed,
multiparticle scattering of Goldstone bosons drives baryons
rapidly into equilibrium [30]. This effect may provide an
explanation for the observation that the chemical freeze-out
line reaches the phase boundary. An outstanding question is
then: how, if at all, the presence of an external magnetic field
modifies the transition lines and in particular the location of a
possible CEP? In spite of its limitations to explore the phase
diagram by and large, LQCD calculations show that for very
strong magnetic fields, IMC prevails and the phase transi-
tion becomes first order at asymptotically large values of the
magnetic field for vanishing quark chemical potential [31].
A similar behavior is obtained in the Nambu–Jona-Lasinio
(NJL) model if one includes a magnetic field dependence of
the critical temperature [32,33], an idea first put forward in
Ref. [34]. In order to answer the above question, it is then
necessary to resort to the use of theoretical tools that account
for the two main features of QCD relevant for the description
of the phase structure of QCD namely, chiral symmetry and
confinement.

In this work we review the state of the art of research that
makes use of effective models than aim to address the above
question. We pay particular attention to the Linear Sigma
Model with quarks (LSMq), also known in the literature as
the quark meson model and to the NJL model. For the former,
we show that when the meson sector is treated as dynamical,
i.e., meson fluctuations contribute to the thermo-magnetic
properties of the system, it is possible to understand IMC and
thus to extend these treatment to the description of the phase
structure of QCD in the presence of magnetic fields from the
chiral symmetry perspective. The work is organized as fol-
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lows: In Sec 2 we describe in great detail the elements that
make up the LSMq in the presence of a magnetic field. These
include the computation of the effective potential at one-loop
level both for bosons and quarks, treating all particles as full
quantum fields and thus allowing for their fluctuations. As we
show, the boson contribution needs to be supplemented by
the inclusion of the plasma screening effects encoded in the
calculation of the ring diagrams contribution to the effective
potential. In order to avoid the shift of the tree-level vacuum
position and curvature introduced by the vacuum one-loop
corrections, we also discuss the way these corrections can
be absorbed into the vacuum stabilization conditions. We
also discuss how the model parameters can be fixed invoking
physical conditions near the transition line at finite temper-
ature. The inclusion of magnetic field effects is made using
Schwinger’s proper-time formalism in the weak field limit,
as appropriate for instance to describe the conditions during
a peripheral heavy-ion collision. All along this section we
work in the strict chiral limit where pions are massless in
vacuum. Since in this limit, the thermo-magnetic corrections
to the couplings turn out to be inversely proportional to the
particle masses, their inclusion requires a special treatment
that we omit in this work but plan to discuss in a future one.
We provide a thorough analysis of the LSMq description of
IMC and of the properties of the magnetized QCD phase dia-
gram from the point of view of chiral symmetry emphasiz-
ing the crucial ingredient introduced by the plasma screening
effects. In Sec. 3 we discuss how the NJL model can be used
in the presence of a magnetic field to study the magnetized
phase diagram. We emphasize that from the perspective of
this model, a better understanding of the evolution of the CEP
requires inclusion of crucial ingredients such as confinement
, IMC and the vector-current interaction. Finally in Sec. 4 we
make concluding remarks and provide a prospective of the
kind of studies that can be carried out in the near future to
achieve a clearer picture on the subject. We point out that a
recent review on some of these aspects can be found in Ref.
[35] and a thorough review of the known aspects of IMC is
provided in Ref. [36].

2 The Linear Sigma Model with quarks

Effective models are useful proxies to help identify the main
characteristics of the QCD phase diagram. While no sin-
gle model can be used to describe the whole extent of the
phase diagram, they can be employed to explore different
regions with varying degrees of sophistication and inclusion
of effective degrees of freedom. For instance, Ref. [37] works
with the LSMq at finite temperature in the presence of strong
magnetic fields to study the quark condensate time evolution
using Langevin dynamics. Reference [38] explores the possi-
ble existence of a new CEP using a generic chiral model away

from the chiral limit and in the presence of a weak magnetic
field. Also, in Refs. [39–41] a Polyakov-quark-meson model,
is employed to map the deconfinement and chiral symmetry
restoration transitions, finding that the crossover region for
one and the other coincides within a band representing the
width of the susceptibility peak and that the width of such
band shrinks as μB increases up to the region where a CEP
at low temperature values is found. Reference [42] studies
magnetic properties of QCD matter in a thermal and dense
medium, from both the chiral and deconfinement aspects,
in an SU (3) Polyakov linear-sigma model. The authors find
that when the mean field approximation in the LSM is supple-
mented with the Polyakov loop, the model describes several
properties of magnetizes QCD as found by LQCD, in partic-
ular IMC.

Given that LQCD calculations, extended to small but
finite values of μB , find coincident transition lines for the
deconfinement and chiral symmetry restoration transitions,
it should be possible to explore the phase diagram empha-
sizing independently either the deconfinement or the chiral
aspects of the transition.

An effective model that accounts for the latter is provided
by the LSMq. The Lagrangian, including the coupling of
charged particles to an external magnetic field, is given by

L = 1

2
(∂μσ)2 + 1

2
(Dμπ)2 + a2

2
(σ 2 + π2)

−λ

4
(σ 2 + π2)2 + iψ̄γ μDμψ − gψ̄(σ + iγ5τ · π)ψ,

(4)

where q is an SU (2) isospin doublet of quarks,

π = (π1, π2, π3), (5)

is an isospin triplet and σ is an isospin singlet, with

Dμ = ∂μ + iq f,b Aμ, (6)

being the covariant derivative with qb, f being the boson or
fermion electric charge. Aμ is the vector potential corre-
sponding to an external magnetic field directed along the
ẑ axis. In the symmetric gauge it is given by

Aμ = B

2
(0,−y, x, 0). (7)

Aμ satisfies the gauge condition ∂μAμ = 0. The gauge field
couples only to quarks and to the charged pion combinations,
namely

π± = 1√
2

(π1 ± iπ2) . (8)

The neutral pion is taken as the third component of the pion
isovector, π0 = π3. The gauge field is considered as classical
and thus there are no loops involving the propagator of the
gauge field in internal lines. The squared mass parameter a2
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Fig. 1 Illustration of the
contribution of the resummation
of ring diagrams to the effective
potential

= + + ...+

and the self-coupling λ and g are taken to be positive and, for
the purpose of describing the chiral phase transition at finite
T and μB , they need to be determined from conditions close
to the phase boundary, and not only from vacuum conditions.

To allow for spontaneous symmetry breaking, we let the
σ field to develop a vacuum expectation value v

σ → σ + v. (9)

This vacuum expectation value can be identified with the
order parameter of the theory. After this shift, the Lagrangian
can be rewritten as

L = −1

2
[σ(∂μ + iq Aμ)2σ ] − 1

2

(
3λv2 − a2

)
σ 2

−1

2
[π(∂μ + iqb Aμ)2π] − 1

2

(
λv2 − a2

)
π2

+a2

2
v2 − λ

4
v4 + iψ̄γ μDμψ − gvψ̄ψ + Lb

I + L f
I ,

(10)

where Lb
I and L f

I are given by

Lb
I = −λ

4

[
(σ 2 + (π0)2)2 + 4π+π−(σ 2 + (π0)2 + π+π−)

]
,

L f
I = −gψ̄(σ + iγ5τ · π)ψ. (11)

The terms given in Eq. (11) describe the interactions among
the fields σ , π and q, after symmetry breaking. From Eq. (10)
one can see that the σ , the three pions and the quarks have
masses given, respectively, by

m2
σ = 3λv2 − a2,

m2
π = λv2 − a2,

m f = gv. (12)

A common, albeit limited, approximation is to work in
the large number of colors case, where mesons are only
included at tree-level, while fermions are considered as the
true quantum particles in the system [35]. In this approx-
imation, fermion fluctuations experience the effects of a
mean field provided by mesons. Part of the reason to con-
sider this approximation is that, according to Eq. (12), if
mesons become true quantum fields, their masses are subject
to change as the order parameter v changes from its value
v0 = √

a2/λ given by the minimum of the tree-level poten-
tial, to its value v0 = 0 at the restored phase when including

thermal effects. During this transit, the meson square masses
can become zero or even negative.

This apparent drawback is in fact the key to properly
account for meson fluctuations in a consistent manner. It is
well known that when in a medium boson masses are small
and their thermal corrections of the same order as the original
masses, the latter need to be resummed. The naive pertur-
bative expansion breaks down and the next to the one-loop
contribution to thermodynamical quantities, in the limit when
the number of bosons is large [43], is the correction intro-
duced by the ring diagrams. The name stems from the kind of
Feynman diagrams that are resummed. These are illustrated
in Fig.1. Implementing the resummation program is equiva-
lent to account for the plasma screening effects, whereby the
coherent effect of long wave-length fluctuations prevent the
appearance of infrared divergences. To illustrate the effect,
consider the effective potential, which represents the quantity
whose negative, upon integration over the system’s volume
and exponentiation, gives rise to the partition function. For a
single boson species, the expressions at finite temperature T
for the one-loop effective potential and for the ring diagram
contribution are given by [44,45]

V (1)
b = T

2

∑

n

∫
d3k

(2π)3 ln
[
Δb(iωn, k)

]−1
, (13)

V (ring)
b = T

2

∑

n

∫
d3k

(2π)3 ln
[
1 + Πb(iωn,k)Δb(iωn, k)

]
,

(14)

respectively, where

Δb(iωn,k) = 1

ω2
n + k2 + m2

b

, (15)

is the Matsubara propagator and Πb the boson self-energy,
for the time being not including magnetic field effects. Also,
ωn = 2nπT are boson Matsubara frequencies. Notice that
Eq. (14) can also be written as

V (ring)
b = T

2

∑

n

∫
d3k

(2π)3 ln
[(

Δ−1
b (iωn,k) + Πb(iωn,k)

)

× (Δb(iωn,k))]
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= T

2

∑

n

∫
d3k

(2π)3 ln [Δb(iωn,k)]

+T

2

∑

n

∫
d3k

(2π)3 ln
[
Δ−1

b (iωn,k) + Πb(iωn,k)
]
.

(16)

Thus, by adding Eqs. (13) and (16), we obtain

V (1)
b + V (ring)

b = T

2

∑

n

∫
d3k

(2π)3 ln
[
Δ−1

b (iωn,k)

+ Πb(iωn,k)] , (17)

which reveals that the boson mass squared m2
b is effectively

replaced by the combination m2
b + Πb. Therefore, although

the tree-level boson squared mass can become zero or even
negative, the contribution to the mass coming from the boson
self-energy makes the thermal square mass to be positive
definite. In practice, in order to obtain analytical results,
the correction introduced by the ring diagrams is computed
in the high-temperature limit. The effect is to replace odd
powers of the boson mass mb, that appear in the large tem-
perature expansion of the effective potential at one-loop, by√
m2

b + Πb [46].

