
Eur. Phys. J. A (2020) 56:301
https://doi.org/10.1140/epja/s10050-020-00314-6

Regular Article - Theoretical Physics

Jacobi no-core shell model for p-shell hypernuclei

Hoai Le1,a, Johann Haidenbauer1,b, Ulf-G. Meißner2,1,3,c, Andreas Nogga1,d

1 IAS-4, IKP-3 and JHCP, Forschungszentrum Jülich, 52428 Jülich, Germany
2 HISKP and BCTP, Universität Bonn, 53115 Bonn, Germany
3 Tbilisi State University, 0186 Tbilisi, Georgia

Received: 31 August 2020 / Accepted: 25 November 2020 / Published online: 16 December 2020
© The Author(s) 2020
Communicated by Vittorio Somà

Abstract We extend the recently developed Jacobi no-core
shell model to hypernuclei. Based on the coefficients of frac-
tional parentage for ordinary nuclei, we define a basis where
the hyperon is the spectator particle. We then formulate
transition coefficients to states that single out a hyperon–
nucleon pair which allow us to implement a hypernuclear
many-baryon Hamiltonian for p-shell hypernuclei. As a first
application, we use the basis states and the transition coef-
ficients to calculate the ground states of 4

ΛHe, 4
ΛH, 5

ΛHe,
6
ΛHe, 6

ΛLi, and 7
ΛLi and, additionally, the first excited states

of 4
ΛHe, 4

ΛH, and 7
ΛLi. In order to obtain converged results,

we employ the similarity renormalization group (SRG) to
soften the nucleon–nucleon and hyperon-nucleon interac-
tions. Although the dependence on this evolution of the
Hamiltonian is significant, we show that a strong correlation
of the results can be used to identify preferred SRG parame-
ters. This allows for meaningful predictions of hypernuclear
binding and excitation energies. The transition coefficients
will be made publicly available as HDF5 data files.

1 Introduction

After more than 65 years of research on hypernuclei, our
knowledge of the interaction of hyperons with nucleons or
with other hyperons still remains on a modest level. This sit-
uation is rather unsatisfactory given the important role hyper-
ons play for various aspects of nuclear physics as well as for
astrophysics [1–5]. For example, as extensively discussed in
recent years, the hyperon interaction could have a signifi-
cant impact on the properties of neutron stars [3–5]. The rea-
son for the large uncertainty is the tremendous difficulty to
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perform scattering experiments involving hyperons and the
fact that no two-baryon bound state has been found so far,
except for the well known deuteron. An important source
of information has been the spectroscopy of hypernuclei [6].
New experiments are planned at facilities like J-PARC, FAIR,
MAMI and JLab [7–12], some to study the scattering of
hyperons on nucleons, but mostly measurements of bound
states of ordinary nuclei with hyperons. Such new and very
probably more precise data will not only be phenomenolog-
ically interesting, but also enable us to explore the under-
lying interactions in more detail. The latter is now possible
because even fairly complex systems can be treated theoret-
ically on a microscopic level, thanks to improved algorithms
and increasing computational resources. Indeed, nowadays,
one can solve the Schrödinger equation for hypernuclei up
to the p-shell based on realistic and rather elaborate baryon-
baryon interactions [13–15]. Thus, it has become feasible to
study detailed features of the baryonic forces, like the spin-
dependence of hypernuclear interactions, which are inacces-
sible in direct scattering experiments. With these theoretical
advances, the new data on hypernuclei will definitely pro-
vide valuable input to pin down the underlying interactions.
Eventually, the hypernuclear data could be directly utilized
in fits of interaction parameters.

However, a direct use of hypernuclear data requires solv-
ing the hypernuclear many-body problem many times and,
therefore, calls for a very efficient calculation scheme. Sev-
eral methods have been employed in the past to study hyper-
nuclei. For local interactions, configuration space meth-
ods, e.g. hyperspherical harmonics, Green’s function Monte
Carlo, expansion in Gaussians or stochastic variational
method (SVM), have been successfully used to predict prop-
erties of light hypernuclei [16–20]. For very light systems,
that goal can be likewise achieved by solving the Faddeev-
or Yakubovsky equations in momentum space [15,21–25].
Those methods allow one also to deal with non-local two-
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body interactions, but it is difficult to extend the approaches to
larger systems. Alternatively, shell model calculations have
been a quite successful tool to understand properties of hyper-
nuclei, in particular the energy level splittings [26–29]. How-
ever, that approach requires specific effective interactions
that are not easily related to free-space baryon-baryon inter-
actions. The same disadvantage also holds for density func-
tional approaches, which have been applied to rather complex
hypernuclei [30,31]. Recently, nuclear lattice effective field
theory (NLEFT) has been extended to hypernuclei using the
impurity lattice Monte Carlo technique [32]. Although this
first study has been performed with somewhat simplified
(spin-independent) interactions, that method promises the
application of free-space interactions up to medium-heavy
hypernuclei.

One specifically interesting approach to tackle bound
baryon systems is the no-core shell model (NCSM) [33].
An essential tool is here the representation in terms of a har-
monic oscillator (HO) basis. There are several variants of
the approach. In most applications so far, a single-particle
Slater-determinant basis has been chosen. This realization
has been very successfully employed for studying ordinary
nuclei and even hypernuclei [14,34–36], especially, when the
so-called importance truncation is implemented [14,35,36].
Highly accurate results for binding energies, excitation ener-
gies and even radii have been obtained. Generally, the prob-
lem becomes very high dimensional, not least because the
center-of-mass (CM) motion cannot be separated off and
because angular momentum and isospin conservation can-
not be exploited to limit the basis size.

Such a complication can be avoided by using a Jacobi rel-
ative coordinate basis. This, however, requires a very tedious
antisymmetrization for the nucleonic states [37,38]. Never-
theless, the method can be advantageous when many calcu-
lations are required for variations of the underlying interac-
tions, e.g. in fitting procedures, since the antisymmetrization
and other preparatory steps can be accomplished indepen-
dently of the interactions. The final step of the calculation
itself can then be much more efficiently performed than in
the standard NCSM so that it becomes feasible to solve the
problem hundreds or even thousands of times or with limited
computational resources. The work of Gazda et al. [14,34]
has already been employing this Jacobi NCSM (J-NCSM) for
s-shell hypernuclei. It is the main aim of the present work
to extend the J-NCSM approach to p-shell hypernuclei. The
new approach is then used to study in more detail the 4

ΛHe,
5
ΛHe, 6

ΛLi and 7
ΛLi systems based on the next-to-leading order

(NLO) hyperon-nucleon (YN) interaction derived within chi-
ral effective field theory (EFT) [25,39,40]. For interactions
from chiral EFT, it is possible to obtain reliable uncertainty
estimates of the results [15,25], utilizing different orders
of the chiral expansion and/or by exploiting the regulator
(cutoff) dependence of these interactions (where the latter

method provides only a lower limit for the error). For ordinary
nuclei, such estimates are now regularly performed [41,42].

As usual, the NCSM requires a further softening of the
nucleon-nucleon (NN) and YN interactions. To this aim, we
apply the similarity renormalization group (SRG) to the NN
and YN potentials [43,44]. This method has the advantage
that an effective interaction can be systematically derived
from the starting NN and YN interactions, which can then be
equally well employed in momentum space and HO space.
The SRG evolution gives rise also to so-called induced three-
body and many-body forces. In the present study, we will not
take into account such induced many-body forces (for the
application of the SRG induced YNN forces see [35,36,45]).
Therefore, a part of this work is devoted to study the SRG
dependence of the binding energies, excitation energies and
Λ-separation energies.

In Sect. 2, we start with a definition of our basis states
based on the totally antisymmetrized nucleonic states defined
in [38]. Practical calculations can only be performed when
the transition matrix elements to states that single out NN
or YN pairs are known. The calculation of these matrix ele-
ments is explained in detail in Sect. 3. This already concludes
the description of the Jacobi NCSM. As mentioned above,
for explicit calculations, we, however, also need soft inter-
actions. In Sect. 4, we therefore discuss the basic features
of chiral interactions and their SRG evolvement including
the impact on the binding energy for 3

ΛH when the SRG-
induced three-baryon force (3BF) is neglected. For this study,
we will make use of solutions based on the Faddeev equa-
tions. The application of the Jacobi NCSM then follows in
Sect. 5. We first present a detailed benchmark for 4

ΛH/4ΛHe
to Yakubovsky results and then continue towards A = 5–7
hypernuclei. Our conclusions are finally given in Sect. 6.
Some technicalities are relegated to the appendices.

