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Abstract A semi-classical approximation has been a pow-
erful tool in understanding the dynamics of low-energy
heavy-ion reactions. Here we discuss two topics in this
regard, for which Mahir Hussein was a world leading pio-
neer. The first topic is heavy-ion fusion reactions of neutron-
rich nuclei, in which the breakup process of the projectile
nucleus plays a crucial role. The second is rainbow and glory
scattering, for which characteristic oscillatory patterns in dif-
ferential cross sections can be well understood in terms of
intereferences among several semi-classical trajectories.

1 Introduction

The semi-classical approximation provides an intuitive view
of various quantum mechanical phenomena in terms of clas-
sical concepts, such as a trajectory of a particle. This approx-
imation works well when a variation of a potential within
a wave length is negligibly small. The condition is satis-
fied when the energy and/or the mass of a particle is large.
This is well fulfilled in heavy-ion reactions [1–3], for which
a reduced mass for the relative motion between nuclei is
in general large (but, see also Ref. [4] for the validity of
the semi-classical approximation). As a matter of fact, angu-
lar distributions of elastic scattering can often be interpreted
using classical trajectories. Also, a semi-classical coupled-
channels method, in which quantal coupled-channels equa-
tions are solved along a classical trajectory, has been devel-
oped for inelastic scattering [5]. Moreover, the WKB formula
for a penetrability has provided a convenient reference for
heavy-ion fusion reactions at energies close to the Coulomb
barrier. At the microscopic level, the time-dependent Hartree-
Fock (TDHF) theory or the time-dependent density func-
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tional theory (TDDFT) [6,7] can also be derived using the
semi-classical approximation [8].

Mahir Hussein was an expert of the semi-classical approx-
imation in the context of heavy-ion reactions, and carried out
many pioneering works, as is well summarized in his text-
book on nuclear reactions written with one of us (L.F.C.) [2].
In this paper, we shall discuss two topics among them. First is
heavy-ion fusion reactions of neutron-rich nuclei. Here, the
weakly bound nature of a projectile nucleus leads to com-
plex features in the fusion dynamics. While a halo structure
of a projectile nucleus naturally lowers the Coulomb barrier,
the reaction dynamics is much more complicated due to the
breakup process [9,10]. Hussein was the first who discussed
the role of breakup in fusion of weakly bound nuclei [11].
The second topic which we discuss in this paper is heavy-
ion elastic scattering. Differential cross sections often exhibit
characteristic oscillations. In the semi-classical approxima-
tion, such oscillations can be naturally interpreted as interef-
erences between several trajectories, such as intereferenes
between a near-side and a far-side components of scattering
amplitude [12], and intereferences between an internal wave
and a barrier wave [13]. Among them, rainbow scattering is
particularly important, as it probes a relatively inner region
of an optical potential and thus it can be used to constrain the
depth of a potential [14]. Glory scattering is another interest-
ing phenomenon in which many classical trajectories coher-
ently contribute to cross sections. In his own terms, Hussein
mentioned “These effects (nuclear rainbow and glory scatter-
ing) are also common in atomic and molecular scattering, and
have been reviewed extensively in the literature. Of course
the commonest of all is the atmospheric rainbow and glory, a
beautiful colorful dance of light and water” (at the workshop
on occasion of Noboru Takigawa’s 60th birthday, November
2003, Sendai, Japan). Here in this paper we shall discuss the
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novel concept of glory in the shadow of rainbow, introduced
by Hussein and his collaborators in Refs. [15,16].

2 Fusion of weakly bound nuclei

2.1 A two-neutron halo nucleus 11Li

Nuclei far from the stability line are characterized by an
extended density distribution due to weakly bound valence
nucleons. Among such neutron-rich nuclei, the 11Li nucleus
has been one of the most well studied nucleus since the dis-
covery of its halo structure [17]. The two-neutron separa-
tion energy of this nucleus is indeed small, S2n = 378 ± 5
keV [18]. A strong low energy peak has been experimentally
found in the Coulomb breakup spectrum [19], which is con-
sistent with the small separation energy [20]. The low energy
peak is due to the electric dipole (E1) excitation and thus has
been referred to as a soft dipole mode. If one employs a three-
body model with 9Li + n + n for the 11Li, the operator for the
electric dipole excitation is proportional to r1 + r2, where ri
is the coordinate of the i-th neutron measured from the core
nucleus 9Li [21–23]. Using the cluster sum rule, the total E1
strength is thus proportional to the ground state expectation
value of R2, where R = (r1 + r2)/2 is the center of mass of
the valence neutrons with respect to the core nucleus. This
implies that if one somehow supplies information on the dis-
tance between the two valence neutrons, rnn = r1 − r2, one
can combine those information to reconstruct the three-body
geometry of the 11Li nucleus. This was done by Bertulani and
Hussein, who used a HBT-type analysis of the two valence-
halo particles correlation to extract the opening angle of the
valence neutrons in 11Li to be θnn = 66+22