2.1 One-loop boson contribution

We now turn to finding the boson contribution to the effective
potential for the LSMq in the presence of a magnetic field
[47]. The Matsubara propagator for a boson with electric
charge qb can now be written in terms of Schwinger’s proper
time representation as

Δb(iωn,k; |qbB|) =
∫ ∞

0

ds

cosh |qbB|s
× exp

{
−s

(
ω2
n + k2

3 + k2⊥
tanh |qbB|s

|qbB|s + m2
b

)}
. (18)

Therefore, the one-loop contribution to the effective potential
Eq. (13) becomes in the presence of the magnetic field

V (1;B)
b = T

2

∑

n

∫
d3k

(2π)3 ln [Δb(iωn,k; |qbB|)]−1 . (19)

Using that

ln [Δb(iωn,k; |qbB|)]−1

=
∫

dm2
b

(
d

dm2
b

ln [Δb(iωn,k; |qbB|)]−1

)

=
∫

dm2
b Δb(iωn,k; |qbB|), (20)

we obtain

V (1;B)
b =T

2

∑

n

∫
dm2

b

∫
d3k

(2π)3

∫ ∞

0

ds

cosh |qbB|s

× exp

{
−s

(
ω2
n + k2

3 + k2⊥
tanh |qbB|s

|qbB|s + m2
b

)}
.

(21)

Performing the integration over k⊥, introducing the sum over
Landau levels, integrating over s, performing the sum over
Matsubara frequencies and the integration over m2

b, in that
order, we get

V (1;B)
b = |qbB|

4π

∑

l

∫ ∞
−∞

dk3

2π

[
ωl + 2T ln

(
1 − e−ωl/T

)]
,

(22)

where

ωl =
√
k2

3 + m2
b + (2l + 1)|qbB|. (23)

Notice that Eq. (22) splits into vacuum and matter contribu-
tions, namely

V (1;B vac)
b = |qbB|

4π

∑

l

∫ ∞

−∞
dk3

2π
ωl , (24)

and

V (1;B matt)
b = 2|qbB|

4π
T
∑

l

∫ ∞

−∞
dk3

2π
ln
(

1 − e−ωl/T
)

.

(25)

We now specialize to implementing the calculation having
in mind the conditions after a relativistic heavy-ion collision.
Recall that in this environment, although the magnetic field
intensity can be initially very large, it decreases fast such
that, for the time the plasma reaches thermal equilibrium, it
becomes weak. Under such conditions, it seems plausible to
compute the effective potential, in the weak field limit. For
this purpose let us write Eq. (22) as

V (1;B vac)
b = Sb

2
, (26)

where

Sb ≡
∑

l

h

4π
fl

fl ≡
∫ ∞

−∞
dk3

2π
ωl , (27)

with h = 2|qbB|. The sum can be performed resorting to the
Euler-Mclaurin formula, writing

h

[
f0
2

+ f1 + f2 + . . . + fN
2

]
=
∫ Nh

0
dx f (x)

+ B2

2! h
2( f ′

N − f ′
0), (28)
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where B2 = 1/6 is the second Bernoulli number and we have
kept terms only up to O(qbB)2. The limit N → ∞ is to be
understood. Notice that on the right-hand side of Eq. (28) we
made the replacement 2|qbB|(l + 1/2) → x , which means
that, if we think of the series of fl as being represented by a
histogram, we are effectively performing the sum evaluating
the function at the middle point of each bar in the histogram.
This means that on the left-hand side of Eq. (28), the first and
last terms in the sum are weighed with h/2. For small |qbB|,
x can be thought of as being continuous, and the derivative
is taken with respect to this variable. The meaning of x can
in turn be made more appealing by writing

x = k2⊥,

dx = dk2⊥ = 2k⊥dk⊥, (29)

therefore
∫ Nh

0
dx f (x) → 2(2π)

∫
d3k

(2π)3

√
k2 + m2

b, (30)

and

f ′ ≡ d f

dk2⊥
= 1

2

∫ ∞

−∞
dk3

2π

1
√
k2 + m2

b

( f ′∞ − f ′
0) = −1

2

∫ ∞

−∞
dk3

2π

1
√
k2

3 + m2
b

. (31)

Hence, bringing all together we get

V (1;B vac)
b = 1

2

∫
d3k

(2π)3

√
k2 + m2

b

−|qbB|2
48π

∫ ∞

−∞
dk3

2π

1
√
k2

3 + m2
b

. (32)

In order to find an explicit expression, we use dimensional
regularization, introducing the ultraviolet renormalization
scale μ̃ in the MS scheme, to get

V (1;B vac)
b = m4

b

64π2

[

ln

(
m2

b

μ̃2

)

− 1

ε
− 3

2

]

+|qbB|2
96π2

[

ln

(
m2

b

μ̃2

)

− 1

ε

]

. (33)

Notice that the divergent piece in the first line of Eq. (33)
is harmless as it is T and B-independent and can be safely
ignored. On the other hand, the divergent term in the sec-
ond line of Eq. (33) is potentially dangerous since it is B-
dependent. However, recall that the vacuum mass divergence
is cured precisely by the inclusion of a mass counterterm
δm2 ∼ m2/ε. Therefore, the addition of this counterterm in
the second line of Eq. (33) effectively induces the substitution

ln

[
m2

b

μ̃2

]

→ ln

[
m2

b

μ̃2

(
1 + 1

ε

)]

∼ ln

[
m2

b

μ̃2

]

+ 1

ε
. (34)

Therefore, the renormalized vacuum contribution is written
as

V (1;B ren)
b = m4

b

64π2

[

ln

(
m2

b

μ̃2

)

− 3

2

]

+|qbB|2
96π2

[

ln

(
m2

b

μ̃2

)]

. (35)

We now look at the matter contribution to the one-loop
effective potential, Eq. (25), which we write as

V (1;B matt)
b = T Smatt

b , (36)

where

Smatt
b =

∑

l

h

4π
gl ,

gl ≡
∫ ∞

−∞
dk3

2π
ln
(

1 − e−ωl/T
)

. (37)

Once again, working in the weak field limit we can write

h
[g0

2
+ g1 + g2 + . . . + gN

2

]
=
∫ Nh

0
dxg(x)

+ B2

2! h
2(g′

N − g′
0). (38)

In the limit N → ∞
∫ Nh

0
dx g(x) → 2(2π)

∫
d3k

(2π)3 ln

(

1 − e
−
√
k2+m2

b/T
)

,

(39)

and

g′ ≡ dg

dk2⊥
= 1

2T

∫ ∞
−∞

dk3

2π

1
√
k2 + m2

b

⎛

⎝ 1

e

√
k2+m2

b/T − 1

⎞

⎠ ,

(g′∞ − g′
0) = − 1

2T

∫ ∞
−∞

dk3

2π

1
√
k2

3 + m2
b

⎛

⎝ 1

e

√
k2

3+m2
b/T − 1

⎞

⎠ .

(40)

Thus

V (1;B matt)
b = T

∫
d3k

(2π)3 ln

(
1 − e

−
√
k2+m2

b/T
)

−|qbB|2
24π

∫ ∞

−∞
dk3

2π

1
√
k2

3 + m2
b

×
⎛

⎝ 1

e

√
k2

3+m2
b/T − 1

⎞

⎠ . (41)
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We now proceed to provide an approximate expression for
Eq. (41) in the large T -limit. The first term is given by [43]

T
∫

d3k

(2π)3 ln

(
1 − e

−
√
k2+m2

b/T
)

�

−T 4π2

90
+ T 2m2

b

24
− Tm3

b

12π

− m4
b

64π2

[
ln

(
m2

b

(4πT )2

)

+ 2γE − 3

2

]
. (42)

For the second term we get [45]

−|qbB|2
24π

∫ ∞

−∞
dk3

2π

1
√
k2

3 + m2
b

⎛

⎝ 1

e

√
k2

3+m2
b/T − 1

⎞

⎠

� −|qbB|2
24π2

[
Tπ

2mb
+ 1

4
ln

(
m2

b

(4πT )2

)

+ 1

2
γE

− 1

4
ζ(3)

(
m2

b

(2πT )2

)

+ 3

16
ζ(5)

(
m4

b

(2πT )4

)]

, (43)

where γE and ζ are the Euler-Mascheroni constant and Rie-
mann Zeta function, respectively. Notice that the arguments
of the logarithms in Eqs. (35), (42) and (35) are potentially
dangerous when m2

b becomes zero or even negative. How-
ever, when adding up these equations to express the one-loop
boson contribution to the effective potential, these terms com-
bine in such a way that the argument of the logarithms does
not contain m2

b anymore. We thus obtain

V (1;B ren)
b + V (1;B matt)

b = −T 4π2

90
+ T 2m2

b
24

− Tm3
b

12π

− m4
b

64π2

[

ln

(
μ̃2

(4πT )2

)

+ 2γE

]

−|qbB|2
24π2

[
Tπ

2mb
+ 1

4
ln

(
μ̃2

(4πT )2

)

+1

2
γE − 1

4
ζ(3)

(
m2
b

(2πT )2

)

+ 3

16
ζ(5)

(
m4
b

(2πT )4

)]

. (44)

Notice however that Eq. (44) contains odd powers of

mb =
√
m2

b. When the boson mass squared is negative, these
terms become imaginary. This instability is non-physical and,
as we proceed to show, it can be cured by considering the
contribution from the ring diagrams.