2 NCSM basis in Jacobi coordinates

The translationally invariant many-body Hamiltonian of
a system consisting of (A − 1) nucleons and a single-
strangeness hyperon Y (Y = Λ or Σ) in Jacobi relative
coordinates can be written as follows

H = HS=0 + HS=−1

=
A−1∑

i< j=1

( 2p2
i j

M(tY )
+ V NN

i j

)

+
A−1∑

i=1

(mN + m(tY )

M(tY )

p2
iY

2μNY
+ VY N

iY

+ 1

A − 1

(
m(tY ) − mΛ

))
. (1)
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Here, mN , m(tY ) and μNY are nucleon-, hyperon-, and their
reduced masses, respectively, which we define by mN =
2mnmp/(mn + mp), m(tY = 0) = mΛ, and m(tY = 1) =
(mΣ+ +mΣ− +mΣ0)/3. For simplicity, we assume isospin
symmetry. A generalization to unequal masses within the
isospin multiplet of nucleons and of Σ’s is straightforward
but will not be considered here. The total rest mass of the
system, M(tY ) = (A−1)mN +m(tY ), depends explicitly on
the hyperon isospin tY because an explicit Λ-Σ conversion
is allowed. The term m(tY ) − mΛ then accounts for the dif-
ference in the rest masses of the two hyperons. The relative
Jacobi momenta of NN and YN pairs,

pi j = 1

2
(ki − k j ), (2)

and

piY = m(tY )

mN + m(tY )
ki − mN

mN + m(tY )
kY (3)

are linear combinations of the momenta ki and kY of the i-th
nucleon and the hyperon, respectively. V NN

i j and VY N
iY are

the corresponding NN and YN potentials.
Since hyperons (Λ, Σ) and nucleons are distinguish-

able, hypernuclear basis functions, denoted as |α∗(Y )〉, can
be formed by coupling the hyperon HO states |Y 〉, which
describe the relative motion of a single hyperon Y with
respect to the CM of the (A − 1)N core, to the fully anti-
symmetrized states of the core |α(A−1)N 〉
∣∣α∗(Y )(N JT )

〉 = |α(A−1)N 〉 ⊗ |Y 〉
= |N JT, α(A−1)N nY IY tY ;

(JA−1(lY sY )IY )J, (TA−1tY )T 〉 ≡ | 〉, (4)

where α(A−1)N stands for a complete set of all necessary
quantum numbers characterizing the fully antisymmetrized
states of an (A − 1)N system: the total HO energy quan-
tum number NA−1, total angular momentum JA−1, isospin
TA−1, and the state indices ζA−1 (that distinguish different
|α(A−1)N 〉 states with the same set ofNA−1, JA−1 and TA−1).
These antisymmetrized states for A ≥ 4 systems are com-
puted iteratively starting from the naturally antisymmetrized
basis for two nucleons, for more detail we refer to Ref. [38].
Here, the superscript (∗Y ) represents the separation of the
hyperon Y from the (A − 1)N core. The hyperon states |Y 〉
are described by a similar set of quantum numbers: the HO
energy quanta nY , the orbital angular momentum lY and spin
sY which are coupled to the relative angular momentum IY ,
and the isospin tY as well. The last line in Eq. (4) defines
the ordering in which the quantum numbers of the two sub-
clusters are combined to form the total angular momentum
and total isospin of the system, J and T , respectively, whose
values are given by the physical state of interest. Also, for
practical realization, the total HO quantum numbersN of the
basis states are constrained by the maximum number of the

single-particle oscillatorsNmax (also referred to as the model
space size), i.e. N = NA−1 + 2nY + lY ≤ Nmax . The state
index ζ that distinguishes different basis states |α∗(Y )〉 with
the same N , J and T is omitted for simplifying the notation.
Finally, on the right-hand side of Eq. (4), the graphical repre-
sentation of the basis is shown. The small red circle denotes
a hyperon spectator while the big black circle represents the
system of (A − 1)N.

3 Separation of NN and YN pairs

With the basis defined in Eq. (4), the matrix elements of the
Hamiltonian in Eq. (1) now read

〈α∗(Y )|H |α′∗(Y )〉 = 〈α∗(Y )|HS=0|α′∗(Y )〉
+ 〈α∗(Y )|HS=−1|α′∗(Y )〉. (5)

The basis states |α∗(Y )〉 are however not suitable for evalu-
ating the HS=0 and HS=−1 matrix elements as they do not
depend explicitly on the relative coordinates of the involved
NN or YN pairs. To facilitate the evaluation of Eq. (5), we
expand |α∗(Y )〉 in two additional bases of intermediate states

|(α∗(2)
)∗(Y )〉 and |α∗(Y N )〉 that explicitly single out the active

NN or a YN pairs, respectively. Also the superscripts repre-
sent subsystems that are separated out. Clearly, the former

states |(α∗(2)
)∗(Y )〉 are needed for evaluating the first part in

Eq. (5) involving HS=0, while the latter ones are necessary
for the evaluation of the second part that involves HS=−1.

The first set of auxiliary states |(α∗(2)
)∗(Y )〉 can be directly

constructed by coupling the hyperon states |Y 〉, depending on
Jacobi coordinates of Y relative to the CM of (A-1)N, to the
(A − 1)N states that consist of antisymmetrized subclusters
of (A − 3)N and 2N. In the notation of Ref. [38], this reads
∣∣(α∗(2)

)∗(Y )〉 = |α∗(2)
(A−1)〉 ⊗ |Y 〉

= ∣∣Ñ JT, α
∗(2)
(A−1) ñY ĨY t̃Y ;

(J ∗(2)
A−1(l̃Y sY ) ĨY )J, (T ∗(2)

A−1 t̃Y )T
〉 ≡ ∣∣ 〉

. (6)

Here, α
∗(2)
(A−1) stands for the total HO energy quantum num-

berN
α

∗(2)
(A−1)

, the total angular momentum J ∗(2)
A−1, isospin T ∗(2)

A−1

and state index ζ
∗(2)
A−1, as introduced in [38]. Naturally, the

total HO energy quantum number Ñ in Eq. (6) is also
restricted by Ñ ≤ Nmax . With the graphical representations

of |(α∗(2)
)∗(Y )〉 and |α∗(Y )〉, one can quickly relate the expan-

sion coefficients
〈
α∗(Y )|(α∗(2)

)∗(Y )〉 to the transition coeffi-
cients of the (A − 1)N system 〈 | 〉

A−1,

〈α∗(Y )|(α∗(2)
)∗(Y )〉 = 〈 | 〉

= δspectator 〈 | 〉
A−1, (7)
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for which an explicit expressions has been derived in [38,46].
The Kronecker symbol δspectator is to ensure the conservation
of the quantum numbers of the hyperon and the (A − 1)N
system,

δspectator = δNÑ δY δcore,

δY = δnY ñY δlY l̃Y
δIY ĨY

δtY t̃Y ,

δcore = δNA−1N ∗(2)
A−1

δ
JA−1 J

∗(2)
A−1

δ
TA−1T

∗(2)
A−1

.

Hence, the matrix elements of the nucleonic Hamiltonian
〈α∗(Y )|HS=0|α′∗(Y )〉 now become

〈α∗(Y )|HS=0|α′∗(Y )〉
= 〈 | 〉〈 |HS=0| 〉〈 | 〉
= δspectator 〈 | 〉〈 |HS=0| 〉〈 | 〉, (8)

with summations over intermediate states | 〉being implied.
The remaining unknown term in Eq. (8) is simply the matrix
elements of HS=0 in the basis of
(A − 1) nucleons.

Similarly, in order to construct the intermediate states
|α∗(Y N )〉, one combines the states describing a YN pair,
|Y N 〉, with the antisymmetrized basis of an (A−2)N system,
|α(A−2)〉
|α∗(Y N )〉 = |αY N 〉 ⊗ |αA−2〉

= |NJT , αY N nλλ αA−2; ((lY N (sY sN )SY N )

JY N (λJA−2)Iλ)J , ((tY tN )TY N TA−2)T 〉
≡ ∣∣ 〉

. (9)

Again, |αY N 〉 and |αA−2〉 represent the complete sets of
quantum numbers characterizing the states of the two-body
hyperon-nucleon and the (A − 2)N subsystems. Note that,
in contrast to two-nucleon states, there is no antisymmetry
requirement for |αY N 〉. The relative motion of the (A − 2)N
cluster with respect to the separated out YN pair is specified
by the HO energy number nλ and the orbital angular momen-
tum λ. For evaluating the overlap 〈α∗(Y )|α∗(Y N )〉, we need to

exploit another set of auxiliary states |(α∗(1)
)∗(Y )〉 in which

a hyperon and a nucleon are explicitly singled out

∣∣(α∗(1)
)∗(Y )〉 = |α∗(1)

A−1〉 ⊗ |Y 〉
= |Ñ JT, α

∗(1)
(A−1) nY IY t̃Y ;

(J ∗(1)
A−1(lY sY )IY )J, (T ∗(1)

A−1 t̃Y )T 〉
≡ ∣∣ 〉

. (10)

With the help of Eq. (10), the transition coefficients
〈α∗(Y )|α∗(Y N )〉 can be computed in two steps as follows

〈α∗(Y )|α∗(Y N )〉 = 〈 | 〉〈 | 〉
= δspectator 〈 | 〉A−1〈 | 〉. (11)

Here also an explicit summation over the auxiliary states

|(α∗(1)
)∗(Y )〉 = | 〉 is assumed. Clearly, the first overlap

〈 | 〉 is essentially given by the coefficients of fractional
parentage (cfp) 〈 | 〉A−1 of an (A − 1)N system, which
basically determine the antisymmetrized basis of (A − 1)

nucleons in terms of the |α∗(1)
(A−1)〉 states [38], and is therefore

well known. Hence, only the second transition 〈 | 〉 in
Eq. (11) needs to be taken care of. This transition is a trans-
formation between different Jacobi coordinates and there-
fore given by the general coordinate transformation formula
derived in [38]. We skip the detailed derivation but provide
the final expression in Appendix A. Finally, a summation
over the intermediate states | 〉 is carried out. Let us again

stress that both, the transition coefficients 〈α∗(Y )|(α∗(2)
)∗(Y )〉

and 〈α∗(Y )|α∗(Y N )〉, are independent of the HO frequency
(HO-ω) as well as of the interactions employed. They can
therefore be prepared in advance and stored in the machine-
independent HDF5 format so that the parallel input and out-
put can be performed most efficiently. The corresponding
files can be found at [47].