−18 degrees [24].
See also Ref. [25], which used the matter radius to estimate
rnn and obtained θnn = 56.2+17.8

−21.3 degrees. These values are
consistent with each other and both are smaller than the value
of the uncorrelated case, that is, 90◦, implying the existence
of the dineutron correlation [22,26,27] in 11Li.

2.2 Sub-barrier fusion of 11Li

Heavy-ion fusion reactions take place by quantum tunneling
at energies below the Coulomb barrier, and they are sensitive
to details of nuclear structure of colliding nuclei. In partic-
ular, it has been well known that collective excitations of
the colliding nuclei significantly enhance fusion cross sec-
tions at subbarrier energies [28–32]. A natural question is
then how fusion cross sections are affected when a neutron-
rich nucleus is used as a projectile. There are several aspects
which one has to take into account. Those include:

– The extended density distribution of the projectile. This
lowers the Coulomb barrier, enhancing fusion cross sec-
tions [33].

– The soft dipole excitation. Even though it may not carry
a large collectivity [34], couplings to continuum may in
general enhance fusion cross sections.

– The breakup process. It may hinder fusion cross sections
since the lowering of the Coulomb barrier disappears. At
the same time, it may also enhance fusion cross sections
if couplings to a breakup channel dynamically lowers
the Coulomb barrier [35,36], in a similar way to well-
known channel coupling effects for inelastic and transfer
channels [30].

– The transfer processes. For neutron-rich nuclei, a trans-
fer Q-value is likely positive, which may significantly
influence fusion reactions [37]. It is still a challenge to
take into account simultaneously both the transfer and
the breakup processes in a theoretical calculation [38].

Among these effects, in this paper we particularly focus
on the effect of breakup on heavy-ion fusion reactions. This
problem was discussed for the first time by Hussein et al. [11].
Couplings to a breakup channel yields a dynamical polar-
ization potential, VDPP, for the entrance channel. By taking
into account the imaginary part of the dynamical polarization
potential, Hussein et al. estimated fusion cross sections in the
presence of a breakup channel as,

σfus(E) = π

k2

∑

l

(2l + 1)

[
1

2

(
Tl(E + F) + Tl(E − F)

)

×PS
l (E), (1)

where E is the incident energy in the center of mass frame,
k =

√
2μE/h̄2 is the wave number for the relative motion,

with μ being the reduced mass, and F is the strength of
the coupling between the elastic channel and the soft dipole
mode, taken at the barrier radius. The contribution from each
partial wave involves the product of two factors. The first is
the sum of the transmission probabilities through the barrier
of the l-dependent potential for the collision energies E ± F .
The energy shifts, ±F , account for the effects of couplings
with the soft dipole mode in an approximate way [39,40].
The second term is the probability of surviving the prompt
breakup process. It is given by

PS
l (E) = 1 − Pbu

l (E), (2)

with Pbu
l (E) being the breakup probability, estimated semi-

classically as,
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Fig. 1 Fusion cross sections for the 11Li+208Pb system. The dotted
line is obtained with a single-channel calculation, while the dashed line
is obtained by taking into account couplings to a soft dipole model
excitation in 11Li. The solid line takes into account the breakup process
in the semi-classical approximation, in addition to the couplings to the
soft dipole excitation. Taken from Ref. [11]

Pbu
l (E) = 1 − exp

[
2

∫ ∞

r0l

WDPP(r)
dr

h̄v(r)

]
. (3)

Above, r0l is the outermost classical turning point for l, v(r)
is the local velocity, and WDPP is the imaginary part of the
dynamical polarization potential. Notice that the exponent
in this equation is a half of that in Ref. [11], by taking into
account only the incoming part of the trajectory [41]. Since
WDPP is negative, in this approach fusion cross sections are
suppressed due to the breakup.