2.2 Ring contribution

Recall that from Eq. (16), the ring contribution to the effective
potential can be written as

V (ring)
b = T

2

∑

n

∫
d3k

(2π)3

(
ln
[
Δ−1

b (iωn,k) + Πb(iωn,k)
]

− ln
[
Δ−1

b (iωn,k)
])

. (45)

At high temperature, the leading ring contribution comes
from the n = 0 Matsubara mode, so we write

V (ring)
b = T

2

∫
d3k

(2π)3

(
ln
[
Δ−1

b (iω0,k) + Πb

]

− ln
[
Δ−1

b (iω0,k)
])

, (46)

where we have also approximated Πb by a momentum inde-
pendent quantity. This choice will be justified later on when
we discuss the computation of the self-energy. Equation (46)
contains two terms. The first one is obtained from the second
by the replacement m2

b → m2
b + Πb. Therefore we concen-

trate on the computation of the second term

T

2

∫
d3k

(2π)3 ln
[
Δ−1

b (iω0,k)
]

= T

2

∫
dm2

b

∫
d3k

(2π)3

d

dm2
b

ln
[
Δ−1

b (iω0,k)
]

= T

2

∫
dm2

b

∫
d3k

(2π)3 Δb(iω0,k)

= T

2

∫
dm2

b

∫
d3k

(2π)3

×
∫ ∞

0

ds

cosh |qbB|s e
−s
(
k2

3+k2⊥
tanh |qb B|s

|qb B|s +m2
b

)

. (47)

Performing the integration over k⊥ we obtain

T

2

∫
d3k

(2π)3 ln
[
Δ−1

b (iω0,k)
]

= T

( |qbB|
8π

)

∫
dm2

b

∫ ∞

−∞
dk3

2π

∫ ∞

0

ds

sinh |qbB|s e
−s
(
k2

3+m2
b

)
. (48)

Introducing the series representation

1

sinh(x)
= 2

∞∑

l=0

e−(2l+1)x , (49)

we get

T

2

∫
d3k

(2π)3 ln
[
Δ−1

b (iω0,k)
]

= T

( |qbB|
4π

)

∫
dm2

b

∫ ∞

−∞
dk3

2π

∞∑

l=0

∫ ∞

0
ds e−s

(
k2

3+m2
b+(2l+1)|qbB|). (50)
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Carrying out the integrations over s and k3, we have

T

2

∫
d3k

(2π)3 ln
[
Δ−1

b (iω0,k)
]

= T

( |qbB|
8π

) ∞∑

l=0
∫

dm2
b√

m2
b + (2l + 1)|qbB|

= T

(
2|qbB|

8π

) ∞∑

l=0

√
m2

b + (2l + 1)|qbB|. (51)

For the weak field case, we can once again use the Euler-
Maclaurin formula to write

T

2

∫
d3k

(2π)3 ln
[
Δ−1

b (iω0,k)
]

=
(

T

8π

){∫ Λ2

0
dx
√
m2

b + x − |qbB|2
6mb

}

=
(

T

8π

){
2

3

(
m2

b + Λ2
)3/2 − 2

3
m2

b − |qbB|2
6mb

}

�
(

T

12π

){
Λ3 − m3

b − |qbB|2
4mb

}
, (52)

where, since the integral on the right-hand side diverges, the
upper limit of integration has been set as the large but finite
quantity Λ2. The dependence of the result on Λ will drop out
wen including the Πb-dependent term in Eq. (45). Using a
similar procedure to treat the first term of Eq. (46), we obtain

V (ring)
b =

(
T

12π

){
m3

b − (m2
b + Πb)

3/2

+ |qbB|2
4mb

− |qbB|2
4(m2

b + Πb)1/2

}

, (53)

where, as promised, the dependence on Λ has dropped out.
Therefore, adding this contribution to Eq. (44), we get

V (e f f )
b ≡ V (1;B ren)

b + V (1;B matt)
b + V (ring)

b =

−T 4π2

90
+ T 2m2

b

24
− T (m2

b + Πb)
3/2

12π

− m4
b

64π2

[
ln

(
μ̃2

(4πT )2

)
+ 2γE

]

−|qbB|2
24π2

[
Tπ

2(m2
b + Πb)1/2

+ 1

4
ln

(
μ̃2

(4πT )2

)

+ 1

2
γE − 1

4
ζ(3)

(
m2

b

(2πT )2

)

+ 3

16
ζ(5)

(
m4

b

(2πT )4

)]

. (54)

We thus confirm that the inclusion of the ring diagrams
produces an effective potential which is free of infrared insta-
bilities. In order to use this expression to study the phase dia-

gram, it is necessary to compute the boson self-energy Πb.
Before we proceed to this calculation, we first compute the
contribution from fermions to the effective potential.

2.3 One-loop fermion contribution

We start from the expression for the one-loop effective poten-
tial for one fermion species. Working first in Minkowsky
space, this expression is given by

V (1;B)
f = i ln Det(i S−1

f )

= iTr ln(i S−1
f )

= iTr ln( /Π − m f ), (55)

where S f is the fermion propagator in the presence of a mag-
netic field, Πμ = pμ − q f Aμ is the kinematical momentum
and q f , m f are the fermion electric charge and mass, respec-
tively. In order to find a working expression, notice that

Det( /Π + m f )Det( /Π − m f ) = Det
[
( /Π + m f )( /Π − m f )

]

= Det
[

/Π
2 − m2

f

]
, (56)

then

ln Det
[

/Π2 − m2
f

]
= ln Det( /Π + m f ) + ln Det( /Π − m f ).

(57)

Also, since in four space-time dimensions

Det( /Π + m f ) = Det
[
γ 2

5 ( /Π + m f )
]

= Det
[
γ5(− /Π + m f )γ5

]

= Det( /Π − m f ), (58)

we have

ln Det( /Π + m f ) + ln Det( /Π − m f ) = 2 ln Det( /Π − m f ).

(59)

Therefore, using Eq. (57), we have

ln Det( /Π − m f ) = 1

2
ln Det( /Π

2 − m2
f ), (60)

and all in all, we get

V (1;B)
f = i

2
Tr ln( /Π

2 − m2
f ). (61)

Recall that

/Π
2 = Π2 − q f BΣ3, (62)

where Σ3 is the spin operator along the ẑ-axis. We thus
see that after accounting for the trace, the expression for
the fermion contribution to the one-loop effective potential
is equivalent to minus the contribution from four scalars,
two of them carrying a label representing the spin projec-
tion parallel and the other two antiparallel to the magnetic
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field. The spin projection can be more easily implemented
introducing a sum over an index σ that takes on the val-
ues ±1. Since both components are involved, it is enough
to write q f BΣ3 → |q f B|σ . Therefore, the expression for
the fermion contribution to the one-loop effective potential
at finite temperature is written as

V (1;B)
f =−2

∑

σ=±1

T

2

∑

n

∫
dm2

f

∫
d3k

(2π)3

∫ ∞

0

ds

cosh |qbB|s

×e
−s
[
(ω̃n+iμ)2+k2

3+k2⊥
tanh |qb B|s

|qb B|s +m2
f +σ |q f B|

]

, (63)

where ω̃n = (2n + 1)πT is a fermion Matsubara frequency
and μ is the quark chemical potential. The factor of 2 and the
sum over σ take care of the four fermion degrees of freedom.

Performing the integration over k⊥, introducing the sum
over Landau levels, integrating over s, performing the sum
over Matsubara frequencies and the integration over m2

f , in
that order, we get

V (1;B)
f = −2|q f B|

4π

∑

l,σ

∫ ∞

−∞
dk3

2π
[ωl

+T ln
(

1 + e−(ωl−μ)/T
)

+ T ln
(

1 + e−(ωl+μ)/T
)]

, (64)

where

ωl =
√
k2

3 + m2
f + (2l + 1 + σ)|q f B|. (65)

Once again in Eq. (65) we distinguish two kinds of terms,
vacuum and matter contributions, namely

V (1;B vac)
f = −2|q f B|

4π

∑

l,σ

∫ ∞

−∞
dk3

2π
ωl , (66)

and

V (1;B matt)
f = −2|q f B|

4π
T
∑

l,σ

∫ ∞

−∞
dk3

2π

×
[
ln
(

1 + e−(ωl−μ)/T
)

+ ln
(

1 + e−(ωl+μ)/T
)]

. (67)

We now proceed to compute each of these contributions
separately. We start with the vacuum contribution. Writing
the sum over σ explicitly, we get

V (1;B vac)
f =−2|q f B|

4π

∞∑

l=0

∫ ∞

−∞
dk3

2π

×
[√

k2
3 + m2

f + 2(l + 1)|q f B|
+
√
k2

3 + m2
f + 2l|q f B|

]
. (68)

We now separate the term with l = 0 writing

V (1;B vac)
f = −2|q f B|

4π

∫ ∞

−∞
dk3

2π

[√
k2

3 + m2
f

+ 2
∞∑

l=1

√
k2

3 + m2
f + 2l|q f B|

]

. (69)

Let us first compute the term with the sum. Define

S f ≡
∞∑

l=1

h

4π
fl

fl ≡ 2
∫ ∞

−∞
dk3

2π

√
k2

3 + m2
f + 2l|q f B|, (70)

where h = 2|q f B|. Notice that, were we to represent the
series of fl by a histogram, the function would then be eval-
uated at the edges of each bar. Thus, the expression for the
Euler-Maclaurin formula to use is

h

[
f1 + f2 + . . . + fN

2

]
=
∫ Nh

0
dx f (x) − h

f (0)

2

+ B2

2! h
2( f ′

N − f ′
0), (71)

where again, B2 = 1/6 and we have kept terms only up to
O(q f B)2. Notice that we have maintained the last term on
the left-hand side as fN/2 since in the limit when N →
∞ this does not make a difference and the divergence is
anyway taken care of by using dimensional regularization
for the expression on the right-hand side. Also, in Eq. (71),
the contribution from the term − f (0)/2 cancels the first term
on the right-hand side of Eq. (69).

We now make the change of variable in Eq. (29) to write
∫ Nh

0
dx f (x) → 2(4π)

∫
d3k

(2π)3

√
k2 + m2

f (72)

and

f ′ ≡ d f

dk2⊥
=
∫ ∞

−∞
dk3

2π

1
√
k2 + m2

f

( f ′∞ − f ′
0) = −

∫ ∞

−∞
dk3

2π

1
√
k2

3 + m2
f

. (73)

Writing these ingredients all together, we have

V (1;B vac)
f = −2

∫
d3k

(2π)3

√
k2 + m2

f

−|q f B|2
12π

∫ ∞

−∞
dk3

2π

1
√
k2

3 + m2
f

. (74)

Therefore, working in the MS scheme and after accounting
for the fermion mass renormalization, we get

V (1;B ren)
f = m4

f

16π2

[

ln

(
μ̃2

m2
f

)

+ 3

2

]
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+|q f B|2
24π2

[

ln

(
μ̃2

m2
f

)]

. (75)

We now turn to the calculation of the matter contribution,
Eq. (67), which, after accounting for the sum over σ and
separating the term of the sum with l = 0 can be written as

V (1;B matt)
f = −2|q f B|

4π
T
∫ ∞

−∞
dk3

2π

×
{ [

ln

(
1 + e

−
(√

k2
3+m2

f −μ
)
/T
)

+ ln

(
1 + e

−
(√

k2
3+m2

f +μ
)
/T
)]

+
∞∑

l=1

[
ln

(
1 + e

−
(√

k2
3+m2

f +2l|q f B|−μ
)
/T
)

+ ln

(
1 + e

−
(√

k2
3+m2

f +2l|q f B|+μ
)
/T
)]}

.

