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Abstract This report is an outcome of the workshop AI for
Nuclear Physics held at Thomas Jefferson National Acceler-
ator Facility on March 4–6, 2020

Disclaimer: This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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This report is an outcome of the workshop AI for Nuclear Physics held
at Thomas Jefferson National Accelerator Facility on March 4–6,
2020. The workshop brought together 184 scientists to explore
opportunities for Nuclear Physics in the area of Artificial Intelligence.
The workshop consisted of plenary talks, as well as six working
groups.
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1 Executive summary

Nuclear science is concerned with the understanding of the
nature of matter, its basic constituents and their interaction
to form the elements and the properties we observe. This
includes the forms of matter we see around us and also exotic
forms such as those that existed in the first moments after
the Big Bang and that exist today inside neutron stars. The
techniques, tools, and expertise needed for nuclear physics
(NP) research are therefore diverse in nature. State-of-the art
accelerators are being developed to illuminate the dynamical
basis of the core of the atom in terms of the fundamental
constituents called quarks and gluons and to increase the
number of isotopes with known properties. This scientific
infrastructure is reaching scales and complexities that require
computational methods for tasks such as anomaly detection
in operational data. New methodologies are needed to detect
anomalies and to optimize operating parameters, predict fail-
ures as well as to discover new optimization algorithms.

Artificial Intelligence (AI) is a rapidly developing field
focused on computational technologies that can be trained,
with data, to augment or automate human skill. Over the
last few decades AI has become increasingly prominent in
all sectors of everyday life, largely due to the adoption of
statistical and probabilistic methods, the availability of large
amounts of data, and increased computer processing power.

The US government is initiating a broad-based, multidis-
ciplinary, multi-agency program to build a sustained national

AI ecosystem. Based upon two decades of research, devel-
opment, and planning, the US government recognizes the
importance of AI to advances in technology, national security
and national infrastructure [1]. The national AI Initiative [2]
provides a framework to establish a national strategy for US
leadership in AI. Key areas of emphasis include: investments
in AI research and development, unleashing AI data and
resources, setting Government standards, and building the AI
workforce. Several workshops and committees have identi-
fied the scientific opportunities for AI, as well as challenges
from the intersection of AI with data-intensive science such
as NP and high-performance computing. The present report
is based on the “AI for Nuclear Physics Workshop” held in
March of 2020 and outlines ongoing AI activities, possible
contributions the NP community could make to identify and
fill possible gaps in current AI technologies and needs to ben-
efit NP research programs. The Workshop brought together
the communities directly using AI technologies and provided
a venue for identifying the needs and commonalities.

For the purpose of this report we define Artificial Intelli-
gence (AI) to broadly represent the next generation of meth-
ods to build models from data and to use these models alone
or in conjunction with simulation and scalable computing to
advance scientific research. These methods include (but are
not limited to) machine learning (ML)1, deep learning (DL)2,
statistical methods, data analytics, and automated control.

AI has tremendous potential within NP Research. It can
provide new insights and discoveries from both experimental
and computational data produced at user facilities. All top pri-
orities of the 2015 Long-Range Plan on Research Opportuni-
ties and Directions [3] can benefit from AI. A common theme
is to investigate and apply AI methods with well-understood
uncertainty quantification, both systematic and statistical, to
accelerator science, NP experimentation, and NP theory. At
the same time, a number of activities and technologies in the
diverse NP research portfolio has the potential to contribute
to the emerging AI programs. For example, NP presents data
on short time scales and with many different configurations
that expose the limitations of current methods and could con-
tribute to making AI more interpretable for the long term.

A general characteristic of the application of AI in NP
is the identification of small changes in patterns (statisti-
cal variations) in multi-dimensional and highly-correlated
data (parameters, channels). This process includes the eval-
uation of models where one can use AI methods to identify
the most promising computational pathways where AI deter-
mined parameterizations can be used to avoid performance-
limiting sections. Traditional AI tools have been applied suc-

1 Machine learning enables computers to learn from experience or
examples.
2 Deep learning is a class of ML algorithm that are composed of multiple
hidden layers.
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cessfully to some of these problems, in particular image clas-
sification. However, NP data are very diverse and to address
the most interesting challenges more science insight has to
be built into current AI technologies and AI tools have to be
tuned to optimize performance in each application domain.
Furthermore, NP data volume and complexity is increasing
at a rapid pace. To take full advantage of AI in NP will thus
require investments and changes in methodology for the pro-
visioning of computing and handling of data. This in turn will
require adequate computing resources, e.g., access to GPU
computing and disk storage at appropriate scales.

AI has the potential to transform NP. However, to fully
realize AI contributions to NP, and vice versa, close collab-
oration among universities, technology companies, national
laboratories, and other government agencies will be essen-
tial. Such collaboration will be required to bring, for example,
state-of-the art AI techniques to the NP community. Work-
force development is key to increase the level of AI-literacy
in NP. The challenges are similar to those outlined in the
NSAC Report on ‘Nuclear Physics and Quantum Informa-
tion Science’ [4] and include educational activities, creation
of a community of AI knowledgeable researchers, and col-
laboration between NP and AI experts. Cross-disciplinary
partnerships can help facilitate these connections. The list
of Community identified Needs and Commonalities for AI
Research essential for NP Applications as identified at this
Workshop are presented below and also appear in more detail
in Sect. 2 of the report:

(i) Need for workforce development: There is a need to
develop and sustain an AI capable workforce within
NP.

• Need for educational activities in AI: The goal is to
retain talented students in AI-related fields and to
help them to secure employment in a wide range of
careers, thus ensuring that the new techniques and
concepts developed in NP laboratories are widely dis-
seminated.

• Need for broader community: It is essential to have a
community of researchers knowledgeable in AI tech-
nologies.

• Need for collaborations: Long term commitment to
partnerships between NP researchers and experts in
AI/ML/Data Science is crucial as it takes time–for all
parties involved–to learn the language and methods.

(ii) Need for uncertainty quantification: The evaluation and
comparison of uncertainty predictions using different
modalities is required for widespread use of AI in NP.

(iii) Need for appropriate use of industry standard tools: sig-
nificant effort is required in the careful tuning of ML
tools (hyperparameter determination) to optimize per-
formance in each application domain.

(iv) Need for problem-specific tools: the most interesting
challenges that can be approached in NP with AI will
require approaches that go beyond industry standard
tools.

(v) Need for comprehensive data management: To maxi-
mize the usefulness of the data, it will be important to
have standards on the processing of data, the application
of theoretical assumptions, and the treatment of system-
atic uncertainties that will be used as training samples
or as part of combined analysis. This meta-data will be
encoded in the datasets.

(vi) Need for adequate computing resources: AI techniques
are computationally intensive and success in using these
techniques will require access to GPU computing and
disk storage at appropriate scales.

2 Priority research directions

One aspect of the workshop was to explore areas where the
application of AI could have a profound impact on Nuclear
Physics Research. This section summarizes those research
directions. Additional detail can be found in the Summary of
Workshop Sessions.

2.1 Future prospects

Accelerator design and operations Many areas of acceler-
ator design and operations will benefit from investments in
AI and ML technologies.

• Optimized design of accelerator systems. Development
and validation of virtual diagnostics (e.g. longitudinal
phase space monitors or predictors); Design and sim-
ulation of novel accelerators, and advanced engineered
materials; Optimized diagnostic design and deployment;
Improvement to beam sources and injector performance.

• Improving facility performance and user experience.
Data-driven beam generation, transport, delivery opti-
mization; Automated learning for operator support;
Hardware acceleration of ML in distributed control sys-
tems; Anomaly detection and mitigation (eg. LLRF, beam
diagnostics); System health monitoring (e.g., targets, cry-
oplant); Data driven system maintenance.

Holistic approach to experimentation As a long-term
vision, disparate data sources (such as accelerator param-
eters, experimental controls, and the detector data) would
be intelligently combined and interpreted to improve
experiments. Real time analysis and feedback will enable
the quick diagnostics and optimization of experimental
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setups. ML expert systems can increase the scientific out-
put from the beam time allocated to each experiment.
Experiment design not limited by computation Future
experimental advances in accelerator-based NP research
hinges on increased luminosity, which provides the statis-
tics necessary to observe rare processes. ML meth-
ods will reduce computational barriers to reach this
goal. Intelligent decisions about data reduction and stor-
age are required to ensure the relevant physics is cap-
tured. Depending on the experiment, AI can improve
the physics content of the data taken through data com-
pactification, sophisticated triggers (both software and
hardware-based), and fast-online analysis.
Improving simulation and analysis Improving simula-
tion and data analysis using ML techniques is proceeding
with two general aims: (i) to use these new techniques to
improve the sensitivity of current instruments and accu-
racy of the data, and (ii) to decrease the time simulations
and analyses takes allowing for faster turnaround time to
produce scientific results. Improving sensitivity allows
more information to be extracted from datasets, which
decreases uncertainty in results and increases discovery
potential. Decreasing simulation and analysis time, saves
costs and ultimately allows for a higher volume of sci-
entific output by accelerating the feedback loop between
experiment, analysis, and theory.
Game changer in nuclear theory A number of case
studies have been identified. They are listed in the fol-
lowing.