Figure 1 shows fusion cross sections for 11Li+208Pb,
within different approximations. The solid line represents the
cross section of Eq. (1), which takes into account both cou-
plings to the soft dipole mode and the influence of prompt
breakup. The dashed line corresponds to the cross section
taking into account couplings to a soft dipole excitation in
11Li, but not survival probabilities (F �= 0 but PS

l (E) = 1).
Finally, the dotted line corresponds to results of a one-channel
calculation, which neglects all coupling effects (F = 0 and
PS
l (E) = 1). Comparing the solid and the dotted lines, one

concludes that the overall effect of the couplings is suppres-
sion of fusion above the Coulomb barrier and enhancement at
sub-barrier energies. One can see also that, the cross section
of Eq. (1) converges to the dashed line as the energy decreases
well bellow the Coulomb barrier, meaning that in this energy
limit the effects of prompt breakup become negligible, while
the influence of the soft dipole mode remains.

Dasso and Vitturi [35] proposed a different approach to
estimate breakup effects in 11Li+208Pb fusion. They per-
formed schematic coupled channel calculations involving
two 11Li channels, corresponding to the elastic channel and
the low-lying soft dipole mode, and a third channel for 9Li,
associated with the breakup process. They found that the cou-
plings with the soft mode make the fusion cross section much

larger, at all collision energies. Further, they found that the
inclusion of the 9Li channel in the coupled equations makes
the cross section still larger.

These early calculations were based on very drastic
approximations. Dasso and Vitturi treated the breakup chan-
nel only schematically. On the other hand, Hussein et al.
evaluated the imaginary part of the polarization potential
with several approximations, and completely neglected its
real part. In reality, one has to take into account both the real
and the imaginary parts of the dynamical polarization poten-
tial. The real part of the dynamical polarization potential is
attractive at energies below the Coulomb barrier [42], and
the coupling to the breakup process may lead to an enhance-
ment. More quantitative theories were developed along the
last 3 decades, including realistic quantum mechanical calcu-
lations, based on the continuum discretized coupled channel
(CDCC) method [43–45]. A summary of these theories is
presented below.

2.3 Further developments in the treatment of breakup in
fusion

In collisions of neutron-halo projectiles, the experimental
fusion cross section has contributions from captures of the
whole projectile, and of the charged core, produced in prompt
breakup. The two processes are experimentally indistinguish-
able. However, the latter contribution is expected to be small,
owing to the higher Coulomb barrier for the charged fragment
and also to its lower kinetic energy. This justifies the neglect
of 9Li fusion in Ref. [11].

A different situation occurs in collisions of weakly bound
projectiles that break up into two charged fragments. Some
examples are the stable 6Li (4He + 2H) and 7Li (4He + 3H)
nuclei, and the unstable 8B (7Be + p). In such cases, the fusion
of the whole projectile, known as complete fusion (CF), may,
in principle, be experimentally distinguished from the fusion
of one of the breakup fragments, known as incomplete fusion
(ICF). Some experiments can determine also individual cross
sections for the captures of the two breakup fragments. Then,
the situation calls for more powerful theoretical models, that
can predict cross sections for CF and also individual ICF
cross sections for the two fragments, denoted by ICF1 and
ICF2.

The first theory to evaluate CF and ICF cross sections was
introduced in Ref. [46], which reported also measurements
of CF and ICF cross sections in 6,7Li + 209Bi collisions.
A detailed presentation of the theory can be found in Ref.
[47]. It treats the collision by a classical three-body model,
describing the motion of the target (T) and the two clusters of
the projectile (c1 and c2) on the x-y plane. The time evolution
of the system is determined by the Hamiltonian,

123



11 Page 4 of 11 Eur. Phys. J. A (2021) 57 :11

Fig. 2 CF and TF cross sections in the 6,7Li + 209Bi collisions of the
classical model, in comparison with the data. The calculations and the
data are from the work of Dasgupta et al. [46]

H = p2
T

2mT

+ p2
1

2m1

+ p2
2

2m2

+ V12 (r1 − r2)

+V1T (r1 − rT) + V2T (r2 − rT) . (4)

Above, rT, r1 and r2 are vectors in the x-y plane, repre-
senting respectively the target, fragment c1 and fragment
c2, and pT, p1 and p2 are the corresponding momenta. The
three potentials represent the interactions between the par-
ticles of the model (T, c1 and c2). The time evolution of
the system begins with the projectile far apart from the tar-
get, where its interactions with the fragments depend only
on the projectile-target relative vector, R = rP − rT, with
rP = (m1r1 +m2r2)/(m1 +m2). The initial projectile-target
momentum is given by the collision energy, whereas the ini-
tial values of r1,p1, r2,p2 are chosen randomly, from a dis-
tribution of positions and momenta given by the ground state
(g.s.) wave function of the projectile. The calculations are
performed for a mesh of impact parameters and the CF, ICF1

and ICF2 are determined from the final states of the three-
body system. This model was used to predict CF and TF
(CF + ICF1 + ICF2) cross sections. The results for the 6,7Li
+ 209Bi systems are shown in Fig. 2, in comparison with the
data. Despite the simplicity of the model, it gives a reason-
able account of the data at above-barrier energies. Of course,
a classical model cannot describe sub-barrier fusion.