(76)

In order to employ the Euler-Maclaurin formula up to
O(q f B)2, we write

h [g1 + . . . + gN ] =
∫ Nh

0
dxg(x) + h

g(Nh) − g(0)

2

+ B2

2! h
2(g′

N − g′
0), (77)

and identify

gl = 2
∫ ∞

−∞
dk3

2π

[
ln

(
1 + e

−
(√

k2
3+m2

f +2l|q f B|−μ
)
/T
)

+ ln

(
1 + e

−
(√

k2
3+m2

f +2l|q f B|+μ
)
/T
)]

, (78)

with h = 2|q f B|. Notice that

g∞ = 0

g0 = 2
∫ ∞

−∞
dk3

2π

[
ln

(
1 + e

−
(√

k2
3+m2

f −μ
)
/T
)

+ ln

(
1 + e

−
(√

k2
3+m2

f +μ
)
/T
)]

, (79)

and we obtain

V (1;B matt)
f = −2 T

∫
d3k

(2π)3

[
ln

(
1 + e

−
(√

k2+m2
f −μ

)
/T
)

+ ln

(
1 + e

−
(√

k2+m2
f +μ

)
/T
)]

−|q f B|2
12π

∫ ∞

−∞
dk3

2π

1
√
k2

3 + m2
f

×
⎡

⎣ 1

e

(√
k2

3+m2
f −μ

)
/T + 1

+ 1

e

(√
k2

3+m2
f +μ

)
/T + 1

⎤

⎦ . (80)

We now look for a large-T approximation for Eq. (80). Let
us start working the second term. We write

x = k3

T

y = m f

T

z = μ

T
, (81)

and use that

1
√
x2 + y2

{
1

e
√

x2+y2−z
+ 1

e
√

x2+y2+z

}

= 1
√
x2 + y2

− 2
∞∑

n=−∞

1

[(2n + 1) π + i z]2 + x2 + y2

= 1
√
x2 + y2

−2
∞∑

n=−∞

1
(
[(2n + 1) π + i z]2 + y2

) (
1 + x2

[(2n+1)π+i z]2+y2

) .

(82)

Thus, the integral in the second term of Eq. (80) can be
expressed in terms of two terms given by

I1 =
∫ ∞

0

xεdx
√
x2 + y2

I2 = −2
∞∑

n=−∞

∫ ∞
0

xεdx
(
[(2n + 1) π + i z]2 + y2

) (
1 + x2

[(2n+1)π+i z]2+y2

) ,

(83)

with

∫ ∞

−∞
dk3

2π

1
√
k2

3 + m2
f

⎡

⎣ 1

e

(√
k2

3+m2
f −μ

)
/T

+ 1

e

(√
k2

3+m2
f +μ

)
/T

⎤

⎦ = 1

π
(I1 + I2). (84)

Notice that, in anticipation to treating the divergence of each
term, we have introduced the regulating factor xε . As we
proceed to show, this divergence cancels when adding both
terms. First, notice that

I1 = y−ε

2
√

π
Γ

[
1

2
− ε

2

]

= 1

ε
− γE

2
− 1

2
ψ0

(
1

2

)
− ln (y). (85)

For the computation of I2, we define

ω2
n = [(2n + 1)π + i z]2 , (86)
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and introduce the change of variable

u = x
√

ω2
n + y2

, (87)

to write

I2 = −2
∞∑

n=−∞

1
(
ω2 + y2

) 1+ε
2

∫ ∞

0
du

uε

(1 + u2)
. (88)

The integral can be expressed as
∫ ∞

0
du

uε

(1 + u2)
= π

2
sec

(πε

2

)
= π

2
, (89)

where we used that for ε → 0, the series of sec(ε) starts at
O(ε)2 and thus its ε dependence can be discarded. Therefore

I2 = −π

∞∑

n=−∞

1
(
ω2
n + y2

) 1+ε
2

= −π
∑

s=±1

∞∑

n=0

1
(
[(2n + 1) π + isz]2 + y2

) 1+ε
2

. (90)

To look for an expression to O(y2), we expand the denomi-
nator of Eq. (90) to obtain

1
(
[(2n + 1) π + isz]2 + y2

) 1+ε
2

= 1

[(2n + 1) π + isz]
1+ε

2

− (1 + ε)

2

y2

[(2n + 1) π + isz]3+ε
, (91)

therefore

I2 = −π
∑

s=±1

{
1

(2π)1+ε
ζ

(
1 + ε,

1

2
+ isz

2π

)

− (1 + ε)

2

y2

(2π)3+ε
ζ

(
3 + ε,

1

2
+ isz

2π

)}
, (92)

where ζ is the Hurwitz Zeta function. Expanding for small ε

we get

I2 = −1

ε
+ 2 ln(2π) − ψ0

(
1

2
+ i z

2π

)
− ψ0

(
1

2
− i z

2π

)

+ y2

16π2

[
ζ

(
3,

1

2
+ i z

2π

)
+ ζ

(
3,

1

2
− i z

2π

)]
, (93)

where ψ0 is the digamma function. Adding up Eqs. (85)
and (93) we obtain

−|q f B|2
12π

∫ ∞

−∞
dk3

2π

1
√
k2

3 + m2
f

×
⎡

⎣ 1

e

(√
k2

3+m2
f −μ

)
/T

+ 1

e

(√
k2

3+m2
f +μ

)
/T

⎤

⎦

= −|q f B|2
12π2

{
2 ln(2π) − γE − 1

2
ψ0

(
1

2

)

−1

2
ψ0

(
1

2
+ iμ

2πT

)
− 1

2
ψ0

(
1

2
− iμ

2πT

)

+1

2
ln

(
4π2T 2

m2
f

)

+ m2
f

16π2T 2

[
ζ

(
3,

1

2
+ iμ

2πT

)

+ ζ

(
3,

1

2
− iμ

2πT

)]}
. (94)

To evaluate the first term in Eq. (80) in the large-T limit, we
carry out a similar procedure. We first notice that in order to
obtain an expansion of the integral up to O(m4

f ), we can take
the second derivative of

J (m f /T ) ≡ −2T
∫

d3k

(2π)3

[
ln

(
1 + e

−
(√

k2+m2
f −μ

)
/T
)

+ ln

(
1 + e

−
(√

k2+m2
f +μ

)
/T
)]

, (95)

with respect to m2
f and look for an approximation for

d2 J/(dm2
f )

2 up to the desired order. This approach renders

analytical results provided J (0) and d J/dm2
f (0) can be com-

puted analytically. In such case, their values can be used as
the boundary conditions to find the solution. It is straightfor-
ward to show that indeed this is the case and that

J (0) = T 4

π2

[
Li4

(
−e− μ

T

)
+ Li4

(
−e

μ
T

)]
,

d J

dm2
f

(0) = − T 2

2π2

[
Li2

(
−e− μ

T

)
+ Li2

(
−e

μ
T

)]
, (96)

where Lin is the polylogarithmic function of order n. The
approximation of d2 J/(dm2

f )
2 up to O(m2

f ) is found using
the same procedure employed to find Eq. (94) and the result
is

d2 J

(dm2
f )

2
= 1

8π2

[
ln

(
m2

f

T 2

)

+ ψ0
(

3

2

)

−ψ0
(

1

2
+ iμ

2πT

)
− ψ0

(
1

2
− iμ

2πT

)

−2 (1 + ln(2π)) + γE

]
. (97)

We now integrate Eq. (97) considering it as a differential
equation and implementing Eqs. (96) as the boundary condi-
tions for the first derivative and the function itself. Integrating
Eq. (97) once, we obtain

J (m2
f ) = m4

f

16π2

[
ln

(
m2

f

T 2

)

− 3

2
+ ψ0

(
3

2

)

−ψ0
(

1

2
+ iμ

2πT

)
− ψ0

(
1

2
− iμ

2πT

)

−2 (1 + ln(2π)) + γE

]
+ C1m

2
f + C2. (98)

123



234 Page 12 of 25 Eur. Phys. J. A (2021) 57 :234

Using the set of Eqs. (97), we infer that

C1 = − T 2

2π2

[
Li2

(
−e− μ

T

)
+ Li2

(
−e

μ
T

)]
,

C2 = T 4

π2

[
Li4

(
−e− μ

T

)
+ Li4

(
−e

μ
T

)]
. (99)

Therefore, writing Eqs. (75), (94), and (98) together, the con-
tribution from one fermion species to the one-loop effective
potential is

V (1;B ren)
f + V (1;B matt)

f

= m4
f

16π2

[
ln
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μ̃2

m2
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)
+ 3

2
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(100)

Equation (100) possesses the remarkable property that poten-
tially offending logarithmic terms, as the fermion mass van-
ishes, combine to trade the mass dependence by a temper-
ature dependence. Thus, bringing together these terms and
simplifying, we obtain

V (e f f )
f ≡ V (1;B ren)

f + V (1;B matt)
f
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(101)

Before writing together the fermion and boson contributions
to the effective potential, it is necessary to discuss the condi-
tions that need to be implemented to avoid that the inclusion
of the one-loop corrections distort the vacuum of the theory
from where the particle masses are defined. These are the
vacuum stability conditions.

2.4 Vacuum stability

In order to complete the description of the effective poten-
tial, it is important to notice that the vacuum, one-loop B-
independent corrections, distort the original tree-level poten-
tial. This distortion manifest itself in a shift of the minimum
and its curvature in the σ -direction. When ignored, this dis-
tortion leads to changes in what we identify as the vacuum
σ , pion and fermion masses. However it is clear that our
description of the vacuum at any order in perturbation the-
ory should be consistent with the measured vacuum particle
masses. This means that the vacuum distortion needs to be
compensated in such a way that its properties, directly related
to particle masses, keep being the same as if these properties
were defined from the tree-level potential. This procedure
is dubbed vacuum stabilization [48]. When vacuum stability
is not considered, the description of the nature of the phase
transition can lead to drastically different results such as the
possible splitting of the deconfinement and chiral transitions
in an external magnetic field. This scenario has been studied
in Ref. [49] within the LSMq coupled to a Polyakov loop.
The authors found that the vacuum correction from quarks on
the phase structure was dramatic. When ignoring this correc-
tion, the confinement and chiral phase transition lines coin-
cide. However, inclusion of the correction led to a splitting
of the confinement and chiral transition lines, and both chi-
ral and deconfining critical temperatures became increasing
functions of the magnetic field. The vacuum contribution
from the quarks drastically affected the chiral sector as well.
Since these conclusions were drawn from a model that does
not reproduce the behavior of the critical temperature as a
function of the magnetic field found by lattice QCD calcula-
tions, they are nowadays regarded as incorrect. Furthermore,
LQCD results shows that no significant difference between
chiral and deconfinement transition temperatures exists up to
fields as intense as 3.25 GeV2 [31].
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Fig. 2 Comparison between the tree-level and stabilized vacua. Notice
that inclusion of the vacuum stability conditions produces that both
terms coincide around the minimum

In order to stabilize the vacuum at one-loop level, we look
at the tree-level plus one-loop B-independent fermion and
boson vacua. For the latter we only include the potential in
the direction of the σ -field. These contributions are given by

V (vac) ≡ V (tree) + V (1)
σ + V (1)

f

= −a2

2
v2 + λ

4
v4 − δa2

2
v2 + δλ

4
v4

+ m4
σ

64π2

[
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μ̃2

)
− 3

2

]

−NcN f
m4

f

16π2

[

ln

(
m2

f

μ̃2

)

− 3

2

]

, (102)

where we have accounted for the contribution of NcN f = 6
fermions, corresponding to Nc colors and N f flavors and
have introduced the counterterms δa2 and δλ. These coun-
terterms need to be fixed from the conditions to keep the
vacuum and its curvature at their tree-value levels, namely

1

v

dV (vac)

dv

∣∣∣
v=v0

= 0,

d2V (vac)

dv2

∣∣∣
v=v0

= 2a2, (103)

where v0 = √
a2/λ is the value of v at the tree-level mini-

mum. The solution for the counterterms δa2 and δλ are given
by

δa2 = − 3a2

16π2

[
λ ln

(
2a2

μ̃2

)
− 8
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]
,
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[
8g4 ln

(
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)
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(
2a2

μ̃2

)]
. (104)

Figure 2 shows the three level potential V (tree) compared to
the vacuum potential V (vac) after implementing the stabiliza-
tion procedure. Notice that both coincide near the minimum.