Sign problem in LQCD The application of Monte Carlo
techniques to systems at finite density
(as in nuclear matter), real-time
evolution (transport coefficients) and
light-cone evolution (parton distribution
functions) are hindered by the fermionic
sign-problem. AI methods have begun
to be applied, both in supervised and
unsupervised learning modes.
Potentially radical advances can be
expected along this direction once the
full power of AI is unleashed in this
problem

Extraction of
physical
observables

To extract quantities of interest from
correlation functions computed in
LQCD in some cases requires the
solution of an ill-defined inverse
problem. AI methods now being applied
to tackling the relevant inverse problems
are showing great promise for achieving
important milestones in our
understanding of hadron structure from
first principles

Propagator
inversion in
LQCD

The computation of observables in LQCD
requires the calculation of quark
propagators in the background of a large
number of gauge configurations.
Mathematically this requires the
inversion of a large matrix. ML methods
are beginning to be used to take cheaper
inversions, done with low precision, and
recovering the full precision propagator,
with enormous savings in computer
resources

Bayesian
inference and
global QCD
analysis

Recent progress in ML with deep learning
is enabling the development of new
tools to advance the science of
femtography, which shows great
promise for high-precision
determination of hadronic structure
combining all available experimental
data. Such approaches will be necessary
for determining 3D nucleon tomography

Identifying rare events In the current approach to data taking and
analysis, rare events, which can often
represent major discoveries, can be
easily overlooked when analysing data
with preset ideas about what one is
looking for. AI/ML can be used to
generate events, with known theoretical
parameters and models, and then
compare the experimental stream
readout with the pre-prepared theory
expectations, to identify unusual or
unexpected events that can be set aside
for more focused study later

Microscopic description of
nuclear fission

Various ML tools will help by
dramatically speeding-up many-body
simulations of nuclear fission by means
of fast emulators for constrained density
functional theory calculations in
many-dimensional collective spaces;
action minimization in the classically
forbidden regions; new tools for
dissipative dynamics; and computing of
missing fission data

Origin of elements A quantitative understanding of
astrophysical processes responsible for
the existence of elements requires
knowledge of nuclear properties and
reaction rates of thousands of rare
isotopes, many of which cannot be
reached experimentally. The missing
nuclear data for astrophysical network
simulations must be provided by
massive extrapolations based on nuclear
models. For some quantities such as
nuclear masses, Bayesian ML has
shown promise when aiming at
informed predictions including both a
reduction of extrapolation errors and
quantified bounds
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Quantified computations of
heavy nuclei using
realistic inter-nucleon
forces

Predictions for heavy and very heavy
nuclei such as Pb-208 using A-body
approaches based on realistic two- and
three-nucleon interactions with full
uncertainty quantification will be
enabled by Bayesian calibration using
pseudo-data from microscopic
calculations with supervised ML

Discovering correlations
and emergent phenomena

Unsupervised learning can be used
to discover correlations in
nuclear wave functions based on
microscopic Hamiltonians. There
are terabytes of data from
calculations with nucleonic
degrees of freedom that can be
data mined to discover emergent
phenomena such as clustering,
superfluidity, and nuclear
collective modes such as
rotations and vibrations

Development of a
spectroscopic-quality
nuclear energy density
functional

Predictive and quantified nuclear
energy density functional rooted
in many-nucleon theory is
needed. This development
constitutes a massive inverse
problem involving a variety of AI
tools. The resulting
spectroscopic-quality
functional–crucial for
understanding of rare
isotopes–will properly
extrapolate in mass, isospin, and
angular momentum to provide
predictions in the regions where
data are not available

Equation of state of
quark-gluon plasma in
heavy-ion collisions

To move extracting equation of
state (EoS) with ML from
simulated data to real
experimental data, techniques
need to be developed for
mapping with discretized data
with detector acceptance and
efficiencies. Accelerated
simulations with finite baryon
density are needed for classifying
EoS in heavy-ion collisions at the
beam energy scan (BES) at RHIC

Neutron star and dense
matter equation of state

Data from intermediate-energy
heavy-ion collisions and
neutron-star merger events can be
explored using AI tools to deduce
the nuclear matter equation of
state. ML classification tools can
also be used in conjunction with
calculations of infinite nucleonic
matter to map out the phase
diagram and associated order
parameters

2.2 Community identified needs and commonalities

AI has tremendous potential within the context of NP
Research. However, the current AI tools and methodologies
have limitations that have to be addressed for the long term.

Need for workforce development There is a need to
develop and sustain an AI capable workforce within NP.
This challenge is similar to the workforce development
challenge for Quantum Information Sciences, outlined in
the ‘NP and Quantum Information Science’ Report.
Educational activities in AI: To this end, there is an
urgent need to develop a range of outreach, recruitment,
and educational activities. These activities will serve to
raise interest in AI-related fields. The goal is to retain
talented students in AI-related fields and to help them to
secure employment in a wide range of careers, thus ensur-
ing that the new techniques and concepts developed in NP
laboratories are widely disseminated.

• University-wide AI courses: There is a need
for inter-disciplinary AI courses involving Applied
Mathematics, Statistics, and Computer Science experts,
as well as domain scientists.
• Graduate Fellowships are proven tools that enable
the development of a well-educated workforce and
could be used to good effect in the area of AI.

Need for broader community: To achieve the goals out-
lined by the community, it is essential to have a commu-
nity of researchers knowledgeable in AI technologies.

• A centralized community based forum could pro-
vide a common foundation to build our technologies,
allow for quick dissemination of new techniques, and
provide a bridge from available AI resources to NP
related applications.
•Successful inter-disciplinary research require mech-
anisms such as the ability to create joint faculty/staff
appointments. Given the wide range of use cases,
such appointments would be beneficial at many insti-
tutions engaged in the NP Research Portfolio.

Need for collaborations:Collaboration with ML/AI/Data
Science experts over a long-term is essential to success-
fully bring state of the art AI techniques to the NP com-
munity. Long term commitment to partnerships between
NP researchers and experts in AI/ML/Data Science is
crucial as it takes time – for all parties involved – to learn
the language and methods.
Need for problem-specific tools The current surge in AI
has provided great advances in software tools and hard-
ware that can provide the basis of ML systems used in
data processing. Readily available off the shelf solutions
are well suited for several types of problems, particu-
larly image classification. However, NP applications are
unique in that they are often aimed at accelerating cal-
culation, whether in the evaluation of models where one
can use AI techniques to identify the most promising
calculative pathways to simulation where AI-determined
parametrizations can be used to circumvent performance-
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limiting elements. While traditional ML tools may be
applied to these problems, significant effort is required
in the careful tuning of ML tools (hyperparameter deter-
mination) to optimize performance in each application
domain.
Enabling Infrastructure for AI in NP Taking full
advantage of AI for NP will require investments and
changes in methodology for the provisioning of comput-
ing and handling of data. Two particular areas concern
data management and provisioning for resources.
Need for standardized frameworks: The development
of standardized frameworks such as ExaLearn and CAN-
DLE have been extremely beneficial in other domains,
and could provide a model for NP. It may be possible to
adapt existing frameworks.
Need for comprehensive data management: AI tech-
niques are reliant on large volumes of data for training
and the subsequent evaluation of models. For this reason,
applications of AI are dependent on effective data man-
agement. Such data could be sourced from theoretical cal-
culation, simulation, or experiment. Providing accessibil-
ity of the data to the wider NP community and increasing
uniformity in data representation would create a connec-
tivity across experiments that could increase collabora-
tion and accelerate the development of AI techniques and
tools. Such AI techniques could also facilitate near real-
time calibration and analysis. To maximize the usefulness
of the data, it will be important to have standards on the
processing of data, the application of theoretical assump-
tions, and the treatment of systematic uncertainties that
will be used as training samples or as part of combined
analysis. This meta-data will be encoded in the datasets.
Need for adequate computing resources AI techniques
are computationally intensive and success in using these
techniques will require access to GPU computing and
disk storage at appropriate scales.
Need for uncertainty quantification A common theme
is to investigate and apply AI methods with well-
understood uncertainty quantification, both systematic
and statistical, to accelerator science, NP experimenta-
tion, and NP theory. The commonly used ML algorithms
do not provide error estimations with model predictions,
which are essential to understand outcomes. In addition,
an evaluation of metrics for the evaluation and compari-
son of uncertainty predictions using different modalities
is required for widespread use of AI in NP.

3 Workshop overview

The AI for Nuclear Physics Workshop was held at Thomas
Jefferson National Accelerator Facility March 4–6, 2020.
The intent of the workshop was to make a broad survey of

current AI projects in NP and to gather community driven
input towards establishing priority research directions, areas
of commonality across the NP community (and beyond),
and general needs, including workforce development. The
agenda focused on plenary sessions in the morning with top-
ical working sessions in the afternoon, with most of the pre-
sentations available from the agenda. 184 people attended the
workshop. The AI for Nuclear Physics Workshop Agenda
focused on summaries of status of the usage of AI in Nuclear
Theory, Nuclear Experiment and Accelerator Science and
operations. The connection between the scientific goals out-
lined in the Nuclear Science Advisory Committee long range
plan [3] and AI was presented by Tim Hallman, Depart-
ment of Energy Associate Director for the Office of Nuclear
Physics. A second focus was the connection to broader efforts
within DOE, including overview talks from the DOE Arti-
ficial Intelligence Technology Office, a summary of the AI
for Science Townhall process, and a summary of the Neuro-
Data without Borders Project [5] and the Exascale Comput-
ing Project applications ExaLearn and CANDLE [6] projects.

An adjunct hackathon event was held on March 3, 2020.
8 teams each with four members participated. The challenge
problem was drawn from a common task in NP, measur-
ing the properties of charged particles traversing a detec-
tor. The challenge was structured as progressive, with five
sub-challenges. To enable evaluation of the success of the
teams, an automated scoring system and leader board was
developed, with the top two scoring teams being awarded
prizes. The computational approaches and tools used by the
teams had significant variation, demonstrating that creativity
in problem solving remains a feature of research undertaken
with AI Events such as this can be useful for furthering skills
in AI for participants who already have basic knowledge.

4 Summary of workshop sessions

To serve as a record of the discussions, the conveners of
the working group sessions have prepared summaries based
on the workshop discussions and presentations. The dis-
cussions reflect independent deliberations, and consequently
some differences of opinion. A list of the working groups
and conveners are listed in the Appendix B. As a note, due
to conflicting workshops, some NP communities were not
properly represented at this workshop. Where possible, con-
tributions from those communities were solicited and appear
at the end of this section.

4.1 Lattice QCD and other quantum field theories

Lattice field theory is a cornerstone of all subfields of NP,
from nuclear structure to hadronic physics, heavy-ion colli-
sions, and neutron stars. It is based on the Monte Carlo eval-

123



Eur. Phys. J. A (2021) 57 :100 Page 7 of 27 100

uation, in one guise or another, of the quantum path integral.
Despite enormous successes achieved in the last few years,
computing power currently prevent us from addressing many
of the central questions of NP.

Lattice calculations are divided into the generation of
gauge configurations, calculation of the observables of inter-
est and data analysis. Artificial intelligence techniques have
begun to be applied to all these stages as well as extending
the applicability regime of lattice techniques.