Diaz-Torres et al. [48,49] developed a three-dimensional
version of the classical model, in which the breakup of the
projectile was treated as a stochastic process, based on a
breakup function determined from sub-barrier breakup mea-
surements [50], or from CDCC calculations. This model was
implemented in the PLATYPUS computer code, available
in the literature [51]. It was used to evaluate CF and ICF
cross sections in the 9Be–208Pb [48] and 6Li– 209Bi [52] col-
lisions. Their results were compared with the data of Refs.
[53] and [46,54], respectively. The theoretical cross sections
were shown to be in qualitative agreement with the above-
barrier data.

Although the classical models give reasonable descrip-
tions of the CF and ICF cross sections above the Coulomb
barrier, they do not include quantum mechanical effects, like
barrier tunnelling, which are essential at sub-barrier energies.
The situation is improved in the semiclassical model (see e.g.
Ref. [55]). The model is based on the same Hamiltonian of
Eq. (4), but in the c.m. of the projectile-target system, and
expressed in terms of the vectors R and r = r1 − r2. That is,

H = P2
R

2μPT

+ V1T (R, r) + V2T (R, r) + h0, (5)

where h0 is the intrinsic Hamiltonian of the projectile,

h0 = p2
r

2μ12

+ V12 (r) . (6)

In the above equations PR and pr are the momenta associated
with R and r, and μPT and μ12 are the reduced masses of
the projectile-target system and of the two clusters of the
projectile. This Hamiltonian has both bound and scattering
eigenstates, and its ground state is denoted by ϕ0. The infinite
space of scattering states is approximated by a finite set of
wave packets, referred to as bins, by the CDCC method [43–
45].

The projectile-target motion is treated by classical mechan-
ics. The trajectory, r(t), is obtained solving the classical
equations of motion with the Hamiltonian

Hclass(R) = P2
R

2μPT

+ V (R), (7)

with

V (R) =
∫

d3r
[
V1T (R, r) + V2T (R, r)

] |ϕ0(r)|2 . (8)

The intrinsic wave function of the projectile is expanded over
the bound and continuum-discretized eigenstates of h0, and
the coefficients are found by solving the Schrödinger equa-
tion in the r-space, with the time-dependent Hamiltonian

h(t) = h0 + V1T (t, r) + V2T (t, r)

≡ h0 + V1T (R(t), r) + V2T (R(t), r) .

The CF cross section is then found multiplying the final
populations of the bound states by transmission coefficients
of the whole projectile through the barrier of V (R). The ICF
cross section for each fragment, depends on the population
of continuum states and transmission coefficients of the frag-
ment through its interaction potential with the target. The
association of CF and ICF with bound states and continuum
states of the projectile was proposed in the quantum mechan-
ical calculations of Hagino et al. [36], which is discussed later
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in this section. The semiclassical method was used to calcu-
late CF and ICF cross sections in collisions of 6,7Li with 209Bi
[56], 197Au and 159Tb [57]. The overall agreement between
the theoretical CF cross sections and the data at near- and
above barrier energies was reasonably good, while the pre-
dictions of ICF cross sections were poorer.

The most reliable calculations of fusion cross sections in
collisions of weakly bound nuclei are based on the CDCC
method. Standard CDCC calculations give only σTF [58–61].
It is extracted from σR through the relation,

σTF = σR −
∑

γ �=0

σγ , (9)

where γ �= 0 correspond to the nonelastic channels (the
elastic is labelled by γ = 0), both bound and unbound (con-
tinuum discretized). In Eq. (9), σR is the total reaction cross
section, given by the expansion

σR = π

k2

∑

J

(2J + 1)
[

1 − |S0(J )|2
]
, (10)

where S0(J ) is the elastic S-matrix in a collision with total
angular momentum J .