Writing all the ingredients together, the effective poten-
tial up to the ring diagrams contribution and after vacuum
stabilization can be written as

V (e f f ) = −a2
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(105)

where the magnetic field dependent contribution from the
charged bosons has been singled out since these are the only
bosons affected by the magnetic field. In addition, we point
out that, after vacuum stabilization, the position and curvature
of the minimum in Eq. (105) becomes independent of the
ultraviolet renormalization scale μ̃ [50]. Therefore, as long
as the latter is larger than the largest of the other energy scales,
one can use any value for μ̃.
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Fig. 3 Feynman diagrams
contributing to the one-loop
boson self-energies. Each
column represents the diagrams
contributing to the self-energy
of a given boson: a the sigma, b
the the neutral pion and c the
charged pions. The continuous
lines represent the sigma, the
double lines the neutral pion, the
dashed lines the charged pions
and the continuous lines with
arrows the quarks u and d

(a) (b) (c)

2.5 Boson self-energies

The diagrams representing the bosons self-energies are
depicted in Fig. 3. Each boson self-energy is made out of two
distinct kinds of terms: one corresponds to the sum of boson
loops and the other one to a fermion anti-fermion loop. The
boson loops contribution to each boson self energy is given
by

Πb
σ = λ

4

[
12 I (mσ ) + 4 I (mπ0) + 8 I (mπ±)

]
,

Πb
π± = λ

4

[
4 I (mσ ) + 4 I (mπ0) + 16 I (mπ±)

]
,

Πb
π0 = λ

4

[
4 I (mσ ) + 12 I (mπ0) + 8 I (mπ±)

]
, (106)

where the function I (mb) is given by

I (mb) = T
∑

n

∫
d3k

(2π)3 Δb(iωn,k; |qbB|), (107)

with Δb given by Eq. (19). The factors on the right-hand side
of Eq. (106) correspond to the combinatorial factors obtained
from the interaction Lagrangian in Eq. (11). Notice that when
the propagator refers to the neutral bosons, the corresponding
magnetic field dependent piece will be absent.

In order to compute Eq. (107), we notice the relation
between the boson contribution to the effective potential
and the corresponding function I (mb), given by Eqs. (19)
and (20), which can be written as

I (mb) = 2
dV (1;B)

b

dm2
b

. (108)

To include the ring diagrams effect as well as to account
already for mass renormalization, on the right-hand side of
Eq. (108) we use instead Eq. (44) and write

I (mb) = 2
dV (e f f )

b

dm2
b

. (109)

The fermion loop contribution to the boson self-energy,
depicted in Fig. 4 is given by

Π f (ωm,p;m f ) = −g2Tr
[
S f (ω̃n − iμ,k;m f )

× S f (ω̃n − iμ − ωm,k − p;m f )
]
, (110)

where S f is, as before, the fermion propagator in the presence
of the magnetic field and the trace refers both to the Lorentz
and momentum spaces. Notice that this contribution is the
same for all boson species. Equation (110) depends on the
(external) boson frequency ωm and momentum p. In order to
find a suitable expression, we approximate the self-energy by
its leading, momentum independent, term. This limit is found
by taking ωm = p = 0. In this limit, Eq. (110) becomes

Π f (ωm,p;m f ) = −g2Tr
[
S2
f (ω̃n − iμ,k;m f )

]
, (111)

From Eq. (61), we thus see that in this approximation, as
in the case of the boson loop contributions, the contribution
from one fermion species to the self-energy can be obtained
after mass renormalization as

Π f = 2g2
dV (e f f )

f

dm2
f

, (112)
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Fig. 4 Feynman diagram for the one-loop fermion contribution to the
boson self-energy

where V (e f f )
f is given by Eq. (101). Therefore, the complete

boson self-energies for each boson species is given by

Πσ = λ

4

[
12 I (mσ ) + 4 I (mπ0) + 8 I (mπ±)

]+ N f NcΠ
f ,

Ππ± = λ

4

[
4 I (mσ ) + 4 I (mπ0) + 16 I (mπ±)

]+ N f NcΠ
f ,

Ππ0 = λ

4

[
4 I (mσ ) + 12 I (mπ0) + 8 I (mπ±)

]+ N f NcΠ
f ,

(113)

To compute the self-energy for each of the bosons, we
need knowledge of the explicit form of Eq. (54), given by

I (mb) = T 2

12
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[
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(2πT )4

)]

, (114)

where Πb includes the fermion contribution to the boson
self-energy with flavor b. Notice that when Eq. (114) is used
into Eq. (113), the resulting equations need to be solved self-
consistently. However, working at high-temperature, a suit-
able approximation for the function Ib consists of using only
the leading matter contributions appearing on the right-hand
side of Eq. (114), writing

I (mb) = T 2

12
,

Π f = −g2 T
2

π2

[
Li2

(
−e− μ

T

)
+ Li2

(
−e

μ
T

)]
. (115)

Since in this approximation the function I (mb) becomes
independent of the boson species, we can write

Π1 ≡ Πσ = Ππ± = Ππ0

= λ
T 2

2
− N f Ncg

2 T
2

π2

[
Li2

(
−e− μ

T

)
+ Li2

(
−e

μ
T

)]
.

(116)

Equation (105), with the boson self-energies given by Eq.
(116), constitutes the main tool to study the QCD phase
diagram from the point of view of chiral symmetry restora-
tion/breaking.

In order to achieve better accuracy, it has been shown that
the inclusion of thermo-magnetic modifications of the cou-
plings, to account for their running with temperature, density
as well as with the strength of the magnetic field, is important
[47,51]. However, in the static and infrared limit, these cor-
rections turn out to be inversely proportional to the particles
masses. Thus, when working in the strict chiral limit, as we
do in this work, complications to define the proper infrared
regulator arise. We thus postpone the discussion of this issue
for a future work and proceed to find conditions to determine
the parameters of the model.

2.6 Parameter fixing

The LSMq contains three independent parameters, namely,
the Lagrangian squared mass parameter a2 and the boson and
fermion-boson couplings λ and g. For a complete description
of the phase diagram, these parameters need to be fixed using
conditions suitable for finite T and μ and not from vacuum
conditions. In this section, we describe the procedure to fix
these parameters. Different ways to try fixing the parameters
λ and g have been previously discussed but the conclusions
are unclear. It is however important to mention that when
conditions to fix the latter contain the possibility of a first
order phase transition for T = 0 and μ = mB/3, where
mB ∼ 1 GeV is the typical baryon mass, the CEP turns out
to be located at low values of T and high values of μ [52,53].

Recall that the boson self-energy represents the thermo-
magnetic correction to the boson mass. For a second order
(our proxy for a crossover), namely, a continuous phase
transition, these corrections should produce that the ther-
mal boson masses vanish when the symmetry is restored.
This means that at the phase transition, the effective poten-
tial develops not only a minimum but it is also flat (the second
derivative vanishes) at v = 0. This property can be exploited
to find the suitable value of a at the critical temperature Tc
for μ = 0. Since the thermal boson masses are degenerate at
v = 0, from Eqs. (113) and (114) the condition Π − a2 = 0
can be written as

6λ

(
T 2
c

12
− Tc

4π

(
Π1 − a2

)1/2

+ a2

16π2

[
ln

(
μ̃2

(4πTc)2

)
+ 2γE

])

+g2T 2
c − a2 = 0. (117)
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Fig. 5 Critical temperature as a function of the magnetic field strength
in units of the pion mass, Mπ = 140 MeV, squared. For the set of
parameters λ = 1.6, g = 0.794 and a = 133.538 MeV, and μ = 0 for
the case when the effective potential is computed up to the contribu-
tion of the ring diagrams. The blue dots indicate a second order phase
transition

where from Eq. (116)

Π1(Tc, μ = 0) =
[
λ

2
+ g2

]
T 2
c . (118)

Since we have a relative freedom to chose the value of μ̃,
we take μ̃ = 500 MeV. This value is chosen large enough so
as to consider it the largest scale in the problem. Since the
dependence of the result is only logarithmic in μ̃, variations in
this parameter do not affect significantly the result. Since the
values of λ, g and a we are looking for need to be computed
including effects at finite T and μ, we look for solutions of
Eq. (117) using input form the LQCD transition curve for
μ � 0.

Using the LQCD findings for Tc � 158 MeV and the
curvature parameters κ2 and κ4 [54], we can compute the
values of λ, g and a that best describe the transition curve
near μ ∼ 0, using Eq. (117). Since this is a non-linear equa-
tion, the solution is not unique. We hereby show results for
two possible sets of values and reserve the discussion of the
complete search and properties of the parameter space for a
future work.

2.7 Inverse magnetic catalysis and the magnetized phase
diagram in the LSMq

Armed with the effective potential up to the ring diagram
contributions, and with the parameters fixed from informa-
tion on the LQCD critical curve near μ = 0, we can now
explore the consequences for chiral symmetry restoration.

First we study whether the model describes IMC. Fig-
ures 5 and 6 show the critical temperature as a function of
the field strength in units of the pion mass Mπ = 140 MeV
squared, |eB|/M2

π , normalized to the critical temperature at
μ = 0 using two sets of parameters: λ = 1.6, g = 0.794,

Fig. 6 Critical temperature as a function of the magnetic field strength
in units of the pion mass, Mπ = 140 MeV, squared for the set of
parameters λ = 2, g = 0.484 and a = 80.568 MeV, and μ = 0 for the
case when the effective potential is computed up to the contribution of
the ring diagrams. The blue dots indicate a second order phase transition

Fig. 7 Critical temperature as a function of the magnetic field strength
in units of the pion mass Mπ = 140 MeV squared, for the set of
parameters λ = 2, g = 0.484 and a = 80.568 MeV and μ = 0 for the
case when the effective potential does not contain the contribution of
the ring diagrams. All the transitions are second order

a = 133.538 MeV and λ = 2, g = 0.484 a = 80.568 MeV,
respectively. The figures also show a comparison with the
behavior of the critical temperature as a function of the field
strength using LQCD data from Ref. [1] (red band). Notice
that in both cases, the critical temperature decreases as a
function of the field strength showing that the magnetic field
corrections produce IMC. The decrease is slightly weaker for
the first set of parameters. Since the computation is valid in
the weak field limit, we have restricted the magnetic field val-
ues to cover a range up to |eB|/M2

π = 0.5. Even though this
range is limited, it already shows the trend whereby the crit-
ical temperature decreases as a function of the field strength.