4.1.1 Case studies and future prospects

Sign problem: The application of Monte Carlo techniques
to systems at finite density (as in nuclear/neutron matter),
real-time evolution (transport coefficients) and light-cone
evolution (parton distribution functions) are hindered by the
famous sign-problem. It has been realized recently that the
sign problem can be solved or ameliorated by evaluating the
path integral not over real fields but over a manifold deformed
into complex space instead. Up to now, the choice of mani-
folds has been guided by either impossibly expensive calcu-
lations or (human) insight into particular models. AI methods
have begun to be applied, both in supervised and unsuper-
vised learning modes [7–12]. Potentially radical advances
can be expected along this direction once the full power of
AI is unleashed in this problem.

Configuration generation: The usually most expensive part
of a Monte Carlo calculation is the generation of configura-
tions through the use of a Markov chain where, at each step,
a new configuration is proposed and accepted or rejected
with a probability depending on the new and old configura-
tions. The practical feasibility of the method relies on being
able to propose configurations that are significantly differ-
ent from the old one while at the same time are likely to
be accepted. The method used almost universally in QCD
is the hybrid Monte Carlo algorithm (invented by the lat-
tice QCD community and now widely used in all branches
of science) becomes extremely expensive as the continuum
limit is approached. A significant effort is being put into
using different AI techniques to create algorithms to make
better proposals, more decorrelated and more “acceptable”,
in order to speed up the process [13,14]. The training of the
algorithms is accomplished either by the use of configura-
tions generated by standard algorithms or, more ambitiously,
through fully unsupervised learning. The basic ideas of such
algorithms are already developed by the AI community and
used for various applications in the engineering and software
industry.

Propagator inversion: The computation of observables in
lattice QCD requires the calculation of quark propagators in
the background of a large number of gauge configurations.
Mathematically this requires the inversion of a large matrix

and, in some applications, like the extraction of nuclear
forces, it can be the most expensive part of the calculation.
Machine learning methods are beginning to be used to take
cheaper inversions [15], done with low precision, and recov-
ering the full precision propagator, with enormous savings in
computer resources.

Observables: The extraction of physical observables from
correlation functions computed in lattice QCD in some
cases requires the solution of an ill-defined inverse prob-
lem. Such problems include the computation of parton dis-
tribution functions, generalized parton distribution functions,
and transverse momentum dependent distribution functions,
as well as the extraction of spectral densities and scattering
phase shifts. These observables are the prime objective of
the JLab 12 GeV program where the 3D structure and spec-
trum of hadrons are studied, as well as the heavy-ion physics
community. AI methods are now being applied to tackling
the relevant inverse problems to address these physics goals
showing great promise for achieving important milestones in
our understanding of hadron structure from first principles.

4.1.2 Enabling discoveries/what is needed

All the work summarized in this section is exploratory.
The potential is enormous although at this time, the AI
techniques are not yet competitive with the standard in
the field numerical investigations of quantum field theo-
ries. That said, success in a single one of the approaches
has revolutionary potential in the field. The approach for
AI studies is based on toy models and small lattices
where novel ideas can go through the cycle of implementa-
tion/testing/improvement very quickly. This requires a model
of support that favors small, flexible groups, fosters informal
communication between researchers both within NP and the
AI community while keeping the field attractive to young
people who may have options to pursue a career in the pri-
vate sector.

4.2 Low-energy nuclear theory

4.2.1 Current status

ML applications of layered feed-forward networks to mod-
eling nuclear masses and other observables were carried out
in the early 1990s [16,17]. But it is only fairly recently that
the AI tools have been more broadly adopted by nuclear the-
orists and applied to various problems in nuclear structure
and reactions. The main areas of modern AI applications
are the following: fast emulation for big simulations; reveal-
ing the information content of measured observables with
respect to current theory; identifying crucial experimental
data for better constraining theory; revealing the structure
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Fig. 1 Bayesian calibration. Effective field theory analysis of neutron-
proton scattering cross section using Bayesian Gaussian processes [18].
The use of Gaussian processes permits efficient and accurate assessment
of credible intervals

of theoretical models by means of advanced parameter esti-
mation and model reduction; uncertainty quantification of
theoretical results; and improving the predictive capability
by assessing extrapolations, as theoretical models are often
applied to entirely new nuclear systems and conditions that
are not accessible to experiment.

A variety of AI/ML tools have been used: various fla-
vors of neural networks, Bayesian calibration, Bayesian
model averaging, radial basis function, and support for vec-
tor machines. The application areas include interpolation
and extrapolation of nuclear masses [19–28], charge radii
[29,30], excited states [31–33], beta decay [34,35], alpha
decay [36,37], fission yields [38,39], nucleon–nucleon phase
shifts [40], pion-nucleon coupling constants from nucleon-
nucleon scattering [41], scattering in the unitary limit [42],
three-nucleon scattering [43], neutron-alpha scattering [44],
nuclear reaction cross sections [45–49], estimates of effective
field theory truncation errors [18,50,51], estimates of basis
truncation errors [52,53], model calibration and reduction
[54–60], and variational calculations [61].

The low-energy nuclear theory community has been
involved in educational efforts in the area of AI. Exam-
ples are summer schools, courses, and conferences, includ-
ing a series of annual meetings on enhancing the interaction
between nuclear experiment and theory through information
and statistics (ISNET).

4.2.2 Case studies and future prospects

The following case studies are examples of high-impact sci-
ence that can be enabled by AI.

Microscopic description of fission. Modern many-body
approaches to fission [62], aided by AI, will provide a predic-
tive description of fission that will produce data for heavy-
element research, nuclear astrophysics, and stockpile stew-
ardship. Here, AI-tools will help on several levels, includ-
ing: development of emulators for constrained density func-
tional theory calculations in many-dimensional collective
spaces [54,63], action minimization in the classically for-
bidden regions, description of dissipative dynamics, and the
use of neural networks to compute incomplete fission data
[38,39].

Origin of heavy elements. The astrophysical rapid neu-
tron capture r-process responsible for the existence of many
heavy elements is predicted to involve many elements that
are close to the neutron drip line; the structure of these very
exotic nuclei thus directly impacts how elements are pro-
duced in stellar nucleosynthesis [64]. A quantitative under-
standing of the r-process requires knowledge of nuclear prop-
erties and reaction rates of ∼3,000 very neutron-rich iso-
topes, many of which cannot be reached experimentally. The
missing nuclear data for astrophysical simulations must be
provided by massive extrapolations based on nuclear models
augmented by the most recent experimental data. Here, ML,
with its unified statistical treatment of all uncertainties, can
make informed predictions for some of the relevant quanti-
ties that reduce extrapolation errors and quantified bounds
[21,23,24,27].

Quantified computations of heavy nuclei using realistic
inter-nucleon forces. Predictions for heavy and very heavy
nuclei such as 208Pb using A-body approaches based on real-
istic two- and three-nucleon interactions with full uncertainty
quantification will be enabled by Bayesian calibration using
pseudo-data from microscopic calculations with supervised
ML [57,58].

Development of a spectroscopic-quality nuclear energy
density functional: Predictive and quantified nuclear energy
density functional rooted in many-nucleon theory [65] will
be developed. This task constitutes a massive inverse prob-
lem [66] involving a variety of AI tools. The resulting
spectroscopic-quality functional—crucial for understanding
of rare isotopes—will properly extrapolate in mass, isospin,
and angular momentum to provide predictions in the regions
where data are not available.

Discovering nucleonic correlations and emergent phe-
nomena. Unsupervised learning can be used to discover cor-
relations in calculations of nuclear wave functions that use a
microscopic Hamiltonian. There are terabytes of data from
calculations with nucleonic degrees of freedom that can be
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FRIB reach
observed

Fig. 2 Bayesian extrapolation and model averaging. The quantified
separation energy landscape in the neutron drip-line region obtained
with the Bayesian model averaging [19]. The color marks the proba-
bility pex that a given isotope is bound with respect to neutron decay.
For each proton number, pex is shown along the isotopic chain versus
the neutron number relative to that of the heaviest isotope for which

a neutron separation energy has been measured. The domain of nuclei
that have been experimentally observed is marked by stars. To provide
a realistic estimate of the discovery potential with modern radioactive
ion-beam facilities, the isotopes within FRIB’s experimental reach are
delimited by the shadowed solid line

data mined to discover emergent phenomena such as cluster-
ing [67–70], superfluidity [71], and nuclear rotation [72].

Neutron star and dense matter equation of state Data
from intermediate-energy heavy-ion collisions and neutron-
star merger events can be explored using AI tools to deduce
the nuclear matter equation of state [73–75]. ML classifica-
tion tools can also be used in conjunction with calculations
of infinite nucleonic matter to map out the phase diagram and
associated order parameters.

4.2.3 Enabling discoveries/what is needed

The low-energy nuclear theory community is eager to
embrace the diverse toolbox offered by AI. Progress in the
field could be accelerated by deploying additional resources
to meet the most important needs.

Need for collaborations. Many barriers can be overcome
by establishing collaborations that have long-term perspec-
tive. Considering the low level of AI literacy in the com-
munity, access to ML/AI/Data science experts is essential.
(Semi-)Permanent access to experts in AI/ML/Data Science
is crucial as it takes time—for all parties involved—to learn
the language and methods. The best solution is to hire a
AI/ML/Data Science expert as a joint faculty (or postdoc).

Funding mechanisms should be defined to support local and
national collaborations in NP and ML/AI/Data science.

Need for inter-disciplinary research. Inter-disciplinary
research is popular but making it succeed is difficult. Disci-
plinary boundaries mitigate against hiring ML/AI/Data Sci-
ence experts involved in NP research. The silo mentality,
especially in academia, is a serious problem and is hurting
innovation. Formal mechanisms must address the issues of
how scholarship is assessed and how teaching is assigned
and evaluated, particularly before tenure. Programs should
be established to fund AI/NP bridge positions at universi-
ties; this would help to create joint faculty appointments at
many institutions.

Need for a comprehensive approach to AI education.
There is, at present, only a patchwork of AI educational
efforts in the low-energy nuclear-physics community. A
coherent approach to AI education, involving multiple uni-
versity departments, such as Physics, Statistics, and Com-
puter Science, is needed. While online courses can be effec-
tive, they cannot replace regular in-person lectures. Estab-
lishing graduate fellowships in the area of ML/AI/Data sci-
ence applied to NP problems would enable the development
of a well-educated workforce in this area. Some universities
have “dual Ph.D.” programs that allow individual students
to work within two different graduate programs. Certificates
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in AI/ML are a less intensive but still beneficial approach to
this problem.