Once the transition coefficients 〈α∗(Y )|α∗(Y N )〉 are known,
the single-strangeness Hamiltonian matrix elements
〈α∗(Y )|HS=−1|α′∗(Y )〉 are computed similarly as in Eq. (8):

〈α∗(Y )|HS=−1|α′∗(Y )〉
= 〈 | 〉〈 |HS=−1| 〉〈 | 〉. (12)

Thus, the evaluation of the matrix elements
〈α∗(Y )|HS=0|α′∗(Y )〉 and 〈α∗(Y )|HS=−1|α′∗(Y )〉 can be traced
back to multiplications of very large but sparse matrices. As
usual, we solve the eigenvalue problem using the Lanczos
method so that these matrix multiplications must be com-
puted again and again. Therefore, an efficient method to
evaluate such product matrices is extremely important. More
details on the technical realization are given in Ref. [48].

4 SRG evolution for chiral NN and YN interactions

We follow the formalism initially applied by Wegner [43] to
solid state physics and later employed by Bogner, Furnstahl
and Perry [49] to nuclear interactions, which defines the SRG
evolution in terms of a unitary transformation depending on
a flow parameter s

Hs = UsH0U
†
s ≡ Trel + Vs . (13)

Here H0 = Hs=0 is the initial (bare) Hamiltonian and Trel is
the intrinsic relative kinetic energy operator that also includes
the mass difference term when one allows for particle con-
versions in the Hamiltonian. The parameter s has the unit of
energy-2 and varies continuously from zero to ∞. Note that,
although the flow equation is solved with respect to s, for
characterizing the SRG-evolved potentials, we will utilize a
more intuitive variable
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λ =
(

4μ2

s

)1/4

, (14)

with μ = mN mΛ/(mN + mΛ) for YN interactions and
μ = mN/2 for NN forces. A similar definition for λ was
introduced in [49]. λ can be (to some approximation) iden-
tified with the width of the band for which the SRG evolved
matrix elements of the interaction are non-zero. By differen-
tiating the transformation Eq. (13), one obtains the evolution
equation for the Hamiltonian

dHs

ds
= dVs

ds
= [ηs, Hs] (15)

where the generator

ηs = dUs

ds
U †
s = −η†

s (16)

is an anti-hermitian operator. Usually, ηs is taken as a com-
mutator of an hermitian operator Gs with the Hamiltonian,
ηs = [Gs, Hs]. The operator Gs is often chosen such that the
evolved Hamiltonian Hs possesses a desired form. For our
purpose of decoupling the low- and high-momentum com-
ponents, the simplest, but yet very useful generator, is the
relative kinetic energy excluding the mass shift. We take

Gs = p2

2μ
(17)

with p being the particles relative momentum. The flow equa-
tion Eq. (15) now becomes an operator equation

dVs
ds

=
[[ p2

2μ
, Vs

]
, Hs

]
. (18)

This is then solved in a partial-wave relative momentum basis

|p (ls)J ; t1mt1S1 t2mt2 S2〉 ≡ |pα〉, (19)

where l is the orbital angular momentum that combines with
the total spin s to form the total angular momentum J . Fur-
ther, (ti ,mti , Si )i=1,2 are sets of the intrinsic quantum num-
bers that distinguish different particle states: isospin, isospin
projection and strangeness. The normalization of the basis
states Eq. (19) simply reads

∑

α

∫
dpp2 |pα〉〈pα| = 1. (20)

After projecting Eq. (18) onto the basis Eq. (19), one obtains
the flow equation in form of an integro-differential equation

dV αα′
s (pp′)
ds

=
[
T α
rel(p)

p′2

2μα′ + T α′
rel(p

′) p2

2μα

−T α
rel(p)

p2

2μα
− T α′

rel(p
′) p′2

2μα′
]
V αα′
s (pp′)

Fig. 1 Contour plot of the YN potential matrix elements for all possible
particle channels with charge Q = 0 and in the 1S0 partial wave. The
potentials are evolved to four different values of the YN flow parameter:
λY N = 98 fm−1 (first column, almost non-evolved), λY N = 3 fm−1

(second column, slightly evolved), λY N = 1.6 fm−1 (third column) and
λY N = 0.868 fm−1 (last column). The initial potential is the YN NLO
interaction with a regulator of ΛY = 650 MeV

+
∑

α̃

∫ ∞

0
dkk2

[ p2

2μα
+ p′2

2μα′ − k2

μα̃

]

×V αα̃
s (pk)V α̃α′

s (kp′). (21)

Here, the reduced mass μ and Trel depend explicitly on the
particle states α since physical masses are employed for the
SRG evolution. We solve the flow equation Eq. (21) numer-
ically using a non-equidistant momentum grid characterized
by the ultraviolet momentum cutoff pmax and N Gauss-
Legendre integration points pn with corresponding weights
wn(n = 1, · · · N ). Since the initial potentials often vary at
low momenta faster than at high momenta, it is useful to
define the grid such that it is sparse at high momenta but
denser at the low-momentum region.

Discretizing the flow equation leads to a set of coupled dif-
ferential equations which is then solved using the advanced
multi-step Adams PECE (Predict Estimation Correct Estima-
tion) method [50]. The SRG-evolution of the YN interaction
NLO19 with a regulator of ΛY = 650 MeV is illustrated in
Fig. 1. The contour plots are the potentials for all the particle
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B

Fig. 2 Dependence of BΛ(3
ΛH) on λY N for λNN = 1.6 (blue +) and

2.4 fm−1 (orange x). Starting point of the NN SRG evolution is the
Idaho-N3LO(500) interaction [51]. For YN, the NLO19(600) interac-
tion [25] is used. The black solid horizontal line and cyan band indicates
the experimental value [52] and its uncertainty. The blue dashed and
orange dash-dotted lines are results for the bare YN interaction and for
λNN = 1.6 and 2.4 fm−1, respectively

channels with zero charge and in the 1S0 partial wave. The
initial potential NLO19(650) is evolved to four different val-
ues of the YN flow parameter: λY N = 98 fm−1 (almost non-
evolved, bare interaction), λY N = 3 fm−1 (slightly evolved),
λY N = 1.6 fm−1 (commonly used) and the extreme case
λY N = 0.868 fm−1. As expected, the SRG evolution steadily
drives the potentials toward a diagonal form decoupling the
low- and higher-momentum states. While the bare NLO19
shows a strong repulsive behavior for almost all particle
channels over the entire momentum range, the SRG-evolved
potentials become slightly attractive at low momenta but
remain repulsive at high momenta.

We explicitly checked that NN and YN scattering observ-
ables remain unchanged by this unitary transformation. At
this point, we neglect induced three-baryon forces (3BFs).
In this approximation, the evolution of NN and YN forces is
not linked to each other and we can choose λNN and λY N

independently.
As a first application, we apply the SRG transformed inter-

actions to obtain binding energies E(3
ΛH) and the Λ separa-

tion energies BΛ(3
ΛH) = E(2H) − E(3

ΛH) of 3
ΛH.

Since the 3
ΛH is predominantely a weakly bound Λ to a

significantly stronger bound deuteron, it is very difficult to
obtain converged results for the binding energies using the
NCSM. Therefore, for this study, we use solutions based on
Faddeev equations (see Appendix B). With this method, an
accuracy of 1 keV for these energies is routinely achieved.

In Fig. 2, BΛ(3
ΛH) is shown for one typical choice of

the NN and YN starting interactions. It can be seen that the
dependence on the flow parameter of the NN interaction is
of the order of 20 keV. But, unfortunately, it is also clear that
the dependence on λY N is rather significant, indicating a non-
negligible contribution of SRG induced three-baryon interac-
tions. We will discuss later in Sect. 5.5 how this issue could

be possibly resolved without explicitly taking the induced
3BFs into account. Note that, for λY N � 1.0 fm−1, the sep-
aration energy is in fair agreement with experiment and the
result of calculations based on the bare YN interaction.

5 Results

As first application of the Jacobi NCSM, we employ the
approach to investigate some interesting hypernuclear sys-
tems up to the p-shell. Since 3BFs are not included in the cur-
rent study, our primary focus will be the impact of different
chiral NN and YN interactions as well as their SRG evolution
on the separation energies. For the NN interaction we con-
sider the next-to-next-to-next-to-leading order potential from
the Idaho group with a regulator of ΛN = 500 MeV (Idaho-
N3LO(500)) [51], and the high-order semilocal momentum-
space (SMS) potential regularized with ΛN = 450 MeV
(SMS N4LO+(450)) [53]. Two chiral potentials at next-to-
leading order, namely NLO13 and NLO19 [25,40] with the
range of regulators ΛY = 550–650 MeV, are chosen for the
YN interaction. In all calculations, contributions of the NN
and YN potentials in partial waves higher than J = 6 are left
out. The high partial waves affect the energies only by a few
keV. For simplicity, the electromagnetic part of the NN inter-
action [54] as well as the Coulomb point-like contribution in
some YN channels are not included in the SRG evolution,
but only added afterwards. We observed that evolving these
interactions changes hypernuclear binding energies only by
few keV.