In order to check whether the inclusion of the ring diagram
contribution can be linked to IMC, we artificially remove
these terms from the effective potential, both in the ther-
mal as well as in the thermo-magnetic parts. Figure 7 shows
the critical temperature as a function of the magnetic field
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Fig. 8 The difference v0(|eB|) − v0(0) as a function of the field
strength in units of the pion mass Mπ squared for different temper-
atures using the parameters found when using λ = 1.6, g = 0.794 and
a = 133.538 MeV

strength in units of the pion mass Mπ = 140 MeV squared
for λ = 2, g = 0.484 and a = 80.568 MeV and μ = 0.
Notice that without the inclusion of the ring diagrams in
the analysis, the critical temperature shows instead a modest
increase with the field strength.

We now study the behavior of the condensate v0(|eB|) as
a function of the field strength for different temperatures up
to the transition temperature. Figure 8 shows the difference
v0(|eB|)−v0(0) as a function of the field strength in units of
the pion mass Mπ squared for different temperatures using
the set of parameters λ = 1.6, g = 0.794 and a = 133.538
MeV. Notice that when the temperature is well below the
critical temperature Tc = 158 MeV, the condensate grows.
However, when the temperature approaches Tc, this growth
is tamed such that when the temperature is close to Tc the
growth turns into a decrease. Since we are working in the
strict chiral limit, for temperatures equal or above Tc, the
condensate reaches its equilibrium value at the symmetry
restored phase v0(|eB|) = 0. In contrast with the analysis
for the behavior of the critical temperature as a function of
the field strength, in this case a comparison with LQCD data
is not possible given that the first LQCD point is well above
the range of field strengths that can be studied in the weak
field limit. However, these findings already show the trend
whereby starting from small magnetic fields the condensate
increases or decreases from its vacuum value depending on
whether the temperature is below or above the critical tem-
perature in vacuum. These findings are in agreement with the
general trend found by LQCD calculations [2].

We now study the consequences for the phase diagram.
Figure 9 shows the phase transition lines in the T –μ plane
for different values of the field strength using the set of param-
eters λ = 1.6, g = 0.794 and a = 133.538 MeV. Notice that
as the field strength increases, the transition curves move
to lower temperature values. Also, the position of the CEP

Fig. 9 Phase transition lines for different values of the field strength
using the set of parameters λ = 1.6, a = 0.794 and a = 133.538 MeV.
The star symbols represent the position of the CEP for each value of
the magnetic field

found at |eB| = 0, moves to lower values of (μCEP
c , TCEP

c )

as the field strength increases. Thus, the presence of a finite,
albeit small magnetic field, produces a noticeable displace-
ment of the CEP. For lower temperatures one needs to resort
to a low–T expansion to make a thorough exploration of the
phase diagram [52,53].

We conclude this section by pointing out that the fea-
tures hereby described can become more accurate, particu-
larly when the calculation is dome for large magnetic field
strengths, once the thermo-magnetic corrections to the boson
self-coupling and fermion-boson coupling are included [50]
as well as when the symmetry is explicitly broken by a finite
pion mass Mπ .

3 The Nambu–Jona-Lasinio model

One of the most versatile models used in the study of phase
transitions in QCD is without doubt the NJL. In its more
basic form, the model describes the dynamics of deconfined
quarks at relatively low energy and corresponds to a sim-
plified version of the Schwinger-Dyson equations with inte-
grated gluon degrees of freedom and considering only the
leading interactions terms. As a result, the model consists of
a non-renormalizable Dirac theory with a four-quark interac-
tion term. This description of deconfined constituent quarks
can be improved when including confinement effects.

The versatility of the NJL model is expressed by the fact
that external sources can be incorporated in a simple way,
preserving or breaking the corresponding symmetries. In par-
ticular, the incorporation of different chemical potentials,
without the LQCD sign problem, as well as the introduc-
tion of different order parameters, resorting to a mean field
approach, makes the NJL a prime tool when dealing with
low-energy QCD that can also account for medium effects.
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On the other hand, being non-renormalizable, the NJL
model is strongly dependent on the cutoff that needs to be
introduced to regulate the ultraviolet. In this sense, the model
involves a non-unique prescription to include the momentum
cuttoff. This problem becomes more important when medium
effects are considered. Notwithstanding, this approach opens
up the possibility to employ many interesting techniques as
well as to use different ansätze, according to the system that
one needs to describe. In general the cutoff is fixed in order
to fit known physical quantities. However some care must be
taken since there are critical values for the set of parameters
where the solution of the gap equation turns chaotic [55,56].

Here we analyze, from the perspective of the NJL model,
the behavior of the QCD phase diagram. In particular, we
study the evolution of the CEP as a function of temperature
and baryon chemical potential, including also the dependence
on the strength of an external magnetic field. The behavior
of the CEP represents a challenge for our understanding of
QCD. Qualitatively, one expects that the phase transitions
describing chiral symmetry restoration and deconfinement
take place at approximately the same temperature.

There are many other interesting phenomena that we will
hereby not address, like cold quark matter and compact star
phenomenology, where NJL models play an important role
in the determination of the phase diagram in dense magne-
tized matter, BEC-BCS or color superconductivity [57,58],
the role of the quark anomalous magnetic moment on the ther-
modynamic properties of mesons immersed in a magnetic
field [59] or the magnetic field effects on electromagnetic
probes in heavy-ion collisions such as the dilepton produc-
tion rate [60]. We will restrict the discussion to the description
of the simultaneous temperature, baryon chemical potential
and magnetic field dependence of the chiral CEP. Isospin
effects for a magnetic field-induced CEP are studied in Ref.
[61]. Multiple CEPs in magnetized three flavor quark mat-
ter, prompted by the strange sector, are studied in Ref. [62].
Possible signatures of the presence of a CEP in magnetized
quark matter are provided studying fluctuations of conserved
charges in the context of heavy-ion collisions in Ref. [63].
For a broader picture on other interesting aspects of the prop-
erties of magnetized QCD described from the NJL model
perspective see for instance Ref. [64].

3.1 NJL Lagrangian

The general expression for the SU (3) f NJL model, including
scalar and pseudoscalar interactions is given by

LNJL = ψ̄(i /∂ − m̂)ψ + L4
int + L6

int, (119)

where m̂ represents the diagonal mass matrix

m̂ = diag(mu md ms). (120)

L4
int is a four-fermions interaction term that can be local or

non-local. The original version was constructed as a local
term. However, there are good reasons to consider non-local
versions. Unfortunately L4

int has a UA(1) symmetry which
is not observed in nature. The UA(1) symmetry can be bro-
ken by the ’t Hooft term, L6

int, which implies a six fermions
interacting term. L4

int and L6
int are given, respectively, by

L4
int = GS

8∑

a=0

[
(ψ̄λaψ)2 + (ψ̄iγ5λ

aψ)2
]

(121)

L6
int = −K

(
Det f [ψ̄(1 + γ5)ψ] + Det f [ψ̄(1 − γ5)ψ]) ,

(122)

where λa are the Gell-Mann matrices in the flavor space, with
λ0 = √

2/3 I . The numbers 4 and 6 in the previous terms
indicate the number of interacting quarks in each case. The
’t Hooft term can be written in a more explicit way as

L6
int = −K

4
Aabcd(ψ̄λaψ)

×[(ψ̄λbψ)(ψ̄λcψ) − 3(ψ̄iγ5λ
bq)(ψ̄ iγ5λ

cψ)],
(123)

where the symmetric coefficients Aabcd are given by Aabcd =
1
3 εi jkεmnl(λa)im(λb) jn(λc)kl .

In addition to the interaction terms mentioned above, one
can consider other chiral invariant operators, in particular an
interaction term involving vector and axial-vector currents

L4
V = GV

8∑

a=0

[
(ψ̄γμλaψ)2 + (ψ̄γμγ5λ

aψ)2
]
. (124)

This term contributes only if finite density effects are present.
It is easy to see that in the mean-field approximation, the rel-
evant operator gives the quark density 〈ψ̄γμψ〉 = 〈ψ†ψ〉δμ0

[65]. Therefore, it is not possible to obtain GV a priori
from known vacuum observables.GV must be obtained using
other in-medium phenomenological arguments.

3.2 Confinement

The NJL model does a good description of the dynamics
involving constituent quarks. However it lacks information
about confinement. This information must be added and there
are different methods to include it. The most often used one
is the inclusion of the Polyakov loop. Another method is
to consider non-local operators, and a third one commonly
used method is to consider an infrared cutoff considering
the representation of the propagator in terms of a Schwinger
proper-time [66].

The original version of the NJL model [67], including
quarks, has been used for the discussion of the phase transi-
tion in the mean field approximation, where the quark con-
densate plays the role of the mean field for chiral symmetry
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restoration. For a review on this subject, see Ref. [68]. In this
version of the model, the deconfinement transition is absent.
Perhaps, we should mention here that in principle these tran-
sitions are different in nature. Chiral symmetry restoration is
associated to a shift from a Nambu-Goldstone realization into
a Wigner-Weyl realization. In the massless quark limit this is
achieved by the vanishing of the quark condensate, the order
parameter for this transition, which can also be expressed in
terms of the vanishing of the pion decay constant. Decon-
finement in this model can be taken into account through the
Polyakov term L(x), defined in terms of the trace of a Wilson
loop in the Euclidean time direction

L = 1

Nc
TrP exp

[
ig
∫ β

0
dτ A0(x, τ )

]
, (125)

where g is the coupling in the QCD Lagrangian, Nc is the
number of colors in the theory and A0 = A0

aT
a , with T a

the generators of SU (N ). P denotes the path ordering of
the integral. The definition of this object is due to Polyakov
[69]. In the context of gauge theories at finite temperature,
this object provides an order parameter for deconfinement.
’t Hooft [70] has highlighted the importance of the global
symmetry Z(N ) in gauge theories, where Z(N ) is the center
of the group SU (N ). In fact, for the QCD Lagrangian we
have the usual SU (Nc) transformations Ω such that Dμ =
Ω†DμΩ and ψ → Ω†ψ where ψ are the quark fields. Of
course we have ΩΩ† = 1 and Det Ω = 1. If we consider a
gauge transformation with a constant phase multiplying the
identity Ωc = e−iφ INc×Nc , in order for Ω to be an element
of SU (N )c, the condition Det Ωc = 1 implies φ = 2π j/Nc

with j = 0 · · · (N − 1).
Given the above condition, the expectation value of

the Polyakov loop transforms in a non-trivial way under
the center group ZNc . If Φ = 〈L〉 we expect 〈L〉 =
φ0 exp (i 2π j/Nc), where φ0 is a real function which should
vanish for high temperatures. In fact, the expectation value
of the Polyakov loop corresponds to the ratio of the parti-
tion functions of a system with an external quark inserted
in a pure gluon system, ZQ , and the partition function of
a pure gluon system Z . i.e., ZQ/Z , from where we obtain
Φ = 〈L〉 = exp (−βF), where F is the free energy of the
system with a single quark. For an external quark inserted in
a gluon system, this energy becomes infinity and therefore
Φ = 0, which is tantamount of confinement. This means that
one cannot have free color degrees of freedom in the sys-
tem. On the contrary, for high temperatures, since the theory
becomes essentially free, 〈L〉 → 1. There must be an inter-
mediate temperature where Φ goes between the confined and
the deconfined phases. We see that the expectation value of
the Polyakov loop plays the role of an order parameter for
deconfinement. Notice that, in the case of chiral symmetry
restoration, the order parameter is instead the quark conden-
sate.