4.3 Accelerator science and operations

We identify three distinct areas where AI/ML could improve
the reliability and performance of the NP accelerator facilities
while reducing the operational cost. These areas are:

• Accelerator and material design optimization
• Provenance and prognostication for accelerator sub-

systems
• Dynamic optimization of real time operation controls

Although these areas can be investigated independently, pro-
viding an “optimal automated accelerator” would require all
areas.

4.3.1 Accelerator and material design optimization

Computational techniques lay at the center of accelera-
tor design. Modern simulation codes are capable of self-
consistent tracking 109 charged particles through complex,
nonlinear external field environments, and in modeling inter-
actions with materials. Highly developed and benchmarked
engineering codes are employed to design and optimize
acceleration structures, high power beam targets, vacuum
systems, plasma and solid-state devices for instrumentation.

ML/AI techniques are coming into common use during the
design stage to facilitate studies of complex beam dynamics
in search of optimum lattices and working point tunes, to
study novel schemes for cooling hadron beams, to improve
diagnostic schemes for beam measurements, to create per-
formance gains in high intensity and high brightness beam
sources, to name but a few [76].

Reinforcement learning and Bayesian optimization are
techniques that can be used to explore large design parame-
ter spaces. However, in order for these techniques to provide
reliable and optimal solutions they need to be configured and
tuned for the specific application. An incorrect kernel selec-
tion used in a Gaussian Process technique can lead to disas-
trous results. Similarly, using a sub-optimal search strategy
and/or policy model architecture in reinforcement learning
will converge to sub-optimal result. Therefore, it’s critical to
build or leverage a framework, such as CANDLE and ExaRL,
to improve the chances of an optimal solution.

4.3.2 Provenance and prognostication for accelerator
sub-systems

Scientific productivity at accelerator-based NP facilities is
directly impacted by unscheduled losses of beam time. The

trip rate (see Fig. 3) is attributable to multiple causation fac-
tors that vary in frequency and severity. Some of the main
causes are due to excessive beam losses detected by the
Machine Protection System (MPS) and to loss of RF cavity
control (RF). Machine learning tools for anomaly detection
have been deployed at CEBAF [77], and other laboratories
[78] to monitor trends in system behaviors precursor to faults.

Design of beam loss monitor networks using Correlation
and Principal Component Analysis (PCA) [79] is used to
determine optimum locations to place beam loss diagnostics
to monitor for all known loss mechanisms in specific beam-
lines. Unsupervised learning techniques are used to detect
faulty beam position monitors that determine beam trajecto-
ries [80].

Beyond effects that directly influence beam delivery to
experiments, ML techniques are being considered to assist
in other critical operational aspects. Predictive schemes for
equipment maintenance can be used to proactively iden-
tify components requiring attention prior to critical need.
Cryogenic production and distribution will benefit from
online monitoring and predictive capabilities provided by
supervised and unsupervised learning by quickly detecting
unplanned helium losses and alerting operators.

The current efforts leverage existing ML frameworks and
tools. However, a detailed integration for verification, valida-
tion, and reproducibility have not been developed. Addition-
ally, there are no current efforts to integrate uncertainty quan-
tification into the machine learning pipeline. Finally, imple-
menting domain aware ML, when appropriate, could provide
better forward prediction models for failure and anomaly
detection. These components will be critical to provide a
a full featured and reliable monitoring and prognostication
system.

As more sub-systems are integrated into a comprehen-
sive monitoring/logging framework, managing the data-load
will become increasingly important. These large-scale online
data sets faces a range of challenges, including multi-modal
and multi-frequency high-dimensional, noisy, and uncertain
input data.

4.3.3 Dynamic optimization of real time operation controls

Frontier accelerator facilities such as FRIB and EIC will
require years of operational experience to fully develop func-
tional capabilities at their design level. AI/ML techniques are
in use to improve the control over particle beams, incorpo-
rating Reinforcement Learning (RL) techniques within the
accelerator control system [Schram FNAL]. Particle Swarm
techniques have been tested to optimize the tuning of aperi-
odic ion transport lines, and are in development for advanced
particle separators [81]. Bayesian Gaussian Processes (GP)
and Neural Network (NN) methods are in use to train laser-
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Fig. 3 CEBAF beam trip event rates (Courtesy R. Michaud, Jefferson Lab)

Fig. 4 Neural network model used to train tunable laser profiles at Argonne National Laboratory (courtesy R. Roussel, ANL)

driven photoinjector facilities in one or more degrees of free-
dom (Fig. 4).

AI/ML activities are being pursued at many NP accelerator
facilities and at associated universities. These activities are
mainly oriented towards addressing local issues, and are per-
formed by individual scientists or small teams with or without
direct support from data science experts. Strategic develop-
ment and deployment of AI/ML techniques across the DOE
complex has high leverage of performance for investment.

Similar to the design optimization effort, techniques such
as reinforcement learning can be use to explore the large con-
trol parameter space to dynamically optimize for real time
system. Leveraging existing frameworks, such as CANDLE

and ExaRL, to optimize the learning will be important, how-
ever, additional safeguards will be required to ensure that the
policy network model doesn’t diverge while in a real time sys-
tem. The ability to process the data in a timely manner will be
critical to the applicability of these techniques. Leverage and
making advancement in cutting edge technology will provide
the ability to deploy better models in real time systems.

4.3.4 Summary and Final Thoughts

We identify specific areas of accelerator design and oper-
ations that would benefit from investments in AI and ML
technologies.
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• Data capture and streaming Developing a comprehen-
sive data capturing and streaming framework will be crit-
ical to maximize the utility of the AI/ML tools. Having
enough time series data from relevant sensors will be be
required to build causal models that properly account for
system lags, etc. As we gain confidence and understand-
ing in these AI/ML models, moving them closer to the
sensor will allow facilities to automate parts of the oper-
ations yielding reduced downtime and operational cost.
Development in AI/ML at the edge (FPGAs, etc) and
model robustness will be vital. As the NP community
expands its use in AI/ML will require access to greater
resources to train AI/ML models. Data aggregation and
distribution to these compute resources will be an impor-
tant factor.

• Uncertainty quantification and robustness The need
to associate uncertainties with the AI/ML predictions is
critical for all efforts. However, it’s particularly impor-
tant when applied to Scientific User Facilities. AI/ML
applications for anomaly detection and fault prediction
require a quantifiable estimation of uncertainty to deter-
mine the proper coarse of action and trade-off (false pos-
itives, etc.).

• Optimized design of accelerator systems
Development and validation of virtual diagnostics (eg.
longitudinal phase space monitors or predictors). Design
and simulation of novel accelerators, and advanced
engineered materials. Optimized diagnostic design and
deployment and improvement to beam sources and injec-
tor performance.

• Improving facility performance and user experience
Data-driven beam generation, transport, delivery opti-
mization. Automated learning for operator support. Hard-
ware acceleration of ML in distributed control systems.
Anomaly detection and classification and mitigation (eg.
LLRF, beam diagnostics); System health monitoring (eg.
targets, cryoplant); Data driven system maintenance.

• Benchmark techniques on standard models; dedi-
catedaccelerator studiesDedicated studies on machines
and diagnostic support. Identify specific beamlines,
injectors and accelerator facilities to facilitate design
and implementation of technologies, algorithms, data
pipeline structures.

• Develop capability in AI/ML for computing at the
edge (FPGA, etc.) Moving AI/ML workflows closer
to the sensor will allow for computing resources to be
leveraged and distributed where necessary, allowing for
high density data transfers to be conducted locally with
reduced load on facility networks.

• AI cookbook of techniques and Data Science work-
shops/training Development of a community standard-
ized toolkit for training AI/ML scientists and provide
answers to commonly encountered issues.

Fig. 5 Histogram visualizing the classification of events from the
46Ar(p, p′) experiments in the Active-Target Time Projection Chamber
at the Facility for Rare Isotope Beams. Based on the “goodness of fit”
(χ2) distribution of the entire dataset, a cut (dashed line) was chosen at
40 (in arbitrary units). The events that were hand-classified as protons
from this run are hatched [83]

4.4 Experimental methods

4.4.1 Current status

AI applications to experimental applications are being devel-
oped across the subfields of NP. In some experiments which
like those depending on image analysis, AI techniques have
been successfully applied. This includes the time projec-
tion chamber experiments and neutrino experiments [82–85].
Work has also been done to analyze jet substructure [86], and
in detector rejection methods [87]. Current efforts expand
upon this work, building on existing AI technologies.

Significant AI endeavors in experimental NP have been
in tracking in various detector setups, as highlighted above.
Two examples are track classification in the Active-Target
Time Projection Chamber at the FRIB and track selection in
the CLAS12 drift chambers at Jefferson Lab. Figures 5 and
6 demonstrate two benefits that AI leverages over traditional
methods. In the first, classification machine learning meth-
ods were used to improve data selection over traditional cut
methods. In the second, equivalent accuracy was achieved
with AI methods, but with significant (6x) speedup over tra-
ditional fitting methods.

4.4.2 Case Studies and Future Prospects

Holistic approach to experimentation As a long-term,
“moonshot” vision, disparate data sources would be intel-
ligently combined and interpreted to improve experiments.
Data sources include accelerator parameters, experimental
controls, and the detector data itself. Real time analysis
and feedback enables the quick diagnostics and optimization
of experimental setups. Accelerator-based, quick-turnaround
experiments are a unique challenge in NP. ML expert sys-
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Fig. 6 Ratio of result from the traditional analysis method to results
from a deep, fully-connected neural network for tracks in the Hall B
drift chamber at Jefferson Lab. The neural network algorithm performs
comparably to traditional methods, but with 6x speedup, allowing for
faster analysis [88]

tems can increase the scientific output from the beamtime
allocated to each experiment. Ideally, this holistic approach
can be applied to the design of the experiment itself by opti-
mizing machine and detector properties as a single system.