5.1 Extrapolation of the binding energies

Due to the finite truncation in the single-particle Hilbert
space, results from the NCSM calculations are dependent
on the HO frequency ω as well as on the model space size
N . Both parameters can be understood in terms of an ultra-
violet and infrared cutoff. Based on this insight, theoretically
founded extrapolations can be performed with respect to the
infrared cutoff [55–58]. This is especially interesting for the
calculation of expectation values of long range operators, like
radii, because the infrared dependence is pronounced in this
case. Since we will be most concerned about the ultraviolet
dependence, we follow here a simple, but practical approach.

In order to obtain converged binding energies, and, at the
same time, to be able to systematically estimate the numerical
uncertainties, we follow a two-step procedure as employed
in [38]. The first step is to minimize (eliminate) the HO-ω
dependence. For each model space size N , we first calculate
the binding energies, E(ω,N ), for a range of HO-ω and then
utilize the following ansatz,

E(ω,N ) = EN + κ(log(ω) − log(ωopt))
2, (22)
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Fig. 3 E(4
ΛHe, 0+) as a function of HO ω. Solid lines with differ-

ent colors and symbols represent numerical results for different model
spaces N . Dashed lines are obtained using the ansatz Eq. (22). The cal-
culations are based on the Idaho-N3LO(500) (NN) and NLO19(600)
(YN) interactions, SRG-evolved to λNN = 1.6 fm−1 and λY N =
2.00 fm−1, respectively

to extract the lowest binding energy EN for the considered
model spaceN and the corresponding optimal HO frequency
ωopt. As an example, we show in Fig. 3 the HO-ω dependence
of E(4

ΛHe, 0+) for model spaceN varying from 10 to 22. We
notice that the optimal frequency ωopt shifts to lower values
as the model space size N increases, and the ω-dependence
of E(ω,N ) flattens out as we move forward to the largest
model space Nmax.

In the second step, the binding energies with the minimal
ω-dependence, EN , are used for extrapolating to a converged
result in infinite model space assuming an exponential ansatz

EN = E∞ + Ae−BN . (23)

The confidence interval for each EN in Eq. (23) can be deter-
mined either from the spread of the energy in the vicinity of
ωopt or from the slope between two successive energies, EN
and EN+2. The latter is mostly employed in our calculations.
It should however be stressed that the two ways of assign-
ing confidence intervals are practically equivalent and lead
to the same results within the numerical uncertainties. The
determined intervals will serve as a weight for each EN in
the model-space fit using the ansatz in Eq. (23). The model-
space extrapolation for E(4

ΛHe, 0+) is illustrated in Fig. 4.
The final uncertainty (shaded area) is then taken as the dif-
ference between the extrapolated E∞ and ENmax.

In hypernuclear physics, we are generally more interested
in the so-called Λ−separation energy, BΛ, which is defined
as the difference between the binding energies of a hypernu-
cleus and of the corresponding core nucleus. Hence,

BΛ(4
ΛHe) = E(3He) − E(4

ΛHe) . (24)

Fig. 4 N -dependence of E(4
ΛHe, 0+). The symbols and uncertainties

represent results extracted from Eq. (22). The black line is obtained
using Eq. (23). The (red) straight line with shaded area indicates the
converged result and its uncertainty. Same description of interactions
as in Fig. 3

Fig. 5 N -dependence of BΛ(4
ΛHe, 0+). Same description as in Fig. 4

Following the definition Eq. (24), in principle, one can sub-
tract the separation energy for each ω and N ,

BΛ(4
ΛHe, ω,N ) = E(3He, ω,N ) − E(4

ΛHe, ω,N ) , (25)

and then employ the described two-step procedure to extrap-
olate the converged BΛ. We have however observed that for
each model space sizeN , the useful ranges of ω and hence the
optimal frequencies ωopt for the nuclear core 3He and hyper-
nucleus 4

ΛHe are somewhat different. It is therefore advis-
able to eliminate the ω-dependence of the binding energies
of 3He and 4

ΛHe separately. After that, one subtracts BΛ(N )

for every model space N

BΛ(4
ΛHe,N ) = E(3He,N ) − E(4

ΛHe,N ) , (26)

and utilizes the ansatz Eq. (23) to extract the converged result
for BΛ(4

ΛHe) together with its uncertainty, see Fig. 5. Clearly,
the Λ-separation energy BΛ(4

ΛHe) exhibits a slightly faster

123



301 Page 8 of 20 Eur. Phys. J. A (2020) 56 :301

(a) (b)

Fig. 6 N -dependence of: a BΛ(5
ΛHe), b BΛ(7

ΛLi, 1
2

+
0). Same description as in Fig. 4. The Idaho-N3LO NN and NLO19(600) YN potentials are

SRG evolved to λNN = 1.6 fm−1 and λY N = 2.6 fm−1, respectively

convergence pattern as that of the binding energy E(4
ΛHe).

This tendency is also observed for all other investigated
hypernuclei. For completeness, the model-space extrap-
olations of BΛ(5

ΛHe) and BΛ(7
ΛLi, 1/2+) are shown in

Fig. 6.
It is stressed that there is no fundamental reason that the

separation energies monotonically converge with increasing
model space, but we observed this monotonic behavior in all
systems computed so far. This motivated the use of Eq. (23)
for the extrapolation of the separation energies. Note that the
resulting energies are consistent with results of FY calcula-
tions and/or with a fit of the N dependence to a constant. The
latter way of fitting is less preferable since it generally leads
to larger uncertainties.

Let us finally emphasize that, although the described pro-
cedure is computationally rather expensive, it allows for a
systematic and, most importantly, reliable extraction of the
final results of the NCSM calculations. Within the Jacobi-
basis formalism such a robust extrapolation is feasible and
yields plausible results for light p-shell hypernuclei as one
will see in the following sections.

5.2 Benchmark results for 4
ΛHe

As mentioned above, to validate the J-NCSM we benchmark
our converged results with the binding energies obtained
when solving the Faddeev-Yakubovsky equations [23]. More
details are given in Appendix B.

The binding energies for the ground state (0+) and first
excited state (1+) of 4

ΛHe are tabulated in Table 1. Clearly,
within the numerical accuracy of better than 20 keV, the two
approaches, J-NCSM and FY, agree very nicely.

Table 1 Ground- and excited-state energies (in MeV) of 4
ΛHe obtained

from the Faddeev-Yakubovsky (FY) and J-NCSM approaches. The cal-
culations are based on the Idaho-N3LO(500) NN interaction, SRG-
evolved to λNN = 1.6 fm−1, and the NLO19(600) YN potential,
evolved to three different SRG flow values, namely λY N = 1.6, 3.0
and 14.0 fm−1

λY N 0+ 1+

[fm−1] J-NCSM FY J-NCSM FY

1.6 −10.700(1) −10.70 −9.863(3) −9.86

3.0 −10.751(6) −10.77 −9.81(1) −9.82

14.0 −9.27(8) −9.31(3)

5.3 Effects of NN chiral interactions on BΛ

It is known that the nuclear binding energy E(3He) and con-
sequently E(4

ΛHe) are very sensitive to the employed NN
potentials when three-nucleon (3N) and higher-body forces
are not included. This is noticeable in the binding energies of
the 4

ΛHe(0+) state shown in Fig. 7, obtained for various NN
forces: the Idaho-N3LO(500), the improved chiral N2LO and
N4LO with a configuration-space regulator of R = 0.9 fm
[59,60] and the SMS N4LO+(450).

All NN forces are evolved to an SRG parameter of
λNN = 1.6 fm−1. For that value overall the binding ener-
gies of the A = 3–6 nuclei are reasonably well described.
Of course, this requirement can be fulfilled within a cer-
tain range of λNN values so that the actual choice is to
some extent arbitrary. The YN potential is evolved to a wide
range of flow parameters, 1.0 ≤ λY N ≤ 3.0 fm−1. One
clearly sees that the binding-energy variations due to dif-
ferent chiral NN forces can be as large as 270 keV. How-
ever, being evolved to the same λNN = 1.6 fm−1, these NN
potentials have a rather similar impact on the Λ removal
energy, in particular for low SRG-YN flow parameters
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Fig. 7 E(4
ΛHe, 0+) as a function of λY N . The calculations are based

on the NLO19(600) YN potential and four chiral NN interactions: the
Idaho-N3LO(500) (red circles), two improved chiral-N4LO (blue tri-
angles) and chiral-N2LO (green diamonds) interactions regularized in
configuration space with a cutoff R = 0.9 fm [59,60], and the SMS
N4LO+(450) potential (black crosses). All NN potentials are evolved
to a flow parameter of λNN = 1.6 fm−1. The error bars show the esti-
mated numerical uncertainties

Fig. 8 BΛ(4
ΛHe, 0+) as a function of λY N . Same description of the

curves as in Fig. 7

λY N ≤ 1.6 fm−1 where there is practically no difference in
BΛ(4

ΛHe, 0+), see also Fig. 8. For higher values of λY N ,
the discrepancies among the computed values of BΛ(4

ΛHe,
0+) somewhat increase but remain relatively small, about
50 keV at most (at λY N = 2.0 fm−1). We stress that a similar
behavior is also observed for the Λ-separation energies of
4
ΛHe(1+), 5

ΛHe and 7
ΛLi( 1

2
+
, 0).