However, Hagino et al. [36] proposed a CDCC based
method that gives individual CF and ICF cross section in
collisions of weakly bound nuclei. In their method, the TF
cross section was evaluated directly by the expression,

σTF = π

k2

∑

J

(2J + 1) PTF(J ). (11)

The TF probabilities were expressed as a sum of contribu-
tions from all channels (bound and unbound) involved in the
CDCC equations. In each channel and for each J , this proba-
bility was determined by the flux that reaches the inner region
of the barrier. The CF cross section was then associated with
the contributions from the elastic channel (and from inelas-
tic channels for bound excited states, if any), whereas the
ICF cross section was given by the contribution from the
bins. This method was used to study CF and ICF in the 11Be
+ 208Pb system. Their CDCC calculations were performed
with real potentials, using the ingoing waves boundary con-
ditions (IWBC) to account for fusion absorption. Comparing
the obtained CF cross section with the fusion cross section
without breakup couplings, they found enhancement at sub-
barrier energies and suppression above the barrier.

Diaz-Torres and Thompson [62] used the same approach
to evaluate CF and ICF for the same system. However, instead
of IWBC, they used a short-range imaginary potential,W (R),
depending exclusively on the distance between the centers of
the projectile and the target. Thus, this potential is diagonal
in channel space. The TF cross section was then given by the
well known expression [2],

σTF = k

E

∑

γ,γ ′

〈
ψγ

∣∣ −Wγ γ ′
∣∣ ψγ ′

〉
, (12)

where Wγ γ ′ are the matrix-elements of the imaginary poten-
tial and ψγ is the projectile-target relative wave function in
channel γ . Since Wγ γ ′ = Wγ γ · δγ,γ ′ , the above expression
reduces to

σTF =
∑

γ

σ
(γ )

TF (13)

with

σ
(γ )

TF = k

E

〈
ψγ

∣∣Wγ

∣∣ψγ

〉
. (14)

The CF and ICF components of σTF where then evaluated
by the method of Ref. [36]. That is, the cross sections σCF

and σICF were obtained restricting the sum of Eq. (13) to
bound and to unbound channels, respectively. The calcula-
tions of Ref. [62] adopted a larger continuum space and took
into account continuum-continuum couplings, neglected in
Ref. [36], but qualitatively, they lead to the same conclu-
sion, namely: enhancement of CF at sub-barrier energies and
suppression above the barrier.

The calculations of Refs. [36,62] have a limitation. They
cannot be used in collisions of projectiles that break up into
fragments of comparable masses. The association of ICF with
unbound channels, where the two fragments tend to be far
apart, is based on the assumption that the center of mass of
the heavier fragment is very close to the center of the projec-
tile. In this way, the imaginary potential absorbs the heavier
fragment but not the lighter one. The method is justified in
the case of 11Be, that breaks up into 10Be and a neutron,
since the mass of the former is ten times larger than that of
the latter. However, it cannot be used in collisions of nuclei
like 7Li, that breaks up into a triton and an alpha particle.
In this case the mass ratio is 4/3. To deal with this kind of
weakly bound nuclei, it is necessary to use individual imagi-
nary potentials for the two fragments. This generalisation has
been carried out in a recent paper by Rangel et al. [63]. The
extended method was applied to the 7Li + 209Bi system and
the resulting CF and ICF cross sections were compared to the
data of Dasgupta et al. [46,54]. The theoretical predictions
for both cross sections were in very good agreement with the
data.

Another quantum mechanical method to evaluatedσCF was
recently proposed by Lei and Moro [64]. In a collision of a
weakly bound projectile composed of fragments c1 and c2,
the CF cross section was extracted from the expression,

σR � σCF + σinel + σEBU + σ
(c1)

NEB + σ
(c2)

NEB, (15)
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where σR is the total reaction cross section, σinel is the cross
section for inelastic excitations, σEBU is the cross section
for elastic breakup of the projectile, and σ

(ci)
NEB (i = 1, 2),

is the cross section for nonelastic breakup, where fragment
ci emerges from the interaction region and the target does not
remain in its ground state (the other fragment may be captured
by the target or collide inelastically with it). These cross sec-
tions were evaluated by different theoretical methods: σR and
σEBU were determined by CDCC calculations with appropri-
ate imaginary potentials, σinel was obtained through a stan-
dard coupled channel calculation involving the main collec-
tive states, and the nonelastic breakup cross sections were cal-
culated by the spectator-participant inclusive breakup model
of Ichimura, Austern, and Vincent (IAV) [45,65,66]. The
IAV was used to calculate CF cross sections for the 6,7Li +
209Bi systems. The resulting cross sections at above-barrier
energies were shown to be in good agreement with the data
of Dasgupta et al. [46,54]. We should also mention the work
of Parkar et al. [67], were CF and ICF cross sections for the
6,7Li + 209Bi,198 Pt systems were obtained in approximate
calculations with different short-range imaginary potentials.
Their theoretical predictions were in reasonable agreement
with the data of Refs. [46,54] and [68,69], respectively.