Experiment design not limited by computation Future
experimental advances in accelerator-based NP research
hinges on increased luminosity, which provides the statistics
necessary to observe rare processes. ML methods will reduce
computational barriers to this goal. Intelligent decisions
about data storage is required to ensure the relevant physics
is captured. Depending on the experiment, AI can improve
the data taken through data compactification, sophisticated
triggers (both software and hardware-based), and fast-online
analysis.

An example would be the incorporation of neural networks
in the FPGAs which comprise the front-end triggers of com-
plex experiments. The very large channel counts afforded by
modern semiconductor detectors combined with high beam
luminosity yield data rates that can be prohibitively demand-
ing. Incorporating intelligent triggers with very low latency
early in the signal processing chain makes this data challenge
more manageable. Furthermore such triggers could act as
classifiers allowing for anomaly detection on the data stream
prior to the trigger decision flagging interesting events that
would normally be silently discarded.

Improving analysis As seen in Sect. 4.4.1, improving data
analysis using ML techniques is currently proceeding with
two general aims:

• to use these new techniques to improve the sensitivity of
current instruments and accuracy of the data, and

• to decrease the time such analysis takes, allowing for
faster turnaround time to produce scientific results.

Improving sensitivity creates more accurate datasets, which
decreases uncertainty in results and increases the potential for
discovery. Decreasing analysis time saves costs and allows
for a higher volume of scientific output.

Uncertainty quantification A near term goal is to apply
AI methods with well-understood uncertainty quantification,
both systematic and statistical, to experimental methods. The
dominant ML algorithms used in experimental HEP and NP
do not provide error estimations with model predictions,
which are essential to understand experimental results. In
addition, an evaluation of metrics for the evaluation and com-
parison of uncertainty predictions from different models is
required for widespread use of AI in experimental NP.

4.4.3 Enabling discoveries/what is needed

Educate and build a broader community To achieve the
experimental goals outlined by the community, we must build
a community of researchers knowledgeable in AI technolo-
gies. This would be greatly facilitated by centrally located,
NP-supported and maintained educational resources and
tutorials. Centralized resources allows for: a common foun-
dation to build our technologies, quick dissemination of new
techniques, and a bridge from available AI resources to NP
related applications.

Build an infrastructure for AI/ML scientists in the NP
community. This includes laboratory positions, the establish-
ment of university collaborations, and joint positions.

Standardized data formats In order to collaborate and use
AI tools effectively it is important to standardize the way we
present data to these systems. Most AI tools in current use
are created by industry or large open source projects with
established communities. Taking on common data formats
and workflows allows us to move with these communities
(and each other) more quickly and effectively.

4.5 Event generation and simulation

4.5.1 Current status

Simulations of physics processes and detector response are
required in NP to design experiments, develop and verify
analyses, and compare to theory. They are also used in theory
and phenomenology to simulate data and investigate theory
advances. High-precision measurements at CEBAF, RHIC,
the upcoming EIC and other NP facilities require simula-
tions with high-precision and high accuracy. Achieving the
statistical accuracy needed is often computationally inten-
sive with the simulation of the shower evolution in calorime-
ters being a prime example. As alternative, fast simulations
with parameterizations of detector response or other com-
putationally efficient approximations are pursued. However,
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they still lack the accuracy required for high-precision mea-
surements. Here, AI provides a promising alternative. Fast
generative models, e.g., GANs or VAEs, are being utilized to
model physics processes and detector responses accurately
and accelerate simulations. Beyond that, Bayesian optimiza-
tion is applied for tuning simulations and detector design,
with AI-optimized detector design being emerging for the
EIC.

4.5.2 Case studies and future prospects

Accelerate simulations High-Energy Physics has used AI,
in particular GAN-based architectures, to successfully accel-
erate detector simulations. In some cases, in particular in case
of calorimeters, the models can be directly applied to fast sim-
ulations in NP. In many cases, e.g., for particle identification
detectors, new approaches to fast particle identification can
be developed as, e.g., shown for Cherenkov detectors [89].
The resulting fast turnaround time for simulations with high-
precision and high-accuracy will allow for rapid improve-
ments of the physics reach and detection capabilities of NP
experiments.

HPC utilization NP experiments have few payloads appro-
priate to the Leadership Computing Facilities, in particular
for the upcoming exascale supercomputers where accelera-
tor technologies are being applied extensively. AI is the best
near-term prospect for using accelerated hardware efficiently.
Physics and detector simulations based on AI would be an
ideal payload for the Exascale Computing Project.

AI-drivendetectordesignAdvanced detector design requires
performing computationally intensive simulations as part of
the detector-design optimization process. Nowadays there
are various AI-based global optimization procedures, e.g.,
reinforcement learning or evolutionary algorithm. Among
these, Bayesian Optimization has gained popularity for its
ability of performing global optimization of black-box func-
tions which additionally can be noisy and non-differentiable.
For example, an automated, highly-parallelized, and self-
consistent framework based on Bayesian Optimization has
been recently developed [90], where a PID detector for the
future EIC has been considered as a case study. These studies
showed an improvement in performance and provided useful
hints on the relevance of different features of the detector.
The same procedure can be applied to any other detector, or
even combination of detectors. Also, costs can be added as
parameter in the detector-design optimization process.

AI for event generators Monte Carlo event generators
describe collision processes through a combination of the-
ory and phenomenological models. AI approaches can be
applied to experimental data and map out the underlying
probability distributions governing the spectrum of final-state

particles in a given process. This information can be used
to construct event generators in a model-independent way,
providing unique ways to quantitatively test the validity of
theoretical assumptions or models. Such an event genera-
tor would store the same information as that contained in the
experimental data and can be viewed as compact data storage
utility. A prototype event generator is currently being devel-
oped with the ETHER (Empricailly Trained Hadronic Event
Regenerator) project, as illustrated in Fig. 7 for a comparison
of Pythia generated electron-proton scattering events with
those produced by a Feature-Augmented and Transformed
(FAT) GAN [91].

4.5.3 Enabling Discoveries/What is Needed

AI research is multidisciplinary. An interplay of applied
mathematics, computer science, and NP will facilitate the
development of AI approaches to the unique questions of
NP. This will allow, e.g., to design activation functions
particular to NP applications or to build efficient neural
networks no more complex than necessary. The multidis-
ciplinary approach will also be helpful to understand the
requirements for explainable AI and uncertainty quantifica-
tion for NP simulations. To cultivate multidisciplinary AI
development, access to reference data sets, as well as sup-
plementary information for non-experts on what the NP data
entails is essential.

4.6 Bayesian inference for quantum correlation functions

Determining the 3-dimensional “tomographic” structure of
the proton and nuclei in terms of the elementary quark and
gluon (or parton) degrees of freedom of QCD remains one
of the central challenges in modern NP. A fundamental com-
plication in this endeavor is the fact that quarks and gluons
always remain confined inside hadrons and never observed
directly in experiments. This constitutes a classic “inverse
problem”: how to reliably infer the quantum correlation func-
tions (QCFs) that characterize hadron structure and the emer-
gence of hadrons in terms of partons from the experimental
data — Fig. 8.

Existing approaches to extract QCFs, such parton dis-
tribution functions (PDFs), fragmentation functions (FFs),
transverse momentum dependent distributions (TMDs) or
generalized parton distributions (GPDs), from data rely
on Bayesian likelihood inference, coupled with suitable
parametrizations of the distribution functions on the inter-
nal parton momenta. The complexity of mapping between
the large quantities of high-precision data expected from
JLab 12 GeV (as well as from the future EIC) and the mul-
tidimensional QCFs, many of which have never been been
explored, will require the creation of a new paradigm in order
to assess the impact of the data. An important opportunity
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Fig. 7 In the pioneering ETHER project to construct Monte Carlo
event generators agnostic of theoretical assumptions and phenomeno-
logical models, GANs are being developed as a repository for the behav-

ior of the theory expressed in Pythia. As shown in the comparison of
inclusive DIS kinematics from Pythia (left panel) and ETHER (right
panel), the AI approach is being able to learn the Pythia data

therefore exists for utilizing AI/ML techniques to develop
the next generation of QCD analysis tools that can more effi-
ciently map between observables and QCFs and maximum
the science output from future facilities.

4.6.1 Current status

Historically the extraction of 1-dimensional QCFs, such as
PDFs or FFs, has relied on the maximum likelihood method,
which is adequate for cases involving a small number of dis-
tributions, but can introduce significant bias and error when
applied to more complicated problems involving multidi-
mensional functions. Current state-of-the-art analyses seek
to overcome these problems by employing Monte Carlo sam-
pling (NNPDF [92] and JAM [93] Collaborations) to take into
account the multiple solutions, and simultaneously deter-
mining various types of QCFs which appear in different
observables to account for feedback effects [94].

Other examples of state-of-the-art techniques currently
employed for 1-D QCF studies include the use of neural net
methodology for proton PDFs [92], and the application of
generative adversarial networks (GANs) for mapping PDFs
[95]. In the transverse momentum sector, the first global
TMD analysis was performed recently [96] using the JAM
MC methodology extended to the 3-D sector. Exploratory
studies of fitting GPDs with neural networks were made for
a limited set of deeply-virtual Compton scattering data [97],
and recently the more general approach of parametrizing
Compton form factors (integrals of GPDs) with neutral nets
has been explored [98]. Finally, as lattice QCD simulations at
physical quark parameters are becoming more feasible, syn-
ergies between global QCD analysis of experimental data and
lattice results are being actively explored [99], including the
first attempts to perform simultaneous fits to measured cross
sections and lattice matrix elements of nonlocal operators,
whose Fourier transforms are related to PDFs.

4.6.2 Case studies and future prospects

The history of applying ML tools to study the hadron sub-
structure is rather brief. A recent example used neural nets
to construct a universal Monte Carlo event generator
(UMCEG) for electron-proton scattering, that is free of theo-
retical assumptions about underlying particle dynamics [91].
This project, funded by the Jefferson Lab LDRD program,
applied generative adversarial network (GAN) technology
to simulate particle production at the event level. A new
feature-augmented and transformed GAN (FAT-GAN)
was developed to select a set of transformed features from
particle momenta (generated directly by the generator), and
use these to produce a set of augmented features that improve
the sensitivity of the discriminator. The new FAT-GAN was
tested on pseudodata generated by the Pythia event generator
[100], and was able to faithfully reproduce the distribution
of final state electron momenta in inclusive electron scat-
tering. The FAT-GAN strategy can be generalized to GANs
for simulating other reactions under different conditions, as
well as learning exclusive events, and alternative strategies,
for example using convolutional neural networks (CNNs),
can also be explored.