Hence, in order to further explore the effect of the NN
interaction on BΛ, we perform calculations using the two
most accurate NN potentials, namely Idaho-N3LO(500) and
SMS N4LO+(450) evolved to several λNN flow variables. It
is remarked that, although these two NN potentials describe
the available NN scattering data almost perfectly, they indeed
have very different matrix elements, particularly in the high-
momentum region. It is therefore of great interest to study
their predictions for BΛ(A = 4 − 7) more carefully. To

speed up the convergence of the results, the NLO19(600) YN
potential is evolved to a flow parameter of λY N = 2.0 fm−1.
This specific choice of λY N is based on the above observa-
tion (cf. Fig. 8) that the largest discrepancy in BΛ is gen-
erally observed at that flow parameter. The results for the
A = 4–7 hypernuclei are displayed in Fig. 9 where the Λ-
separation energies are plotted against the binding energies
of the corresponding core nucleus. For the chosen YN flow
parameter, the hypernuclei are strongly overbound compared
to experiment. We show the results here to emphasize the
effect of different NN interactions. For a direct compari-
son with the experimental separation energies, see below.
The energies obtained with the Idaho-N3LO(500) and SMS
N4LO+(450) potentials are denoted by red squares and blue
crosses, respectively. Also, the error bars are added in order
to indicate the estimated numerical uncertainties, which in
many cases are hardly visible. The light colored bands indi-
cate the variation of the separation energies depending on the
binding energy of the core nucleus. Evidently, there is a gen-
eral trend that stronger nuclear binding energies lead to larger
Λ-separation energies. Furthermore, the overall variations in
the Λ-separation energies of the two states 4

ΛHe(0+, 1+) due
to the change in the 3He core binding energies are noticeable,
i.e. around 400 keV (see panels (a), (b)). However, the width
of the band is rather small, of the order of 80 keV only.
For the 5

ΛHe system, panel (c), the variation of BΛ stem-
ming from the SRG evolution of the individual NN inter-
actions is roughly 600 keV while the overall discrepancy
caused by these two NN potentials can be twice as large.
It can be also clearly seen that the width of the band for
5
ΛHe is rather large, about 220 keV. However, given the con-
siderable variation in BΛ(5

ΛHe), the relative width (roughly
22% of the 1 MeV total variation for all NN interactions
employed) is of the same order of magnitude as that for the
two states of 4

ΛHe. Similarly, the effect of the SRG-NN evo-

lution on BΛ(7
ΛLi, 1

2
+
) for the SRG-YN flow parameter of

λY N = 2.0 fm−1 is also pronounced. Here, one of the individ-
ual NN potentials, i.e. the Idaho-N3LO(500), already causes
a discrepancy in BΛ(7

ΛLi, 1
2
+
) of about 0.8 MeV, which is

almost twice the variation in BΛ(5
ΛHe). The total variation

when considering both interactions is however similar for
both hypernuclei, namely 1.1 MeV. But the relative varia-
tion (i.e. the relative width of the colored band in panel (d))
is rather large, about 400 keV (40% of the 1.1 MeV). For
larger λNN (λNN > 1.6 fm−1), the numerical uncertainties
become visible for 7

ΛLi and its core. Since the larger λNN sig-
nificantly increase the width of the band, its width might be
further reduced when more converged calculations become
available also for these flow parameters. In any case, one
can expect from the correlations shown in Fig. 9 that the
dependence of BΛ on the nuclear interactions can be sub-
stantially reduced once the 3N forces are properly included
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Fig. 9 Λ-separation energies versus binding energies of the nuclear
core: a 4

ΛHe(0+) and 3He, b 4
ΛHe(1+) and 3He, c 5

ΛHe and 4He,

d 7
ΛLi( 1

2
+
, 0) and 6Li. The calculations are based on the Idaho-

N3LO(500) (red circles) and the SMS N4LO+(450) (blue aster-

isks) NN potentials, evolved to several values of λNN , in com-
bination with the NLO19(600) YN interaction, SRG evolved to
λY N = 2.0 fm−1. The error bars show the estimated numerical
uncertainties

so that nuclear core binding energies are in fair agreement
with experiment. Work in this direction is in progress.

5.4 Effects of the NLO YN interactions on BΛ

We are now in the position to study the impact of the NLO13
and NLO19 YN interactions on the Λ-separation energies.
The two NLO potentials are practically equivalent in terms of
describing two-body YN observables. Furthermore, by con-
struction, they reproduce the experimental binding energy of
3
ΛH within its uncertainty (of order of 50 keV). However, as
discussed in Ref. [25], the NLO19 interaction is characterized
by a different (somewhat weaker) Λ-Σ transition strength,
particularly in the 3S1 partial-wave channel, a feature that is
believed to be closely related to the strength of chiral YNN
forces [25,35]. The latter is expected to manifest itself in
the predictions of observables (e.g. separation energies) for
A ≥ 4 hypernuclei and in infinite nuclear matter. Indeed, it

has been found that the NLO19 potential is more attractive
in the medium than NLO13 [25]. In addition, in that work,
the possible impact of the NLO13 and NLO19 potentials on
the A = 4 hypernucleus has been thoroughly investigated,
using the Faddeev-Yakubovsky approach. We provide here
again results for the spin-doublet states of 4

ΛHe for bench-
marking. Furthermore, we extend the study to the A = 5–7
hypernuclei. For our purpose, it is sufficient to choose the
SMS N4LO+(450) potential with λNN = 1.6 fm−1.

The separation energies BΛ of the ground- and first-
excited states of the A = 4–7 hypernuclei evaluated for the
two NLO YN potentials with various regulators ΛY = 500–
650 MeV are presented in Fig. 10. In that calculation, both
YN interactions are evolved to the same range of the SRG-
YN flow parameters, 0.8 ≤ λY N ≤ 3.0 fm−1. For the two
states of 7

ΛLi, the calculations have only been performed
up to λY N ≤ 1.6 fm−1 in order to save some computa-
tional resources. Overall, the dependence of BΛ on the chi-
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Fig. 10 Λ-separation energies
of a 4

ΛHe(0+), b 4
ΛHe(1+), c

5
ΛHe( 1

2
+
), d 7

ΛLi(1/2+), e
7
ΛLi(3/2+) as a function of the
SRG-YN flow parameter λY N .
Black lines with grey bands
represent experimental value of
BΛ and the uncertainties,
respectively. The calculations
are based on the NN interaction
SMS N4LO+(450) with the
SRG-NN evolution parameter of
λNN = 1.6 fm−1 in
combination with the NLO13
(red solid lines) and NLO19
(dashed blue lines) YN
potentials for four regulators,
ΛY = 500 (triangles), 550
(stars), 600 (crosses) and 650
(circles) MeV

(a) (b)

(c) (d)

(e)

ral regulator ΛY is somewhat stronger for the NLO19 than
for the NLO13 potential. This, however, does not relate to
any physical reason but simply reflects the fact that, in the
NLO19 realization, one has less freedom to absorb regulator
artifacts into the parameters of the chiral interactions (low-
energy constants, LECs) because some of the LECs are deter-
mined (and taken over) from fits to NN phase shifts in line
with SU(3) flavor symmetry, see [25]. There are also notice-
able differences between the Λ-separation energies obtained
with the two interactions, which apparently exceed the ΛY -
dependence. For all states except 4

ΛHe(0+), see panels (b–
e), one observes a general tendency toward larger BΛ val-
ues predicted by NLO19 than those calculated with NLO13.
In other words, the interaction with a weaker Λ–Σ conver-
sion potential generally leads to larger Λ-separation energies.

That trend is, however, not clear for the ground state of 4
ΛHe as

can be seen in panel a. We remark that a similar (chiral) regu-
lator dependence and sensitivity to the YN potential has been
observed in the Faddeev–Yakubovsky results for A = 3, 4
hypernuclei, computed directly with the bare YN interactions
[25]. There, it was already found that NLO19 leads to some-
what stronger binding which might be a result of the weaker
Λ–Σ conversion of NLO19 compared to NLO13. The pro-
nounced variations of BΛ predicted by the two interactions
are a striking evidence for possible contributions of 3BFs to
the Λ separation energy. These discrepancies are expected to
be largely removed once proper chiral YNN forces are taken
into account explicitly [61].