There are still other promising theoretical methods which
have not yet been developed to the point of making quan-
titative predictions of CF and ICF data. Hashimoto et al.
[70] proposed a CDCC-based method where the fusion cross
sections were given by radial integrals of the fragment-target
imaginary potentials, expressed in terms their separation vec-
tors, r1 and r2. Then, the CF and ICF cross sections were
respectively assigned to contributions from small and large
values of r1 and r2 in the integrand. The same idea was used
in a qualitative one-dimensional model proposed by Boseli
and Diaz-Torres [71,72], using position projected operators.
The same authors proposed a time-dependent wave-packet
approach to described collisions of three body systems, and
performed calculations of σCF and σICF for the 6Li + 209Bi
system, within a schematic one-dimensional model. Their
time-dependent method has also been used to study colli-
sions of tightly bound systems [73,74].

3 Elastic heavy-ion scattering

3.1 Rainbow and glory scattering

Let us next discuss elastic heavy-ion scattering. In the clas-
sical mechanics, the differential cross section is given by

dσcl

dΩ
= λ

k2 sin θ

(
dΘ(λ)

dλ

)−1

, (16)
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Fig. 3 The deflection function for the α + 90Zr scattering at energy
Elab = 141.7 MeV. It is obtained by neglecting the imaginary part of
an optical potential of the Woods-Saxon form

where θ is a scattering angle, k is the wave number, and λ

is the angular momentum. Θ(λ) is the scattering angle as a
function of λ, that is, the deflection function. The classical
cross section, Eq. (16), diverges at dΘ(λ)/dλ = 0 as well
as at sin θ = 0, which are referred to as rainbow scattering
and glory scattering, respectively. These are caustics in a
sense that many angular momenta, λ, contribute coherently
to scattering for a particular scattering angle θ and its vicinity.

In the semi-classical approximation, the deflection func-
tion Θ(λ) is related to scattering phase shifts, δl , for a partial
wave l as [1],

Θ(λ) = 2
dδl

dl
∼ 2(δl+1 − δl) (17)

with λ = l + 1/2. Here, the phase shift δl is a sum of a
nuclear phase shift δ

(N )
l and the Coulomb phase shift δ

(C)
l ,

that is, δl = δ
(N )
l + δ

(C)
l .

Figure 3 shows a deflection function for α + 90Zr scat-
tering at Elab = 141.7 MeV in the laboratory frame. The
phase shifts are evaluated with a Woods-Saxon potential
with the depth, the range, and the diffuseness parameters of
V0 = 117.5 MeV, R = 1.267×901/3 fm, and a = 0.783 fm,
respectively [75]. No imaginary part is included in the poten-
tial to draw the deflection function. One can see that the rain-
bow scattering takes place, at λ = 50.5 with a rainbow angle
of ΘR = 4.34◦ and at λ = 31.5 with ΘR = −73.4◦. The for-
mer is due to a balance between the repulsive Coulomb inter-
action and an attractive nuclear interaction, and is referred to
as the Coulomb rainbow scattering. On the other hand, the
latter is due to purely a nuclear interaction, and is referred to
as nuclear rainbow scattering. Scattering angles larger than
|ΘR | are forbidden classically, but they are allowed in quan-
tum mechanics due to the diffraction of a wave function;
this is called shadow scattering. In addition to the rainbows,
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Fig. 4 (Top) The angular distribution for elastic α+90Zr scattering at
Elab = 141.7 MeV. It is given as a ratio to the Rutherford cross sections,
dσR(θ). (Middle) The same as the top panel, but plotted in the linear
scale for forward scattering angles. (Bottom) The absolute value of the
nuclear scattering amplitude

the deflection function crosses zero at λ ∼ 40, that is the
condition for (forward) glory scattering.

The top panel of Fig. 4 shows the ratio of the differential
cross sections to the Rutherford cross sections. To compute
the cross sections, we include the imaginary part of the poten-
tial, with a Woods-Saxon parameterization with W = 21.02
MeV, Rw = 1.267 × 901/3 fm, and aw = 0.783 fm, together
with the charge radius of Rw = 1.3 × 901/3 fm for the
Coulomb interaction [75]. This potential well reproduces the
experimental data at Elab = 141.7 MeV [75]. The cross sec-
tions show a bump around θc.m. = 45◦, with an exponential
fall off at larger scattering angles. This is a clear manifesta-
tion of the nuclear rainbow scattering. At angles smaller than
the rainbow angle, there are two angular momenta which lead
to the same scattering angle, as can be seen in the deflection

function shown in Fig. 3. These two components interfere
with each other, leading to a characteristic interference pat-
tern given by the Airy function [1].