Another important recent application of AI has been to
the development of inverse mapping methodology using
machine learning for Bayesian inference of QCFs — see
Fig. 9. Two machine learning prototypes have been explored,
based on a mixture density network and a parameter-
supervised autoencoder, which have been tested and vali-
dated first on a toy model for inclusive DIS, and subsequently
on a real global analysis of DIS data. The prototypes were
found to be capable of mapping PDFs to within 1-σ CL, con-
sistent with those found in recent global Monte Carlo fits [93].
Extension of the methodology to the 3-D sector remains an
important future challenge.
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Fig. 8 Illustration of factorization in electron–proton scattering. The black box is interpreted on the right in terms of short-distance reactions of
quarks and gluons, with the details of proton structure and hadronization parametrized in terms of QCFs
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Fig. 9 AI architecture for inverse mapping connecting an N -
dimensional space of observables σi into an M-dimensional space of
parameters α j . Aside from the fully connected neural networks (FC
NN), the inverse mapper is equipped with a mixture density network
(MDN) layer to allow for possible multiple solutions for the inverse
problem. The subscript “P” differentiates the parametrized inverse func-
tion σ−1 from the true inverse function

4.6.3 Enabling discoveries/what is needed

To maximize the potential benefit from AI for QCF inference
studies, collaboration between QCD physicists and machine
learning experts is needed in order to translate the domain
knowledge of QCD into generic problem definitions that can
be addressed with cutting-edge AI technology. To this end,
the creation of joint positions between NP and AI will pro-
mote cross-disciplinary fluency in both fields.

The development of an interactive web-based global
analysis platform to perform global QCD analysis “on the
fly” will allow users to study how different setups (choice
of specific data sets or kinematic regions, or improvements
on data uncertainties from future facilities, such as the EIC)
can affect the inferred QCFs. The vision is to move from the
limited paradigm where QCFs are numerically tabulated at
interpolation grids, with rigid connections between the data

and QCFs, to a more flexible paradigm where QCFs can be
generated dynamically from user input.

The creation of such web-based analysis infrastructure
would be a valuable tool for the NP community, but will
require identifying the most efficient computing platform to
host such a service and computing resources for its realiza-
tion. There is also a critical need for production-level hard-
ware resources to enable the analysis of the large quantities
of high-precision data expected from new experimental facil-
ities, in order to understand the deep connections between the
data and the QCFs.

4.7 Additional contributions received

4.7.1 Relativistic heavy ions

At extremely high temperature or density, quarks and gluons
become deconfined and form a new state of matter – Quark
Gluon Plasma (QGP). One can study this matter through high
energy nuclear collisions at Relativistic heavy ion collider
(RHIC), Large hadron collider (LHC) and other facilities, as
well as computer simulations by analyzing the four-momenta
and species of final state particles produced in each single col-
lision. The dynamical evolution of the collision systems can
be described by hybrid models with relativistic hydrodynam-
ics and hadronic cascades at different stages of the collision.
One can infer the initial state of the collision and the inter-
mediate evolution from comparisons the data on final state
particles from experiments and simulations.

AI plays an important role in compressing the high dimen-
sional heavy-ion collision data to low dimensions, extracting
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the model parameters and their uncertainties with Bayesian
analysis, classifying the equation state, regressing the initial
nuclear structure or in solving partial differential equations
of relativistic hydrodynamics using deep neural networks.
These AI applications are described in the following.

Compressing data to lowdimensionsMany experimen-
tal observables are designed to compress complex high
energy nuclear data to low dimensions using simple pro-
jection, statistical mean, variance and correlations along
a few directions. Unsupervised learning algorithms such
as PCA is widely used in the field of high energy nuclear
physics, to automatically extract the most informative
features in data. PCA can be used to determine the mag-
nitude of different longitudinal fluctuation modes [101],
which helps to constrain the initial state entropy depo-
sition along the beam direction in heavy-ion collisions.
Since the initial state fluctuations of entropy density in
the transverse plane is converted to final state correla-
tions of particles in momentum space, the collectivity
and anisotropy of final state particles along the azimuthal
angle direction are quantified by the flow harmonics vn .
The v3 factorization breaking is well described using 2
initial state fluctuation modes given by PCA and a lin-
ear hydrodynamic response [102]. PCA also rediscov-
ers flow harmonics [103] which are originally computed
from Fourier decomposition.
Bayesian analysis to extract QGP properties Bayesian
analysis uses the likelihood between low dimensional
experimental data and model output to constrain model
parameters, such as the QCD equation of state [104].
The prior QCD EoS used in hydrodynamics is parame-
terized to cover the physical equation of state functional
space.The posterior distribution of the EoS agree with
lattice QCD calculations. To take into account the effect
of other entangled parameters, Trento + iEBE-VISHNU
+ UrQMD model is used to do a global fitting using
Bayesian analysis [105–107]. The clear peak structure in
the posterior distributions of model parameters indicates
non-zero shear and bulk viscosity of the QGP. When high
energy partons traverse through QGP, they loss energy
by elastic scattering and gluon radiations. The Bayesian
analysis is also used to constrain the heavy quark diffu-
sion coefficients [108], the light quark q̂ [109] and the jet
energy loss distribution [110].
Jet classification in heavy ion collisions The applica-
tions of neural network was used in 1996 to determine
the impact parameter of heavy-ion collisions [111], with
a one-hidden layer neural network. Various architectures
of deep neural network are used in jet flavor classification
for proton-proton collisions. However, the applications to
heavy-ion jet classification is rare. The classification per-
formance worsens due to soft gluon radiations affecting

soft jet substructure [112]. Recently a point-cloud-like
network called particle/energy flow network is employed
in jet flavor classification [113] and is used to design new
physical observables for heavy-ion jets [86].
Classification fornuclearphase transitionBeam energy
scan (BES) project aims to locate the QCD critical point
that separates the first order phase transition and smooth
crossover in the QCD phase diagram by colliding heavy
ions at various energies. Deep convolution neural net-
work is used to classify these two different nuclear phase
transition regions [114] using relativistic hydrodynamic
simulations of heavy ion collisions. The phase transi-
tion type used in the equation of state is encoded in the
evolution and deep neural network helps to decode this
information from the complex final state output of heavy-
ion collisions. Although there is entropy production and
information loss, the network succeeds in classifying
nuclear phase transition types with approximately 93%
accuracy. Deep convolution neural network uses images
as input, a more natural representation of the heavy-ion
data of a list of particles with their four momenta, pid
and charge information. Point cloud network is a perfect
architecture for this data structure. A recent study uses
point cloud network to classify Spinodal and Maxwell
constructions of the first order phase transition [115].
Regression for nuclear-shape deformationMost heavy
ions used at RHIC and LHC are deformed. The colli-
sions of deformed nuclei produce complex correlations
between charged multiplicity and anisotropic flow. Using
Monte Carlo simulation data, a 34-layer residual network
is used to predict the values of nuclear shape deformations
[116]. The network succeeds in predicting the magnitude
of nuclear shape deformations but not their signs, which
indicates that there is a degeneracy between high-energy
collisions of prolate-prolate and oblate-oblate nuclei.
Interpretation and explanation Interpretation is impor-
tant in understanding what has been learned by the black
box deep neural network. In the classification task for
nuclear phase transition, a prediction difference analysis
algorithm is used to locate the most important phase space
regions in the input for classification. In the regression
task for nuclear shape deformation, a regression attention
mask algorithm is developed to highlight the regions that
are important for the decision making.
Accelerate relativistichydrodynamic simulationsAccu-
mulating data in heavy-ion collisions is slow. Stacked-
UNet is used to solve relativistic hydrodynamic equations
[117]. The time evolution of the energy density and fluid
velocity from neural network method agree with 2+1D
viscous hydrodynamics. The trained network can solve
hydrodynamic equations 600 times faster than numer-
ically solving partial differential equations. As a com-
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parison, the GPU parallelization brings 60 to 100 times
speed up.

Current study of heavy-ion collisions with machine learn-
ing have used data set generated with model simulations.
To apply these techniques to real experimental data, one has
to taken into account the acceptance and efficiencies of the
detectors. This can be accomplished through incorporation
of the characteristics of the detector in the model simula-
tions which are used to train the network for final application
to real experimental data. In the meantime, advance in the
accelerated model simulations with more realistic physics
scenarios are needed for more robust AI studies.

4.7.2 Project 8

The Project 8 collaboration is developing an experiment to
measure the absolute neutrino mass with cyclotron radia-
tion emission spectroscopy (CRES). The event reconstruc-
tion process for Project 8 can be framed as a challenge of
feature recognition in noisy data, where the features to find
are the electron tracks and how they are grouped together.
The Project 8 collaboration has studied two uses of machine
learning to improve track and event reconstruction. The first
application was to differentiate different types of tracks by
their characteristics [118]. Figure 10 shows an electron event
with five visible tracks. The four sideband tracks and one
visible main-carrier track are labeled. We first analyzed indi-
vidual tracks and extract parameters like slope and power
density, and then applied a Support Vector Machine to dis-
tinguish three track populations: main carrier tracks with high
pitch angles (the angle of the electron’s momentum relative
to the magnetic field in the experiment), main carrier tracks
with low pitch angles, and sidebands. Having this informa-
tion can help in reconstructing events, avoiding problems that
might occur when particular tracks are not observed, like the
missing main carrier in Fig. 10.

Machine learning can be applied to Project 8 data to iden-
tify tracks, as well. We are developing a method for identi-
fying tracks using a Convolutional Neural Network (CNN).
This particular task is a straightforward application of a CNN
with a U-Net architecture. Such a tool, once optimized, will
be used to do the initial optimization of the tracks in events
such as Fig. 10. While the initial application of the CNN to
Project 8 data is straightforward, there are a variety of details
to establish, such as accounting for all of the necessary track
topologies, and understanding the efficiency of detection.