Let us mention that the strong sensitivity of the Λ-
separation energies of 4

ΛHe(1+) and 5
ΛHe to the Λ-Σ transi-
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tion potential can be understood using a simple approxima-
tion for the effective spin-dependent ΛN potential in s-shell
hypernuclei, which can be written as [62,63]

3
ΛH : ṼΛN ≈ 3

4
V s

ΛN + 1

4
V t

ΛN

4
ΛHe(0+) : ṼΛN ≈ 1

2
V s

ΛN + 1

2
V t

ΛN

4
ΛHe(1+) : ṼΛN ≈ 1

6
V s

ΛN + 5

6
V t

ΛN

5
ΛHe : ṼΛN ≈ 1

4
V s

ΛN + 3

4
V t

ΛN ,

(27)

where V s
ΛN and V t

ΛN are the singlet- and triplet two-body
potentials, respectively. It follows clearly from Eq. (27) that
the two states, 4

ΛHe(1+) and 5
ΛHe, are dominated by the

spin-triplet ΛN interaction, which is, as already mentioned,
strongly influenced by the Λ-Σ conversion. Interestingly, as
can be seen in Fig. 10, the results for 4

ΛHe
(
1+)

, 5
ΛHe

(
1/2+)

and 7
ΛLi

(
3/2+)

in panels (b), (c) and (e) are clearly differ-
ent for the NLO13 and NLO19 set of interactions. To a lesser
extend this can also be seen for 7

ΛLi
(
1/2+)

in panel (d). Since
4
ΛHe(1+) and 5

ΛHe are dominated by the 3S1 interaction,
cf. Eq. (27), this suggests that the 3S1 contribution is also
very important for 7

ΛLi, especially for the 3/2+ state. A future
more detailed study will be necessary to validate this hypoth-
esis.

In this context, the probabilities of finding a Σ particle
in the hypernuclear wave functions (PΣ ) are of great inter-
est, too. Clearly, they are an indication for the strength of
the Λ-Σ conversion of the YN interaction. Moreover, it can
be expected that there are some correlations to the charge-
symmetry breaking (CSB) of Λ separation energies of mirror
hypernuclei as well [23,24]. Our calculated Σ-probabilities
for A = 4–7 hypernuclei obtained with the two NLO poten-
tials are shown in Fig. 11. It is interesting that in all systems
PΣ decreases with decreasing λY N for λY N ≥ 1 fm−1 but
increases again for λY N < 1 fm−1. Additionally, The results
displayed in panel (a) clearly indicate a noticeable depen-
dence of PΣ(4

ΛHe, 0+) on the chiral cutoff ΛY . That regu-
lator dependence, however, becomes somewhat less visible
for all other states, see panels (b-e). Also, the variation of
the Σ-probabilities caused by the two chiral interactions is
most pronounced for 4

ΛHe(0+). This is exactly opposite to
the observations for the Λ-separation energies as discussed
above. Moreover, there is an overall tendency toward larger
PΣ predicted by the interaction with a stronger Λ-Σ transi-
tion (i.e. NLO13) although it is somewhat blurred by the regu-
lator dependence. We further note that, while there is a visible
difference between the Σ-probabilities of the s-shell spin-
doublet states (in particular for the predictions of NLO13),
the p-shell doublet PΣ(7

ΛLi, 1/2+) and PΣ(7
ΛLi, 3/2+) are

quite similar for both interactions. Clearly, one sees that the

Λ-separation energies and Σ-probabilities in A = 4–7 hyper-
nuclei are somewhat correlated. However, we do not observe
a definite one-to-one correlation between the two quantities.

5.5 Correlation of Λ-separation energies

In Sect. 5.4, we have observed surprisingly similar trends
of the Λ-separation energies for all investigated hypernuclei
with respect to the running SRG-YN flow parameter λY N .
This probably hints at some intriguing correlations between
the Λ-separation energies of these systems. In order to quan-
titatively study these correlations, we compute BΛ for all
considered hypernuclei, for the same range of λY N evolu-
tion parameters, and compare the results with each other
for selected values of λY N . It is known that 5

ΛHe is the
experimentally best studied hypernucleus so far. Also, our
J-NCSM results for this hypernucleus are well-converged.
We therefore use 5

ΛHe as a benchmark system and plot
BΛ(5

ΛHe) against the separation energies of other hypernu-
clear systems (A = 3–7), see Fig. 12. For that, we choose
Idaho-N3LO(500) evolved to an SRG-NN flow variable of
λNN = 1.6 fm−1 for the NN interaction and NLO19 with a
regulator of ΛY = 600 MeV for the YN interaction. How-
ever, we want to emphasize that similar trends are observed
for SMS N4LO+(450) and in combination with other YN
interactions, see also [48]. Let us first look at the correlation
between the Λ removal energies of the 5

ΛHe hypernucleus
and of the hypertriton. Here BΛ(3

ΛH) are computed within
the Faddeev–Yakubovky approach since NCSM calculations
are very difficult for this weakly bound system. The correla-
tion plot is presented in panel (a) of Fig. 12. Here each symbol
represents the numerical BΛ of the two systems calculated at
the same flow parameter λY N , and it also includes the esti-
mated uncertainties that are small in most of the cases. The
straight line is obtained from a linear fit to the results, remind-
ing one of the Tjon line between the binding energies of 4He
and 3He [67–72]. We observe a nearly perfect linear correla-
tion between BΛ(3

ΛH) and BΛ(5
ΛHe) for flow parameters up

to λY N = 2.0 fm−1 and a slight deviation from the straight
line as λY N further increases. The latter can be attributed
to the possible contribution of 3BFs [48]. Interestingly, the
correlation line goes through the experimental Λ-separation
energies of the two systems at λY N = 0.836 fm−1. The
value of λY N , at which the 5

ΛHe hypernucleus is properly
described, will be referred to as the magic flow parameter
λmY N . For that value, the separation energy of 3

ΛH is 92 keV.
Using the bare NLO19(600) and the same NN interaction,
we found 119 keV which is in reasonable agreement with
the result at λmY N . Obviously, the concrete value of λmY N will
depend on the YN interactions as well as their regulators.

The correlation plots for the ground and excited states of
4
ΛHe/4

ΛH are displayed in panels (b) and (c), respectively.
While there is a strictly linear correlation between the sepa-
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Fig. 11 Probabilities of finding
the Σ hyperon in the wave
functions of a 4

ΛHe(0+), b
4
ΛHe(1+), c 5

ΛHe(1/2+), d
7
ΛLi(1/2+), e 7

ΛLi(3/2+) as a
function of SRG-YN flow
parameter λY N . Same NN
potential, symbols and lines as
in Fig. 10

(a) (b)

(c) (d)

(e)

ration energies BΛ(4
ΛHe/4

ΛH, 1+) and BΛ(5
ΛHe), the correla-

tion line for BΛ(4
ΛHe/4

ΛH, 0+) and BΛ(5
ΛHe) exhibits a small

loop to the right for large values of λY N , λY N ≥ 2.4 fm−1

similar to the behavior of the correlation line for BΛ(3
ΛH) and

BΛ(5
ΛHe). Also, from panels (b) and (c), one easily notices

almost identical results for the isospin mirrors 4
ΛHe and 4

ΛH.
This is because there are no CSB terms in the employed ver-
sion of the chiral YN potential. The CSB effect arising from
the point Coulomb interactions is included in the calcula-
tion, but its contribution is minor [73,74]. It is interesting
that, at the magic flow parameter, λmY N = 0.836 fm−1, the
experimental value of BΛ(4

ΛHe, 1+) is exactly reproduced
while the ground state is somewhat underbound. Further-
more, at this λmY N our J-NCSM results for the spin dou-
blet of 4

ΛHe, BΛ(0+(1+)) = 1.57(0.97) MeV, are surpris-

ingly close to the those obtained within the exact Faddeev-
Yakubovsky method using the non-evolved bare YN interac-
tions, BΛ(0+(1+)) = 1.61(1.18) MeV. The slight deviation
between the two results is consistent with the size of 3BFs
expected from the power counting of chiral EFT [25].

Similarly, almost perfectly linear correlations are also
found between BΛ(5

ΛHe) and the ground-state energies EΛ

of the p-shell 6
ΛHe and 6

ΛLi hypernuclei, panel (d), as well
as the Λ-separation energies BΛ of the ground and first
excited states in 7

ΛLi, panels (e) and (f), respectively. Note
that the resonance energies EΛ(6

ΛLi/6
ΛHe) are computed as

the difference between the hypernuclear binding energies
E(6

ΛLi/6
ΛHe) and the binding energy E(4He). This removes

most of the NN-interaction dependence. In panel (d), one
notices a pronounced difference in the binding energies EΛ
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Fig. 12 Correlations of
Λ-separation energies between
5
ΛHe and a 3

ΛH, b the 0+ state of
4
ΛHe (red) and 4

ΛH (blue), c the
1+ state of 4

ΛHe (red) and 4
ΛH

(blue), d 6
ΛHe (red) and 6

ΛLi
(blue), e 7

ΛLi(1/2+, 0) and f
7
ΛLi(3/2+, 0), for a wide range
of flow parameters λY N . The
error bars represent numerical
uncertainties which are small in
most of the cases. The
experimental Λ-separation
energy for 5

ΛHe is from [52].
The results for other systems are
taken from a [52], b–c [64] for
4
ΛHe (black asterisk) and 4

ΛH
(grey square), d [65] for 6

ΛHe
(black asterisk) and 6

ΛLi (grey
square), e [52] and f [66]. The
Idaho-N3LO(500) evolved to
1.6 fm−1 and NLO19(600) was
used for the NN and YN
interaction, respectively

(a) (b)

(c) (d)

(e) (f)

of 6
ΛHe and 6

ΛLi (about 1.08 MeV), which simply results
from different contributions of the Coulomb interactions of
the two nuclear cores 5He and 5Li. We remark that the
NLO19(600) YN potential with the magic flow parame-
ter λmY N = 0.836 fm−1 underbinds the 6

ΛHe/6
ΛLi systems

while it slightly overbinds the first excited state in 7
ΛLi.