Let us now discuss the NJL model with a Polyakov term,
dubbed as the PNJL model. Let us start with the SU (3) f
general NJL Lagrangian. The idea is to take into account the
vacuum expectation value of the trace of the Polyakov loop,
Φ. We refer to this object as the Polyakov field.

The idea is to build an effective potentialU (Φ, Φ̄, T ) such
that the deconfinement transition is included. Since Φ = 0
in the confined phase, this potential should have a minimum
in Φ = 0 for T < T0. When T = T0 we expect that Φ = 0
should correspond to a local maximum and a new minimum
for Φ > 0 must appear triggering the deconfinement phase
transition through a breaking of the Z3 symmetry. This min-
imum will move to Φ = 1 when the temperature grows
beyond T0.

In the literature, several potentials satisfying these condi-
tions have been proposed. The potential

1

T 4U (Φ, Φ̄, T ) = −a(T )

2
Φ̄Φ + b(T ) ln[1 − 6Φ̄Φ

+4(Φ̄3 + Φ3) − 3(Φ̄Φ)2], (126)

where a(T ) = a0 + a1(T0/T ) + a2(T0/T )2 and b(T ) =
b3(T0/T )3 reproduces results from LQCD [71]. The param-
eters in this expression were fixed by comparing with LQCD
data. They are given by: a0 = 3.51, a1 = −2.47, a2 = 15.2
and b3 = −1.75, where T0 is the critical temperature for a
pure gauge field theory, which has been determined by LQCD
as T0 = 270 MeV.

So far we have a NJL model for the quark sector and
a potential for the Polyakov loop. This potential mimics
in some way the interacting gluons in QCD . The cou-
pling between them is established through the covariant
derivative Dμ = ∂μ − i Aμ, where Aμ = gAa

μ
λa

2 where
Aa

μ are the color gauge fields, i.e.. the gluons. Normally
the so called Polyakov gauge is used projecting the gauge
field in the 4th (Euclidean) component and parametrizing
it diagonally as A4 = φ3λ

3 + φ8λ
8, giving as a result

Φ = [cos(φ3/T ) + 1]/3.
Certainly this model is not renormalizable and, at least

in its the local version, an ultraviolet cutoff is introduced as
a sharp cutoff in three momentum space Λ. Several sets of
values, with small variations for the parameters involved in
the model, have been used. For example in Ref. [72] we find
Λ = 631.4 MeV, mu = md = 5.5 MeV, ms = 135.7 MeV,
GΛ2 = 1.835 and KΛ5 = 9.29. See also Ref. [73].

Another perspective is obtained from the non-local ver-
sions of the NJL model (nlNJL). For a recent general refer-
ence on the present status of non-local effective models see
Ref. [74]. There are some advantages with respect to the tra-
ditional local version which support these type of models.
For example, the inclusion of form factors, that play the role
of non-local regulators, avoid dealing with the problem of a
sharp ultraviolet regulator Λ in momentum space. The pre-
cise value of Λ is a sort of instability in the predictions. As a
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second aspect, the presence of a non-local form factor in the
scalar current js(x) leads to a momentum dependent quark
effective mass, in agreement with results form LQCD [75].

In the case of two flavors, the most simple nlNJL model,
without ’t Hooft terms, corresponds to the Euclidean action

SE =
∫

d4x
{
ψ̄[−i /∂ + m]ψ − Gs

[
(JS)

2 + (JaP )2
]}

,

(127)

where the non-locality is encoded in the currents

JS(x) =
∫

d4zr(z)ψ̄
(
x + z

2

)
ψ
(
x − z

2

)
, (128)

JaP (x) =
∫

d4zr(z)ψ̄
(
x + z

2

)
iγ5λ

aψ
(
x − z

2

)
, (129)

and where the regulator r(z) carries the effect of low energy
QCD interactions. Notice that we have chosen the same form
factor in both currents because of chiral symmetry. If r(z) =
δ4(z) we recover the local version of the NJL model. Several
form factors have been used in the literature, among which
the most common one is the Gaussian regulator described
in Euclidean momentum space as r(p2

E ) = exp(−p2
E/Λ2),

with Λ the cutoff already included as the regulator.

3.3 Bosonization

Let us continue with the SU (2) f version of NJL without
confinement effects. The most simple expression for the NJL
Lagrangian that preserves chiral symmetry is

LNJL = ψ̄i /∂ψ + G
[
(ψ̄ψ)2 + (ψ̄iγ5τψ)2

]
, (130)

where the quark fields contain flavor and spin indexes, G is
the NJL coupling, and τ are the SU (2) f generators. This
Lagrangian is invariant under SU (2)L × SU (2)R transfor-
mations.

The standard method used to obtain phase transitions for
in-medium NJL is the minimization of the effective potential
with respect of the different order parameters that define the
existence or not of a different phase.

There are many techniques that are used in order to extract
hadronic properties from the NJL Lagrangian, however we
focus only on the calculation of the effective potential in
the mean-field approximation. For these purposes, we then
continue with the bosonization procedure.

The four-fermion operators can be transformed into a
quadratic fermion Lagrangian by the integration of a Gaus-
sian exponential, due to the introduction of auxiliary fields.
Then Eq. (130) for two flavors can be written as

ei SNJL = N
∫

DσD3π ei S̃NJL[ψ,ψ̄,σ,πa ], (131)

where SNJL = ∫
d4xLNJL, and with the new quadratic-

fermion action being

S̃NJL =
∫

d4x
(
ψ̄
[
i /∂ − σ − iγ5π

aτ a
]
ψ

− 1

4G

[
σ 2 + (πa)2

])
, (132)

and where whereN is some normalization constant. With the
last step in mind, the NJL generating functional can be written
as the path integral of fermion fields and auxiliary fields.
The relation between bosons and fermions comes implicitly
from Eq. (132). By varying the boson fields, the equations of
motion give σ = −2G〈q̄q〉 and πa = −2G〈q̄iγ5τ

aq〉.
Since the new Lagrangian is quadratic with respect to the

fermion fields, they can be easily integrated out, and the gen-
erating functional becomes expressed only in terms of the
auxiliary fields

Z =
∫

DψDψ̄ ei SNJL[ψ,ψ̄]

= N
∫

DψDψ̄DσD3π ei S̃NJL[ψ,ψ̄,σ,πa ]

= N ′
∫

DσD3π ei Sboson[σ,πa ] (133)

where the bosonic action is

Sboson = −iTr ln[i /∂ − σ − iγ5π
aτ a]

− 1

4G

∫
d4x

[
σ 2 + (πa)2

]
, (134)

where the trace stands for spin, color, flavor, and configura-
tion space. The generating functional is now represented only
by the scalar and pseudoscalar auxiliary fields which can be
recognized as the sigma and pions, respectively. Considering
an expansion around the mean field, by setting σ → 〈σ 〉+σ ,
πa → 〈πa〉 + πa , 〈σ 〉 = σ̄ �= 0 and, in the absence pion
condensation, 〈πa〉 = 0, chiral symmetry is spontaneously
broken.

Additionally we can break chiral symmetry explicitly by
adding a mass term to the original Lagrangian, namely,
−mψ̄ψ . Considering the mean field approximation, we can
obtain from Eq. (133) the effective potential Sboson[σ, π ] →
−V4Γ (σ̄ ), where the functional trace in momentum space
can be written as

Γ = −i N f Nc

∫
d4 p

(2π)4 Tr ln(/p − m − σ̄ ) + σ̄ 2

4G
, (135)

and where the current quark mass term was introduced and
the trace is over Dirac matrices. The value of the mean field
σ̄ is obtained from the minimum of the effective potential.
The relation ∂Γ/∂σ̄ = 0, produces the gap equation

2σ̄

G
= N f Nc

∫
d4 p

(2π)4

i(m + σ̄ )

p2 − (m + σ̄ )2 + iε
, (136)
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where we introduced the time-ordered regulator. The solution
of the gap equation provides the value of σ̄ as well as the
effective constituent mass of the quarks M = m + σ̄ .

The introduction of the current quark mass allows us to
obtain in a simple way the quark condensate. From the defi-
nition −iV4〈ψ̄ψ〉 = ∂ lnZ/∂m

〈ψ̄ψ〉 = −N f Nc

∫
d4 p

(2π)4

i(m + σ̄ )

p2 − (m + σ̄ )2 + iε
(137)

so we can see, by comparing Eq. (136) with Eq. (137), that
the quark condensate is related to the mean field σ̄ by the
relation 〈ψ̄ψ〉 = −σ̄ /2G.

The effective potential in Eq. (135), as well as the gap
equation in Eq. (136), are UV-divergent. Since the theory
is non-renormalizable, the regularization scheme provides
another parameter of the model and must be fixed in terms
of physical quantities. The most often used ones are the reg-
ularization scheme and the momentum cutoff. Here we have
three parameters: the coupling constant G, the mean field
σ̄ and the cutoff Λ. The gap equation fixes the value of the
mean field σ̄ in terms of G and Λ, which are in turn obtained
calculating the pion mass and pion decay constant and fix-
ing their values from their experimental ones. For a detailed
description on the calculation of masses and decay constants
see [65].

The different regularization schemes do not significantly
change the result of the chiral condensate, however, when
medium effects are considered, the situation changes. A good
procedure is to regularize the vacuum part only, whenever
possible. In principle there is no reason to assume that the
cutoff or couplings must be independent of medium effects.