4.7.3 NEXT

The NEXT neutrinoless double beta decay program has as its
primary physics goal discovering or severely limiting param-
eter space for the Majorana nature of neutrinos in 136Xe

decays. NEXT will undertake this search in a staged pro-
gram of high pressure gas xenon Time Projection chambers
(HPgXeTPCs), culminating in a multi-ton detector that will
be effectively background-free.

HPgXeTPCs, because of the benefits of gaseous xenon
(perhaps with a He additive) including its small Fano fac-
tor, allow to see the topology of the double beta decay while
achieving sub 1% energy resolution. The technology and the
path to the necessary low background model has been demon-
strated in a small detector NEXT-NEW. A future design of
the 1-ton-scale High Definition (HD) design is shown below,
along with a typical double beta event in simulation with its
Bragg peaks at the end of each track. The exquisite topolog-
ical information in these detectors calls out for Deep Convo-
lutional Neural Nets (DNNs) to perform tasks such as sig-
nal and background classification and, in fact, full semantic
segmentation-based event reconstruction.

The collaboration has already published [119] work on
DNNs applied to NEXT-NEW data. A team is now at work
on its Summit allocation to extract optimal sensitivity from
simulated ton-scale designs. The team has already shown
its effective use of sparse DNNs in similar highly-parallel
applications on Summit, and early work is already bringing
benefits to the extremely promising (multi) ton NEXT pro-
gram.

4.7.4 WANDA

The sequence of steps whereby nuclear data is compiled,
evaluated, processed, and incorporated into applications is
referred to as the “Nuclear Data Pipeline””. The pipeline
provides the critical connection between laboratory mea-
surements and their eventual use in models of reactors, iso-
tope production, detectors for non-proliferation, supernova
explosions, radchem networks, and many other systems. To
improve and supercharge this pipeline, the nuclear data com-
munity has extensive needs, including: more rapid, accu-
rate, and robust evaluations; quicker compilation of data
and accompanying contextual information from published
experimental work; robust methods to optimize experimen-
tal design for verification, validation, and benchmarking;
wider use of realistic physics models in transport simula-
tions; and reproduction of the results of complex multi-
physics codes via fast-execution surrogate models. AI/ML
tools have tremendous potential to address all of these critical
needs. During the recent Workshop for Applied Nuclear Data
Activities (WANDA) [120], the nuclear data community has
recently identified a number of key areas in which AI/ML
advances have already made significant impacts and show
substantial promise both in the short term and long into the
future. Targeted investments are needed now to fully realize
the potential of AI/ML in nuclear data, preferably by leverag-
ing AI/ML advances in other areas for use in nuclear physics
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Fig. 10 A multi-track CRES event featuring five visible tracks. In the first set of tracks, on the left, the main carrier track is not visible; it is
important to know that the visible tracks are sidebands so that the initial track start can be determined accurately. Figure is from [118]

and simultaneously driving AI/ML innovations. Some of the
many areas to emphasize include:

• Using AI/ML tools to identify systematic trends in
nuclear data that were missed by human evaluators, and
developing AI/ML emulators to incorporate complex
physics models into evaluations, so that evaluations can
be more robust, new physics can be uncovered, and pre-
dictive power can be improved.

• Exploiting AI/ML tools to process complex relation-
ships between nuclear data and integral experiments
to develop rigorous validation approaches, so that that
AI/ML tools can be confidently deployed in nuclear
energy, nuclear security, and other applications where
safety is paramount.

• Quantifying the intrinsic uncertainties of AI/ML tools, so
that their results can be fully integrated into the nuclear
data UQ process that is critical to the validation, verifica-
tion, benchmarking, and normalization activities widely
utilized across nuclear data activities.

• Developing a new, standardized, QA-vetted, well-
characterized database of nuclear information including
UQ that can be easily input into AI/ML codes, so that
AI/ML advances can be more quickly used across the
nuclear data pipeline.

• Collecting and sharing fitted models, training data, and
notes on their applicability and limitations, so that the
reproducibility of AI/ML results can be enhanced and

advances from across disciplines can be best leveraged
for the widest utilization.

• Using AI/ML tools to both develop surrogate physics
models and use them to sequentially search and optimize
over a wide space of experimental design, so that the most
impactful data are targeted and collected more efficiently,
and so that specific deficiencies in data needed for robust
evaluations are avoided.

• Developing natural language processing (NLP) tools to
automatically compile new results, so that errors in data
entry can be reduced, consistency checks can be facili-
tated, expert validation and verifications can be quickly
done, and database insertion can be seamlessly per-
formed.

• Fostering collaborations between nuclear researchers and
AI/ML experts, so that appropriate algorithms can be
efficiently determined for a given problem and subse-
quently trained, tuned, and deployed for maximum sci-
entific impact while minimizing biases or unphysical
results.

5 Cross cutting topics

The breakout sessions of the workshop focused on top-
ics in NP with the knowledge that there are commonali-
ties between these topics, and indeed, across many scientific
domains. These ’cross cutting’ areas span the spectrum from
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the development of methodologies and mathematics for AI
approaches, the need for sophisticated data management and
curation, and means to establish an AI cognizant workforce.
The following section outlines a number of these cross cut-
ting topics.

5.1 Statistical methods and tools

Statistics and statistical methods are based on probability
spaces, defined in terms of sets and probability measures.
They aim to provide a better understanding and quantified
characterization of a given set of data. Data mining uses
statistics as well as other methods to find patterns in order
to explain phenomena. Machine learning uses data mining
and other learning algorithms in order to predict future out-
comes, and AI uses models based by machine learning to
make intelligent decisions. As the application of AI to NP
is in the early stages, the integration of statistical methods
and uncertainty quantification into more advanced AI appli-
cations is still under development.

5.1.1 Overview of approaches in NP

In lattice QCD and other lattice field theories, AI has
been used for configuration generation, propagator inversion,
observables, and overcoming the sign problem. Among the
various statistical methods utilized, Jensen–Shannon diver-
gences have been used to distinguish gauge field ensembles
using deep neural networks [121]. Bayesian neural networks
have been used for spectral reconstruction [122] and recon-
structing parton distribution functions [123]. Machine learn-
ing regression errors for parton distribution functions has also
been quantified using bias correction and bootstrap resam-
pling [124]. Bayesian inference and other statistical meth-
ods applied to model parameterizations of partonic structure
are key to extracting parton distribution functions, fragmen-
tation functions, transverse momentum dependent distribu-
tions, and generalized parton distributions.

In low-energy nuclear theory, Bayesian methods have
been used across a variety of different problems for uncer-
tainty quantification. This includes Bayesian calibration for
nucleon–nucleon phase shifts [40] and direct nuclear reac-
tions [45–47]; Bayesian Gaussian processes for truncation
errors in effective field theory [18,51] and uncertainties in
neutron-alpha scattering and three-body parameters [44];
Bayesian calibration for A-body calculations [59] and mass
models [54,60]; Bayesian extrapolations [23]; Bayesian
model averaging [19,24,25]; and Bayesian neural networks
for r-process beta decays [34], alpha decays [36,37], and spal-
lation cross sections [48]. Bayesian regularization as well as
other approaches have been used for uncertainty quantifica-
tion in applying neural networks to applications such as the

extrapolation of truncation errors in nuclear structure calcu-
lations [52,53] and variational methods [61].

AI applications to experimental NP are being developed
across the subfields of NP. Experiments that map well to
existing AI technologies, such as image analysis problems,
have demonstrated success in NP. Examples include time
projection chamber experiments and neutrino experiments
[82–85]. Work has also been done to analyze jet substructure
[86], and in detector rejection methods [87]. Current efforts
are expanding upon this work, building on existing AI tech-
nologies. In the future one would like to apply AI methods to
experimental methods with systematic and statistical uncer-
tainty quantification. Similarly, Bayesian optimization will
also be extremely useful for tuning event simulations and
detector design.
AI techniques in accelerator science and operations have
been adopted and utilized for some time. Early usage of sim-
ulated annealing and genetic algorithm techniques [125,126]
were applied to optimize the distribution of pure perma-
nent magnets in extended undulator assemblies for SASE
FELs. SVD techniques have been used to optimize steering
control in storage rings [127]. Genetic algorithms and opti-
mization techniques have been used to brightness of electron
photoinjectors [128] and electron synchrotrons and storage
rings [129]. Recent reviews [76,130] have identified uses
of artificial neural networks, convolutional neural networks,
Bayesian optimization, reinforcement learning, random for-
est, and other methods in accelerator controls [131], lon-
gitudinal phase space prediction [132], anomaly detection
in SRF cavities and beam diagnostics [77,80], FEL perfor-
mance enhancement [133], etc. Current efforts are expanding
in all areas of accelerator control, optimization and design,
diagnostics and prognostics.

5.1.2 Use of current tools

The current surge in AI has provided great advances in soft-
ware tools and hardware that can provide the basis of machine
learning systems used in data processing. Readily available
off the shelf solutions are well suited for basic classification
problems, particularly for images. Analysis of experimental
data however, requires regression networks that often need
careful tuning to specific problems and data sets. In addition,
scientific results require well understood systematic uncer-
tainties in values obtained from any analysis. For example,
charged particle tracking requires not only a 5 parameter state
vector, but also a 15 parameter diagonal covariance matrix to
represent its uncertainties. These are needed as inputs to kine-
matic fitting routines which combine constraints imposed by
physics with the experimentally measured values in order
to achieve optimal resolutions. Scientific results also require
study to ensure no bias is introduced by the analysis tech-
nique. More so than is needed by industrial applications.
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5.2 Collaborations and collaborative activities

The importance of community and collaboration were a cross
cutting theme in the workshop. There are distinct types of
collaboration, each of which is beneficial.

5.2.1 NP communities of practice

Relative to other communities, the NP scientists have rela-
tively few communities of practice that enable knowledge
exchange on technical topics or the ability to articulate
the requirements for community developed and supported
tools. This is in contrast to, for example, the HEP commu-
nity, which has several sanctioned or funded activities that
focus on computing, including the HEP Software Founda-
tion (HSF) (sponsored by CERN), the IRIS-HEP collabo-
ration (funded by NSF) and the Forum for Computational
Excellence (funded by OHEP). HSF in particular was instru-
mental in developing computing focused white papers for the
the European Strategy for Particle Physics.