The obtained Λ-separation energy for the ground state,
BΛ(7

ΛLi, 1/2+) = 5.59 ± 0.01 MeV, is, however, in very
good agreement with the result from emulsion experiments,
BΛ(7

ΛLi, 1/2+) = 5.58 ± 0.03 MeV [52]. It should be noted
that counter experiments reported a somewhat larger value
for 7

ΛLi(1/2+, 0), namely BΛ(7
ΛLi, 1/2+) = 5.85 ± 0.13 ±

0.1 MeV [75].

The observed linear correlations between the separation
energies of different hypernucler systems is rather striking
and interesting. It will be important to examine those corre-
lations using different YN bare interactions in order to check
whether this useful property is a universal feature or just a sig-
nature of the chiral interactions. Nevertheless, our finding for
the chiral forces with SRG evolution suggests that the miss-
ing SRG-induced three-body forces might be parameterized
by only one adjustable parameter (effects of SRG-induced
higher-body forces on BΛ are expected to be insignificant
[35]). If this is the case, one is able to minimize the effects
of the omitted three-body forces by tuning the SRG-YN flow
parameters λY N to the magic value for which a particular
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hypernucleus, for example 5
ΛHe, is properly described. This

magic flow parameter λmY N then can serve as a good start-
ing point for hypernuclear calculations requiring a SRG-YN
evolution – which, in turn, may provide a good opportunity
to study hypernuclear structure as well as the YN forces in a
less expensive but realistic approach. A possible application
of this finding has been considered in [15,48]. In this context
let us mention that similar linear correlations have been also
observed in Ref. [19] for the double-Λ hypernuclei 5

ΛΛH and
6

ΛΛHe.
As discussed in Ref. [25], the contribution of chiral 3BFs

is comparable to the uncertainty at NLO of approximately
200–300 keV for A = 4. The full λY N dependence of the
result is an order of magnitude larger than what is expected
for 3BFs by chiral power counting. This situation is very
different from that for ordinary nuclei where SRG-induced
and chiral 3BFs are of comparable size. Wirth and Roth have
pointed out that the size of the SRG-induced 3BFs is prob-
ably enhanced because the Σ contribution is significantly
weakened when λY N is lowered [35]. Our observation here
is that, for extreme values of λY N below 1 fm−1, the PΣ

value increases again and the overbinding disappears. For
such λY N , the contribution of 3BFs is again in line with the
expectation from the chiral power counting. Especially, it
seems to be neglible for 3

ΛH.

6 Conclusions

In this work, we have extended the nuclear J-NCSM to
describe baryonic systems with strangeness S = −1. The
inclusion of the strangeness degree of freedom significantly
complicates the implementation of the approach in part
because the particle conversion Λ-Σ is explicitly taken into
account. Accordingly, the Jacobi basis now consists of two
orthogonal subsets, characterized by the Λ and Σ hyperons.
For the applications of the two-body NN and YN forces, we
introduced two auxiliary bases that explicitly single out the
involved NN and YN pairs, respectively. Like the coefficients
of fractional parentage, the expansion coefficients can also be
computed in a preparatory step separately from any binding-
energy calculations. Once they are known, the evaluation of
the many-body Hamiltonian matrix elements in the Jacobi
basis (and therefore the energy calculations) are straightfor-
ward.

As a first application of the Jacobi NCSM, we utilized the
approach to investigate hypernuclear systems with A = 4–7.
Here, the Λ-separation (binding) energies are extracted sys-
tematically via a two-step procedure that enables an effective
removal of the HO-ω sensitivity of the final results as well
as a reliable estimation of the numerical uncertainties.

We performed the energy calculations based on various
SRG-evolved chiral interactions. In particular, we considered
the Idaho N3LO and SMS N4LO NN potentials in combina-
tion with the next-to-leading order YN interactions, NLO13
and NLO19. We found that at low values of the SRG YN
flow parameter, λY N ≤ 1.4 fm−1, the separation energies
are not very sensitive to the NN potentials. The dependence
somewhat increases for higher λY N , however, the relative
variations remain quite similar for all systems.

It turned out that, for some of the considered hypernu-
clei, there are large differences between the predictions of
the two practically phase-equivalent YN potentials NLO13
and NLO19. Those can be attributed to possible (but so far
neglected) contributions of chiral three-body (YNN) forces
[61]. We also observed that there are almost perfect linear cor-
relations between the Λ separation energies of the A = 4–7
hypernuclei calculated for a wide range of the SRG-YN flow
parameter. Interestingly, at the magic value λmY N that yields
the empirical BΛ(5

ΛHe), the separation energies of 3
ΛH and

4
ΛHe(0+, 1+) are in good agreement with the results for the
non-evolved YN interactions (at least within the expected
contributions of the chiral 3BF), while the one for 7

ΛLi is
surprisingly close to the experiment. This may suggest that
by tuning the SRG parameter such that the 5

ΛHe hypernu-
cleus is correctly reproduced, one can effectively minimize
the effects of the missing SRG-induced 3BF. Therefore, the
special flow parameter λmY N can be a good starting point
for hypernuclear calculations that require an SRG evolution.
Such calculations will be useful to develop improved YN
interactions. Eventually, taking SRG-induced and chiral 3BF
into account will be necessary. Work in this direction is in
progress.
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Appendix A: Transition
〈(

α∗(1))∗(Y)|α∗(YN)
〉

The states |α∗(Y N )〉 and
∣∣(α∗(1)

)∗(Y )〉 with directions of
momenta are illustrated in Figs. 13 and 14, respectively. The
explicit quantum numbers of these states are

∣∣(α∗(1)
)∗(Y )〉 = |α∗(1)

A−1〉 ⊗ |Y 〉
= |Ñ JT, α

∗(1)
(A−1) nY IY t̃Y ;

(J ∗(1)
A−1(lY sY )IY )J, (T ∗(1)

A−1 t̃Y )T 〉 ≡ ∣∣ 〉
,

(A.1)

with

|α∗(1)
(A−1)N 〉 = |N ∗(1)

(A−1) J
∗(1)
A−1T

∗(1)
A−1, α̃(A−2)N nN IN tN ;

( J̃A−2(lN sN )IN )J ∗(1)
A−1, (T̃A−2tN )T ∗(1)

A−1〉
≡ ∣∣ 〉

,

(A.2)

and

|α∗(Y N )〉 = |αY N 〉 ⊗ |αA−2〉
= |NJT , αY N nλλ αA−2; ((lY N (sY sN )SY N )

JY N (λJA−2)Iλ)J , ((tY tN )TY N TA−2)T 〉
≡ ∣∣ 〉

.

(A.3)

Thereby, the total HO quantum number is given by Ñ =
N ∗(1)

(A−1) + 2nY + lY and N = NY N + NA−2 + 2nλ + λ.

The transition
〈(
α∗(1)

)∗(Y )|α∗(Y N )
〉

can be interpreted as a
transformation between different Jacobi coordinates. We can
therefore make use of the general Jacobi-coordinate trans-
formation formula Eq. (11) in [38]. For that, we first need to
specify the directions of the relative motions of particles (sub-

clusters) in the two states |α∗(Y N )〉 and
∣∣(α∗(1)

)∗(Y )〉. These
directions are depicted in Figs. 13 and 14.

Comparing the definitions of our two states |α∗(Y N )〉 and∣∣(α∗(1)
)∗(Y )〉 with the corresponding ones in Eq. (11) in [38],

one notices that the directions of the relative momenta are the
same, however, the ordering of the coupling of the angular

momenta and isospins in
∣∣(α∗(1)

)∗(Y )〉 and |α〉(13)2 are differ-

ent. The recoupling from (T̃A−2 tN )T ∗(1)
A−1 to (tN T̃A−2)T

∗(1)
A−1

requires a simple phase factor,

∣∣(T̃A−2 tN )T ∗(1)
A−1

〉 = (−1)T̃A−2+tN−T ∗(1)
A−1

∣∣(tN T̃A−2)T
∗(1)
A−1

〉
.

(A.4)

And, changing the coupling
∣∣( J̃A−2(lN sN )IN )J ∗(1)

A−1

〉
to∣∣(lN (sN J̃A−2)SA−1)J

∗(1)
A−1

〉
can be done with the help of 6 j-

symbols

|( J̃A−2(lN sN )IN )J ∗(1)
A−1

〉 = (−1)IN+2 J̃A−2+lN+sN

×
∑

SA−1= J̃A−2+sN

ÎN ŜA−1

{
J̃A−2 sN SA−1

lN J ∗(1)
A−1 IN

}

× ∣∣(lN (sN J̃A−2)SA−1)J
∗(1)
A−1

〉
, (A.5)

where the abbreviation ÎN = √
2IN + 1, etc., is introduced.