3.4 Temperature, chemical potential and magnetic field

The finite temperature effects can be easily introduced in the
NJL model through the Matsubara formalism. The simplicity
of this formalism translates itself into some minimal replace-
ments in the effective action, where now, V4Γ → −iβVΩ ,
with Ω the thermodynamical potential and β = 1/T so
that the generating functional in the mean-field approxima-
tion can be expressed as Z = e−βVΩ . The 0-component of
the momentum in Eq. (135) must be replaced by fermionic
Matsubara frequencies p0 → iωn = i(2n + 1)πT and con-
sequently, the p0 integral is replaced by the sum

∫
dp0 →

2π iT
∑

n .
To incorporate a chemical potential, we have to add to

the NJL Lagrangian the Lagrange multiplier times the num-
ber density operator LNJL → LNJL + μψ†ψ , which is then
expressed as a shift in the momentum /p → /p + μγ0 and
consequently, within the Matsubara formalism, produces a
shift in the Matsubara frequencies as ωn → ωn − iμ.

With all the above considerations, the thermodynamical
potential reads as

Ω = 4N f NcT
∞∑

n=−∞

∫
d3 p

(2π)3 ln
[
(ωn − iμ)2 + p2 + M2

]

+ σ̄ 2

4G
(138)

with a constituent mass given by M = m+ σ̄ . The gap equa-
tion can be obtained by minimizing the thermodynamical
potential with respect to the mean field, ∂Ω/∂σ̄ = 0. Once
the mean field value σ̄ = σ ∗(T, μ) is obtained, we can also
get the quark number density nq = −∂Ω/∂μ|σ̄=σ ∗ and the
pressure P = −Ωreg|σ̄=σ ∗ , where the regularized thermo-
dynamical potential is obtained by subtracting the medium
contribution Ωreg = Ω − Ω|T,μ=0.

The presence of an external magnetic field modifies the
NJL Lagrangian by adding the electromagnetic vector poten-
tial through the minimal coupling scheme, by setting the
term i∂μ → i∂μ + eAμ, where, for the case of a uni-
form constant field B = B ẑ, the vector potential reads
as A = (0, 0,−Bx, 0) in the Landau gauge, or A =
1
2 (0, By,−Bx, 0) in the symmetric gauge.

The main methods to deal with NJL under an external
magnetic field are: 1) the use of the wave function and energy
spectrum of the effective Lagrangian, 2) the Schwinger
proper time method and 3) the Ritus method. The Schwinger
method provides the fermion propagator in the presence of
the external field in Eq. (138). It is possible to express the
propagator in the form of a proper time integral that can be
expanded in a power series of the magnetic field and can
also be expanded as a Laguerre series in terms of the Landau
levels.

The three methods mentioned above provide the result
in terms of a sum over Landau levels. Since we are in a
first instance calculating the thermodynamical potential at
the one-loop level, this will not be affected by the Schwinger
phase. As a result, the problem simplifies to the following
rules: Once the trace is performed, the result depends only on
the energy spectrum. The replacement of the energy function
E( p) → El(pz) where the transverse momentum changes
as p2⊥ → 2|eq B|l, and the integral in momentum space also
changes as

∫
d2 p⊥ → |e f B|∑∞

l=0. The charge e f stands
for the respective quark charge eu = 2e/3 and ed = −e/3.
As a result, the thermodynamical potential can be written as

Ω = σ̄ 2

4G
+ 4Nc T

|eB|
2π

∞∑

n=−∞

∞∑

l=0

∑

f =u,d

(2 − δl0)

×
∫

dpz
2π

ln
[
(ωn − iμ)2 + p2

z + 2|e f B|l + M2
]
.

(139)
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Fig. 10 CEP from different authors using NJL models. Ref. [73] (cir-
cles) with eB = 0.195 GeV2 (1), eB = 0.852 GeV2 (2) and eB =
1.95 GeV2 (3). Ref. [77] (squares) with eB = 0 (1), eB = 0.118 GeV2

(2), and eB = 0.294 GeV2 (3). Ref. [61] (diamonds) eB = 0 (1),
eB = 0.392 GeV2 for 〈ūu〉 (2) and 〈d̄d〉 (3). Ref. [78] (triangles) with
eB = 0 (1), eB = 0.00588 GeV2 (2) and eB = 0.0157 GeV2 (3)

In the case where a chemical potential is introduced, the
contribution of the vector operator −GV (ψ̄γμψ)2 in the NJL
Lagrangian turns out to be relevant, because the mean field
value of the vector current is related to the quark number
density 〈ψ†ψ〉.

3.5 Critical end point

The calculation of the position of the CEP using the NJL
model has been worked by several authors, however this is not
a simple task. The identification of the CEP is done basically
by looking at the evolution of the susceptibilities, or else,
by means of looking at the shape of the thermodynamical
potential in terms of the order parameter (see Ref. [76] for a
different approach).

Figure 10 shows the CEP in the temperature vs. quark
chemical potential (μq = μB/3) for several values of the
magnetic field, using different approaches within the NJL
formalism, without including the vector-current interaction.
Basically all of them present an increment of the critical tem-
perature as well as a reduction of the critical chemical poten-
tial as compared to calculations without a magnetic field.
In Ref. [73] (circles) the authors use a SU (3) f NJL model.
In Ref. [77] (squares) the authors use the SU (2) f version
of NJL model. In Ref. [61] (diamonds) the author considers
also the SU (2) f NJL model but separating the magnetic evo-
lution between u-quarks and d-quarks. Finally, in Ref. [78]
(triangles) the authors consider the SU (2) f non-local NJL
model with a Gaussian regulator. It is interesting to observe
that non-local effects change dramatically the location of the
CEP position.

All the aforementioned works do not include the vector-
current interaction term. However, this is an important contri-
butions since its mean field is directly related with the baryon

Fig. 11 Magnetic evolution of the CEP from Ref. [32] considering the
PNJL model without IMC and a vector-current coupling GV

density. Also, none of the used models, in the shape they
are hereby presented, describe IMC. A better understanding
of the evolution of the CEP needs to include confinement
effects, IMC and the vector-current interaction.

Concerning the evolution of the CEP in the PNJL extended
model, it is extremely interesting to stress that IMC, i.e. the
fact that the critical temperature decreases as a function of
the magnetic field, both for the chiral restoration and the
deconfinement phase transitions, can be achieved only if the
coupling Gs acquires a dependence on the magnetic field
[34,79–81]. This dependence was first introduced in Ref.
[34]. Since there are no data from LQCD for the running
coupling αs(eB) that could inspire a possible Gs(eB), a fit
given byGs(ζ ) = G0

s (1+aζ 2+bζ 3)/(1+cζ 2+dζ 4), where
ζ = eB/Λ2

QCD , and a = 0.0108805, b = −1.0133 × 10−4,

c = 0.02228, d = 1.854 × 10−4, was introduced after fit-
ting the model critical temperature for chiral restoration T χ

c

measured in LQCD at μB = 0 [79]. Using this effective,
magnetic field dependent coupling in the PNJL Lagrangian,
it has been shown that the critical temperatures for both tran-
sitions decrease with an increasing magnetic field strength.

For a comparison of different parametrizations of the cou-
pling G(T, B) and the conditions that must be considered see
Ref. [82].

The inclusion of the vector current coupling −G(q̄γμq)2

has dramatic effects on the location and evolution of the CEP.
This point was discussed in Refs. [83] and [84]. In fact, the
CEP may even disappear, or be absent, if the coupling Gv

becomes larger than a certain critical value Gcrit
v ≈ 0.71G0

s .
Figure 11 shows the evolution of the CEP from eB = 0 to
eB = 1 GeV2 considering the SU (3) f PNJL model includ-
ing the vector-current coupling from Ref. [32]. The variation
of GV considerably changes the location of the CEP. Also
there is a nontrivial evolution of the CEP, in particular when
the system reaches higher values of the magnetic field, where
there is a drastic inflection. Also the case with GV = 0.25GS
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Fig. 12 Magnetic evolution of the CEP from Ref. [32] considering the PNJL model with IMC (cases IIB and IIC) and considering a vector-current
coupling GV

presents a non-expected behavior for low values of the mag-
netic field. In all these cases IMC is absent, i.e., when Gs is
constant.

For the case where one has an effective coupling Gs(eB),
the evolution of the CEP is different. Figure 12 shows the
evolution of the CEP with respect to the magnetic field con-
sidering IMC with GV = αGs(B) (Case IIB) as well as
GV = αGS(0) (Case IIC), also compared with the case with-
out IMC with GV = αGS(0) (Case IB). For both values of
α considered, the magnetic evolution of the CEP with IMC
changes completely this behavior. A more extensive analysis
of the CEP considering the PNJL model with IMC effects
can be founded in Ref. [85]. There are many open questions
in the magnetic evolution of the CEP, but maybe the most
important is how to obtain GV . This is a non simple task and
other approaches should be explored to provide insights.

4 Summary and perspectives

In this work we have reviewed the main features of the
description of the magnetized QCD phase diagram from the
point of view of effective models whose main ingredient is
chiral symmetry. We have focused our attention on two of
these models: The LSMq and the NJL model. For the former,
we have shown that a main ingredient in the description is the
inclusion of plasma screening effects encoded in the resum-
mation of the ring diagrams for the effective potential at finite
temperature, baryon density and in the presence of a magnetic
field. The treatment of plasma screening, that is the account-
ing of collective, long-wave modes, captures one of the main
features near transition lines, namely, long distance correla-
tions. This feature makes the LSMq a more powerful tool, as
compared to other approaches that employ the linear sigma
model in the mean field approximation, such as the one used
for instance in Ref. [35]. Inclusion of plasma screening allows
to describe IMC even without the need to consider magnetic
field-dependent coupling constants. Considering these effec-
tive constants helps to have a better accuracy for the descrip-

tion of this phenomenon. This is particularly relevant for
large field strengths [50]. The plasma screening effects are
also responsible for the emergence of a CEP in the phase dia-
gram at finite T and μ. The CEP moves toward lower values
of (μCEP

c , TCEP
c ) even for small magnetic field strengths.

We have shown that although versatile, the NJL model is
also a more limited approach in the sense that a clear separa-
tion between pure vacuum and medium effects is not always
possible. Moreover, this model cannot describe IMC unless
external information, such as the magnetic field dependence
of the coupling, is included. The CEP identification within
the NJL model is not a simple task. Calculations including
non-local effects can dramatically change the CEP position.
The importance of inclusion of the vector interaction has also
been highlighted. The evolution of the CEP in the phase dia-
gram also depends on whether or not the coupling includes
magnetic field effects. The model can, on the other hand,
incorporate in a straightforward way confinement effects by
means of the coupling to the Polyakov loop or by other more
rudimentary prescriptions such as the inclusion of an infrared
regulator.

Overall, it is our impression that the LSMq and NJL model
approaches provide sensible tools to explore the properties
of magnetized, strongly interacting matter. However, a much
needed cross talk among these methods is called for as well
as a consistent physical approach to determine the model
parameters from restrictive conditions so as to avoid the large
dispersion in the predictions of the CEP position. In addition,
calculations using the LSMq are thoroughly worked out in
the weak field limit whereas in the case of the NJL models
equivalent calculations are performed for strong fields. A
possible avenue of encounter can be to work in one or the
other limits using the corresponding model.
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