The scientific expertise to approach the challenges in NP
lies within the NP community. For that reason, communities
of practice within NP to share knowledge computing knowl-
edge could be invaluable tools towards addressing common
challenges. These are happening on a small scale, such as
the Jefferson Lab AI lunch series and the Monthly Comput-
ing Round Table hosted jointly by BNL and Jefferson Lab.
Community based groups could serve as a clearing house
for training opportunity announcements and similarly to the
HSF, as a tool for organizing community white papers. One
of the outcomes of the AI for NP Workshop is the establish-
ment of a proto-community that came together to produce
this report.

Several concrete actions that could be undertaken by a
community of practice is developing a portal for commu-
nity based A.I. training resources and the development of AI
recipe books. Another topic could be a discussion around data
management standards. Extending these activities to include
AI experts would be beneficial to creating a much needed
community to leverage the rapid advancement of methods
and tools in the AI/ML communities.

5.2.2 Engagement with data science community

The NP community recognizes the importance of engag-
ing the data science community to develop technologies that
enable innovation in NP. Research groups have begun col-
laboration with computer scientists with demonstrated suc-
cess [91]. However, a broader effort to formally collabo-
rate with the AI scientists can advance AI technologies in
NP while taking advantage of unique aspects of data in NP
to inform innovation in AI. Fostering such collaboration is

essential for long term success in developing AI techniques
that realize the potential for impacting NP challenges.

In order to best interact with the AI community, both par-
ties must identify and engage in mutually beneficial research
topics. This requires education and interaction of the two
fields. To maximize collaboration, laboratories and institu-
tions can create an infrastructure in which AI scientists are
an integral part of the field. This can be accomplished through
joint projects that includes well-defined metrics of success
for an AI scientist working in a physics field. The collab-
oration will be mutually beneficial, with the AI work not
considered a service, but as a true collaboration. This can be
evidenced by nuclear physicists and AI scientists publish-
ing together, whether in physics or AI journals. Building a
merged community of physicists and data scientists brings
challenges in nuclear physics data analysis to the considera-
tion of AI researchers as they develop new methods. This will
allow AI technology to advance in line with our community’s
needs.

6 Engagement with ASCR

For the past few years, the U.S. Department of Energy,
Office of Science program in Advanced Scientific Comput-
ing Research (ASCR) has been conducted several workshops
directly and indirectly focused on AL/ML which resulted in
several reports.

In January 2018, the ASCR Basic Research Needs work-
shop on Scientific Machine Learning [134] identified six
priority research directions (PRDs). The first three focused
on the foundation research themes: (1) Domain-awareness,
(2) Interpretable, and (3) Robust. Within the NP commu-
nity, the use of domain aware ML to leveraging scientific
domain knowledge by enforcing physical conservation law
and governing equations was identified. Additionally, provid-
ing robust ML solutions is important for scientific research
and critical when deployed at scientific user facilities (SUFs).
The last three focused on capability research themes: (4)
Data-Intensive, (5) Enhanced Modeling and Simulation, (6)
Intelligent Automation and Decision Support. All three PRDs
of these items have clear applications within the NP commu-
nity. For example the semi-automation of emerging SUFs
could significantly reduce operational cost and downtime.

Although not explicitly focused on ML, ASCR convened
a workshop on in situ data management (ISDM) on January
28–29, 2019 [135]. The goal of the ISDM workshop was to
consider in situ data management to support traditional and
future scientific computing needs. Six PRDs were identified:
(1) Pervasive, (2) Co-designed, (3) In Situ Algorithms, (4)
Controllable, (5) Composable, and (6) Transparent. These
priorities are of particular interest to DOE NP since they
could directly feed into the existing and future facilities, such
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as FRIB and the EIC. In particular, the need for provenance
and reproducibility was explicitly linked to the development
and use of ML. Additionally, in situ algorithm and control-
lable ISDM would enable semi-automated SUFs.

On June 5, 2019, the DOE Office of Science (SC) orga-
nized a one day workshop centered on the topic of Data
and Models: A Framework for advancing AI in science
report [136]. Three priority opportunities were identified:
(1) democratize access to benchmark science data, (2) make
AI operational in science with composable services and (3)
address open questions in AI with frameworks. Providing
a Findable, Accessible, Interoperable, and Reusable (FAIR)
dataset and composable tools would accelerate the ability for
members of the NP community to develop new algorithms
and efficiently train them using these services.

Between July and October 2019, four town hall meet-
ings dubbed “AI for Science” were conducted to discuss
and identify the scientific needs and opportunities across a
diverse collection of domains (biology, physics, mathemat-
ics, accelerators, computing, etc.). Some of the most notable
grand challenges for NP included: Automate and/or optimize
the operation of accelerators and detector systems; Improve
experimental design and real time tuning.

Finally, it was identified that the NP community could ben-
efit from using existing AI/ML solutions by leveraging exist-
ing ASCR investments. For example, the Exascale Comput-
ing Project (ECP) has created tools that can accelerate com-
putationally expensive tasks. For example, using CANDLE
to perform large scalable hyper-parameter optimizing scans
could potentially significantly improve on existing results.
Similarly, the ECP ExaLearn project is now developing scal-
able tools to address common AI/ML challenges such as
developing surrogate models, inverse problems, and auto-
mated design and controls challenges. These tools could save
a significant amount of development time and allow the NP
community to focus on solving domain specific challenges.

As the NP community expands its use in AI/ML it will
require access to greater computing resources to train AI/ML
models. The NP community should leverage the existing
ASCR computing facilities and develop a data aggregation
and distribution community plan.

7 The importance of data management

AI techniques are reliant on the quantity and quality of the
data and for this reason, applications of AI are likely to result
in a paradigm shift in data management. Accessibility of the
data to the wider NP community would create a connec-
tivity across experiments that could increase collaboration.
Viewing data as a valuable commodity impacts decisions on
how data from experiments and simulations is collected, cat-

aloged and accessed. AI techniques could also facilitate near
real-time calibration and analysis.

As mentioned in several of the summaries, current analy-
sis techniques often ’flatten’ the experimental data. To max-
imize the usefulness of the data, it will be important to have
agreements and documentation on ’processing’ of experi-
mental data, the application of theoretical assumptions and
the treatment of systematic uncertainties that will be used
as training samples or as part of combined analysis. All rele-
vant information about the data will have to be stored with the
data. This should trend towards the development of appro-
priate standards consistent with FAIR data principles and
frameworks that capture data and metadata.

8 Workforce development

8.1 Education

There are only 26,000 AI researchers currently in the US.
This is estimated to represent only a fifth of the current
demand. There is an urgent need for training in AI, at a
variety of educational levels and for diverse audiences. To
this end,there is an urgent need to develop a range of out-
reach, recruitment, and educational activities. NP research
will serve to raise interest in AI-related fields. The goal is to
retain talented students in AI-related fields and to help them to
secure employment in a wide range of careers, thus ensuring
that the new techniques and concepts developed in NP labo-
ratories are widely disseminated. Unfortunately, the current
educational efforts in AI in NP—while extremely valuable—
are patchwork. They include summer schools, topical pro-
grams, workshops, and conferences.

A coherent inter-disciplinary approach is needed. Sev-
eral mechanisms were discussed at the Workshop aiming at
improving the situation.

University-wide AI courses There is a need for inter-
disciplinary AI courses involving Applied Mathemat-
ics, Statistics, and Computer Science experts, as well as
domain scientists. Online courses play important role, but
the in-person approaches are superior.
Graduate Fellowships Establishing graduate NP/AI fel-
lowships, similar to, e.g., DOE Computational Science
Graduate Fellowship or DOE NNSA Stewardship Sci-
ence Graduate Fellowship, would enable the develop-
ment of a well-educated workforce in this area.
Dual Ph.D. Programs Some universities allow “dual
Ph.D.” programs that allow individual students to work
within two different graduate programs. Students start
graduate school in their primary department, and then
enter such a program by arranging a secondary affiliation
upon choice of a research project and advisor. Certificates
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in AI/ML are a less intensive but still beneficial approach
to this problem.
Educational Outreach Opportunities AI practice is
inherently interdisciplinary and an effort should be made
to introduce the AI field to young physicists, computer
and data scientists, mathematicians, and others in related
fields as they choose their career paths. Conferences
and Workshops play an important role in this cross-
pollination. For example, workshop organizers received a
grant from the National Science Foundation that funded
travel for 18 graduate- and undergraduate-students and
early career professionals, most of whom indicated they
would not have been able to attend the workshop with-
out this support. The pre-workshop hackathon provided
students with an opportunity to creatively collaborate on
a problem solving competition related to AI.

9 The level of AI literacy

The interest in the workshop was very good: as many as 184
scientists came to the meeting and many attended remotely.
According to the data gathered by the Workshop’s question-
naire, around 40% participants are new to AI, 70% would like
to apply techniques from this workshop, and 40% actively
working on project using AI. These numbers well reflect
the current situation: many nuclear physicists understand the
potential benefits of AI, but there is a steep learning curve.

Considering the current efforts, more sophistication in
using AI tools is needed. Indeed, majority of NP users apply
off-the-shelf tools; fewer understand the AI glossary and
make informed choices about the modern AI tools that suit
their problem best. Even fewer practitioners are advanced
users or innovators who consider uncertainty quantification
to be an essential part of the answer and/or consider the full
feedback between AI and physics problem (AI application is
modified depending on the physics outcome).

In short, at this point, NP community at large does not
fully grasp the depth of the AI universe with the majority of
work being carried out by users often helped by enthusiastic
undergraduate and graduate students. But the foundations are
there: nuclear physicists have good technical background and
they are used to problem-driven approaches to tool selection.
This helps in choosing the best/right tools for the problems.
One has to remember, however, that the newest AI tools are
almost always largely untested. It takes some experience to
know which tools to use. Simply understanding that this is
true will help nuclear physicists avoid dangerous pitfalls.

How can the level of AI literacy be improved? As dis-
cussed in Sect. 5.2 the fastest route to an AI-educated com-
munity involves easy access to ML/AI/Data science experts.
In the long-term, education of younger generation is essen-

tial. Several mechanism to improve the situation in this area
are proposed in Sect. 8.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This paper is
the proceedings of a workshop. All data presented is available in the
original sources.]
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