Now taking into account Eqs. (A.5) and (A.4) and then mak-
ing use of the Jacobi-coordinate transformation formula in

Fig. 13 |α∗(Y N )〉 state with directions of momenta

Fig. 14
∣∣(α∗(1)

)∗(Y )〉 state with directions of momenta
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[38], one obtains

〈(
α∗(1)

)∗(Y )|α∗(Y N )
〉

= δNÑ δtY t̃Y δT̃A−2TA−2
δ J̃A−2 JA−2

δÑA−2NA−2
δζ̃A−2ζA−2

× ÎN ÎY ĴY N ŜY N ÎA−2 Ĵ
∗(1)
A−1 T̂

∗(1)
A−1 T̂Y N

× (−1)3JA−2+2TA−2+TY N+SY N+λ+tY+lY+tN+lN+IN+1

×
∑

SA−1= J̃A−2+sN

(−1)SA−1 Ŝ2
A−1

{
JA−2 sN SA−1

lN J ∗(1)
A−1 IN

}

×
∑

L ,S

L̂2 Ŝ2

⎧
⎨

⎩

lN SA−1 J ∗(1)
A−1

lY sY IY
L S J

⎫
⎬

⎭

⎧
⎨

⎩

lY N SY N JY N

λ JA−2 IA−2

L S J

⎫
⎬

⎭

× 〈nN lN nY lY : L | nY N lY N nλ λ : L〉d
×

{
sY sN SY N

JA−2 S SA−1

} {
tY tN TY N

TA−2 T T ∗(1)
A−1

}
,

(A.6)

where the HO bracket 〈nN lN nY lY : L | nY N lY N nλ λ : L〉d
follows the same convention as in [76] with the mass ratio
given by

d = (A − 2)m(tY )

(A − 1)mN + m(tY )
. (A.7)

Appendix B: Faddeev-Yakubovsky equations for hyper-
nuclei

Faddeev-Yakubovsky equations in momentum space are a
well established tool to solve the Schrödinger equations for
light hypernuclei with A = 3 or 4 [21,23]. We use A = 4
results to benchmark the NCSM and to provide results for
bare interactions. For A = 3, momentum space is much
more efficient for the representation of wave functions and,
therefore, for the solution of the Schrödinger equation than
HO wave functions. The weak binding of 3

ΛH leads to an
extremely slow convergence of the energy with respect to
N .

Our solution follows Ref. [77]. For A = 3, we need to
solve a set of coupled Faddeev equations

|ψA〉 = G0t12(1 − P12)|ψB〉
|ψB〉 = G0t31 (|ψA〉 − P12|ψB〉) (B.8)

for two Faddeev amplitudes |ψA〉 and |ψB〉. Here, we assume
that particles 1 and 2 are nucleons and particle 3 is the
hyperon. The permutation operator P12 exchanges all coor-
dinates and quantum numbers of the two nucleons. G0 is the
free three-baryon propagator. The two off-shell t-matrices t12

and t31 are solutions of the Lippmann-Schwinger equation of
subsystem (12) or (31), respectively. For the solution, we use

two momentum Jacobi bases:

|p12 p3α〉 =
∣∣∣∣p12 p3

[
(l12s12) j12

(
l3

1

2

)
I3

]
J (t12tY )T MT

〉

(B.9)

and

|p31 p2β〉 =
∣∣∣∣p31 p2

[
(l31s31) j31

(
l2

1

2

)
I2

]
J (t31

1

2
)T MT

〉
.

(B.10)

Here, pi j denotes the magnitude of the relative momentum
in subsystem (i j) and pk the relative momentum of particle k
relative to the other two particles. The angular dependence is
expanded in corresponding orbital angular li j and lk . These
are coupled to the spin of the two-baryon subsystem si j to
the total angular momentum of the subsystem ji j . lk and the
spin 1/2 of the third baryon couple to the spectator angular
momentum Ik . Finally, the total angular momentum J of the
three-body system is obtained by coupling ji j and Ik . The
isospin of the pair ti j is coupled either with the isospin of
the hyperon tY = 0, 1 or with the isospin of the nucleon
1/2 to the total isospin T and its third component MT . For
the hypertriton MT = 0 and T = 0 is the by far dominant
component of the wave function. For the solution, the two
Faddeev amplitudes |ψA〉 and |ψB〉 are expanded in terms
of their natural set of basis states |p12 p3α〉 and |p31 p2β〉,
respectivley. Because of the short-ranged hypernuclear inter-
actions, the t-matrices converge quickly with respect to par-
tial waves which is then also true for the Faddeev components
if expressed in their natural set of basis states. Note that tran-
sitions between these states are required in order to solve the
equations. In this work, we restrict the partial wave so that
ji j ≤ 6. This ensures that energies are converged to better
than 1 keV. We also calculated the wave function

|Ψ 〉 = |ψA〉 + (1 − P12)|ψB〉 (B.11)

and checked explicitly that the expectation value of the oper-
ator agrees with the energy obtained by solving the Faddeev
equations. For this check, we need to include the T = 1 and
T = 2 contributions to reach an accuracy of the order of 1
keV.

For A = 4 hypernuclei, we need to solve a set of five
coupled Yakubovsky equations

|ψ1A〉 = G0t12(P13P23 + P12P23)

[|ψ1A〉 + |ψ1B〉 + |ψ2A〉]
|ψ1B〉 = G0t12 [(1 − P12)(1 − P23)|ψ1C 〉

+(P13P23 + P12P23)|ψ2B〉]
|ψ1C 〉 = G0t14 [|ψ1A〉 + |ψ1B〉 + |ψ2A〉 − P12|ψ1C 〉

+P13P23|ψ1C 〉 + P12P23|ψ2B〉]
|ψ2A〉 = G0t12 [(P12 − 1)P13|ψ1C 〉 + |ψ2B〉]
|ψ2B〉 = G0t34 [|ψ1A〉 + |ψ1B〉 + |ψ2A〉] (B.12)
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for the five Yakobovsky components |ψ1A〉, |ψ1B〉, |ψ1C 〉,
|ψ2A〉 and |ψ2B〉. Each of these components is expanded in
terms of its natural Jacobi coordinate, respectively, as defined
below

|p12 p3q4αA〉
=

∣∣∣∣p12 p3q4

[[
(l12s12) j12

(
l3

1

2

)
I3

]
j123

(
l4

1

2

)
I4

]
J

[
(t12

1

2
)τ123tY

]
T MT

〉

|p12 p4q3αB〉
=

∣∣∣∣p12 p4q3

[[
(l12s12) j12

(
l4

1

2

)
I4

]
j124

(
l3

1

2

)
I3

]
J

[
(t12tY )τ124

1

2

]
T MT

〉

|p14 p2q3αC 〉
=

∣∣∣∣p14 p2q3

[[
(l14s14) j14

(
l2

1

2

)
I2

]
j124

(
l3

1

2

)
I3

]
J

[
(t14

1

2
)τ124

1

2

]
T MT

〉

|p12 p34qβA〉
= |p12 p34q [[(l12s12) j12 λ] I (l34s34) j34] J

(t12t34)T MT 〉
|p34 p12qβB〉
=|p34 p12q [[(l34s34) j34 λ] I (l12s12) j12] J

(t34t12)T MT 〉 . (B.13)

Here, the free propagator G0 and the t-matrices ti j are of
course embedded into the four-baryon system. The cou-
pling scheme is much more complicated than in the three-
baryon system. Now there are two types of Jacobi coordinates
required. The first three basis sets are of the “3+1” type. Here,
three momenta pi j , pk and ql are required that are relative
momenta within the pair i j , of particle k with respect to pair
i j and of particle l with respect to the three-body subsytem
i jk. Additionally to the quantum numbers of the three-body
system, we have now introduced ji jk and τi jk for the total
angular momentum and isospin of the three-body subsystem.
J , T and MT are the total angular momentum, isospin and
third component of isospin of the four-baryon system. We
have again omitted the spins and isospins of the two baryons
in the inner most subsystem since only t4 = tY differs from
1/2. The last two basis sets are of the “2+2” type. Here, rel-
ative momenta of two two-body subsytems pi j and pkl are
introduced together with angular momenta and isospins for
these subsystems. Additionally, the relative momentum of
the two pairs q and its angular momentum λ is required. In
order to finally define the total four-body angular momen-
tum, an additional intermediate angular momentum I needs
to be introduced as seen in the definition of the states.

For four-baryon states, it is not sufficient to constrain the
two-body angular momenta in order to get a finite num-
ber of partial waves. Additional constraints on other angular
momenta are necessary. For the calculations of this work,
we chose ji j ≤ 5, li ≤ 6, λ ≤ 6, li j + lk + ll ≤ 10
and li j + lkl + λ ≤ 10. In order to save computational
resources, we restrict ourselves to the by far most impor-
tant isospin component T = 1/2, although the contribution
to the energy of the Yakubovsky equations induces an uncer-
tainty of 10 keV. Interestingly, the other isospin components
are more important when calculating the expectation value
for which they contribute approximately 20 keV. Note that
also our J-NCSM results are based on the dominant isospin
components only. We therefore need to take an uncertainty
of approximately 20 keV in the four-baryon systems into
account due to missing isospin components.

Once the Yakubovsky components are found, we obtain
the wave function by

|Ψ 〉 = (1 + P13P23 + P12P23)|ψ1A〉
+(1 + P13P23 + P12P23)|ψ1B〉〉
+(1 − P12)(1 + P13P23 + P12P23)|ψ1C 〉
+(1 + P13P23 + P12P23)|ψ2A〉〉
+(1 + P13P23 + P12P23)|ψ2B〉 . (B.14)

This briefly summarizes the Faddeev-Yakubovsky approach
as we used it for benchmarking our J-NCSM results.
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