The middle panel of Fig. 4 shows the differential cross sec-
tions at forward angles in the linear scale. Here also one can
see a characteristic interference pattern around θc.m. = 1.6◦,
which can be interpreted as the Coulomb rainbow scattering.

The bottom panel of Fig. 4 shows the absolute value of
the nuclear scattering amplitude, fN (θ). This quantity is
enhanced at θc.m. = 0◦, with characteristic oscillations. This
is a manifestation of the glory scattering, for which the inter-
ference is originated from the contribution of the near-side
component with θ and that of the far-side component with
−θ . In the semi-classical approximation, the nuclear scatter-
ing amplitude at forward angles is given by [1,2],

fN (θ) ∝
√

2πθ

sin θ
J0(λgθ), (18)

where λg is the glory angular momentum at which the deflec-
tion function crosses zero. That is, the glory scattering is
characterized by the zero-th order Bessel function, J0.

Incidentally, the Rutherford cross section diverges at θ =
0 and it may not be straightforward to probe the forward
glory scattering experimentally. Yet, one can still use the
generalized optical theorem, that is, the sum-of-differences
(SOD) method, to extract the nuclear scattering amplitude
[15,16,76,77]. The SOD cross section is defined as

σSOD(θ) = 2π

∫ π

θ

(
dσR

dΩ ′ − dσ

dΩ ′

)
sin θ ′dθ ′, (19)

and is related to the total reaction cross section σR and the
nuclear scattering amplitude as

σSOD(θ) ∼ σR

−4π

k
| fN (θ)| sin

(
arg fN (θ) − 2δ

(C)
0 + 2η ln sin

θ

2

)
,

(20)

where η is the Sommerfeld parameter. Here we have
neglected small correction terms, which can be ignored when
θ is small. Notice that one can also access to fusion cross sec-
tions by taking

σ ′
SOD(θ) = 2π

∫ π

θ

(
dσR

dΩ ′ − dσqel

dΩ ′

)
sin θ ′dθ ′ (21)

in Eq. (19), where dσqel/dΩ is the quasi-elastic cross section
defined as a sum of elastic, inelastic, transfer, and breakup
cross sections. In this case, σ ′

SOD is related to fusion cross
sections, σfus, as [78],
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function as a function of the angular momentum λ

σ ′
SOD(θ) ∼ σfus

−4π

k
| fN (θ)| sin

(
arg fN (θ) − 2σ0 + 2η ln sin

θ

2

)
. (22)

In the α + 90Zr scattering shown in Fig. 3, the Coulomb
rainbow angle is small and the forward scattering is actually
affected both by the Coulomb rainbow scattering and by the
glory scattering. The Coulomb rainbow is more clearly seen
when a heavier nucleus is used as a projectile. In order to
demonstrate this, the upper panel of Fig. 5 shows the elastic
cross sections for the 16O + 208Pb system at Elab = 129.5
MeV. The deflection function is also shown in the lower
panel. To this end, we use the optical potential given in Ref.
[79] (the deflection function is obtained using only the real
part while the cross sections are calculated including both
the real and the imaginary parts). The deflection function has
a maximum at λ = 73.5 with the rainbow angle of 48.9◦.
The scattering cross sections exhibit a characteristic Fresnel
oscillation pattern, which can be interpreted as the Coulomb
rainbow scattering (see Sec. 5.6 in Ref. [1] for a discussion
on a relation between the Coulomb rainbow scattering and
the Fresnel diffraction).

3.2 Glory in the shadow of rainbow

Even though Fig. 4 clearly shows the features of the
nuclear rainbow and the glory scattering, the interference
pattern becomes much more complex as the incident energy
decreases. Moreover, the effect of absorption becomes more
important. In particular, the deflection function may not cross
zero but a minimum appears with a positive rainbow angle.
This is illustrated in the upper panel of Fig. 6 for α+90Zr
scattering at Elab = 40 MeV. In this figure, the deflection
function is decomposed into the barrier wave contribution
and the internal wave contribution, where the former cor-
responds to the flux reflected at the barrier while the latter
corresponds to the flux reflected at the innermost turning
point [13]. The deflection function evaluated with a quantal
calculation (the solid line) indicates that there is a crossover
from the internal wave (the dot-dashed line) to the barrier
wave (the dashed line) as the angular momentum increases,
and that the barrier wave is responsible for the nuclear rain-
bow scattering for this system. An important feature is that
the effect of nuclear interaction is not strong enough for the
barrier wave so that the deflection function does not cross
zero before it bends when the angular momentum decreases
from the angular momentum for the Coulomb rainbow scat-
tering. Interestingly, as shown in the lower panel of Fig. 6,
the nuclear scattering amplitude still shows an enhancement
at θ = 0 as in the glory scattering shown in the bottom panel
of Fig. 4. That is, the nuclear scattering amplitude exhibits a
similar behavior to glory scattering even though the deflec-
tion function does not cross zero.

In order to interpret this phenomenon, one of us (M.U.),
together with Mahir Hussein, introduced a novel concept of
glory in the shadow of rainbow [15,16]. That is, when the
deflection function does not cross zero, the zero scattering
angle corresponds to the shadow region of the nuclear rain-
bow scattering. An important point is that the nuclear rainbow
can still affect the zero angle scattering if the rainbow angle
is small because of the diffractive nature of the wave func-
tion. Using the semi-classical approximation, one can actu-
ally derive the expression for the nuclear scattering amplitude
for glory in the shadow of rainbow as [15,16],

fN (θ) ∝
√

2πθ

sin θ
(A+(θ)J0(λNRθ) + i A−(θ)J0(λNRθ))

(23)

with

A±(θ) = Ai(ξ1) ± Ai(ξ2), (24)

ξ1 =
(

Θ ′′
NR

2

)−1/3

(θNR + θ), (25)
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Fig. 6 (Upper panel) The deflection function for α+90Zr scattering at
Elab = 40 MeV. The solid line is obtained with a quantum mechanical
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tion function for the barrier wave and the internal wave, respectively,
obtained with the semi-classical approximation. The thin dashed line
shows the deflection function for the pure Coulomb scattering. (Lower
panel) The absolute value of the nuclear scattering amplitude. The solid
line shows the result of the quantum mechanical calculation, while the
dashed line is obtained with the semi-classical approximation. The dot-
dashed line is obtained with a semi-classical formula which is valid at
very small scattering angles. Taken from Ref. [16]

ξ2 =
(

Θ ′′
NR

2

)−1/3

(θNR − θ), (26)

where Ai denotes the Airy function and λNR is the nuclear
rainbow angular momentum at which the deflection func-
tion takes a minimum. θNR and Θ ′′

NR are the scattering angle
and the curvature of the deflection function at λ = λNR,
respectively. Notice that Eq. (23) is indeed similar to the for-
mula for glory scattering, Eq. (18), with a replacement of
the glory angular momentum λg with the nuclear rainbow
angular momentum λNR. In the bottom panel of Fig. 6, one
can see that the semi-classical formula (the dashed line) well
reproduces the quantum mechanical calculation (the solid
line), supporting the concept of glory in the shadow of rain-
bow.

Fig. 7 A copy of a transparency which Mahir Hussein showed at the
workshop on occasion of Noboru Takigawa’s 60th birthday (November
2003, Sendai, Japan)

4 Summary

We have discussed the semi-classical approaches to low-
energy heavy-ion reactions, focusing on heavy-ion fusion
reactions of neutron-rich nuclei and the phenomena of
nuclear rainbow and glory scattering in elastic heavy-ion
scattering. Mahir Hussein significantly contributed to both
topics, enhancing our understanding of the nature of low-
energy heavy-ion reactions. We mention that fusion of
neutron-rich nuclei are still important in connection to fusion
in neutron stars, as well as syntheses of superheavy nuclei,
especially attempts to reach the island of stability. Towards
these goals, there are still many interesting topics to clarify
in fusion of neutron-rich nuclei, such as an interplay between
breakup and transfer.

We would like to close this paper by showing a parody
of “what a wonderful world” which Hussein showed at the
meeting for Takigawa (see Fig. 7 with slight modifications by
us), since we feel that lyrics nicely reflects Hussein’s nature
as a nuclear physicist.

“What a Wonderful World” (with apologies to Louis
Armstrong)

I see trees of green, red roses too
I see them bloom for me and you
And I think to myself what a wonderful world
I see skies of blue and clouds of white
The bright blessed day, the dark sacred night
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And I think to myself what a wonderful world
The colors of the RAINBOW so pretty in the sky
And also on the faces of people going by
I see Mahir shaking hands saying how do you do
With a GLORY on his head telling the story of his life
I hear babies crying, I watch them grow
They’ll learn much more than we’ll never know
And I think to myself what a wonderful world.
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