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Abstract In the context of event-by-event hydrodynamic
description, we analyze the implications of two models char-
acterized by distinct initial conditions. The initial energy
density of the first model adopts a Gaussian-type distribu-
tion, while those of the second one are features by high
energy peripheral tubes. We calibrate the initial conditions
of both models so that their initial probability distribution
of eccentricity are mostly identical. Subsequently, the resul-
tant scaled probability distributions of collective flow and the
correlations between flow harmonic and eccentricity coeffi-
cients are investigated. Besides, the calculations are carried
out for particle correlations regarding the symmetric cumu-
lant, mixed harmonics, and nonlinear response coefficients.
Although the resultant two-particle correlations possess simi-
lar shapes, numerical calculations indicate a subtle difference
between the two models. To be specific, the difference resides
in more detailed observables such as the probability distri-
butions of elliptic flow as well as Pearson correlation coeffi-
cient regarding higher-order harmonics. We discuss several
essential aspects concerning the linearity and nonlinearity
between initial eccentricities and final state anisotropies. Fur-
ther implications are addressed.

1 Introduction

The success of the hydrodynamic description of relativis-
tic heavy-ion collisions plays a vital part in our ongoing
endeavor to understand the properties of QCD matter [1–

a e-mail: wlqian@usp.br (corresponding author)

6]. The essence of hydrodynamical evolution, by and large,
has been attributed to the dynamic response to fluctuating ini-
tial conditions (IC). Moreover, as hydrodynamics is known
for its highly nonlinear characteristics, various studies have
been carried out to explore this aspect. In particular, much
efforts have been devoted to the relationship between initial
state eccentricities and final state anisotropies [7–13].

A quantitative notion on the decomposition of the
anisotropic IC was first proposed in Refs. [7,8]. The key idea
of the study is that anisotropy of the IC can be decomposed in
terms of a cumulant expansion, where the resulting expansion
coefficients correspond to the “connected” part of the eccen-
tricity at a given order. Therefore, a higher-order cumulant,
by definition, has the contributions from the “disconnected”
combinations of the lower orders ones subtracted. Moreover,
flow harmonics are understood as the hydrodynamic response
to IC fluctuations classified in terms of cumulants, while the
lowest cumulants are assumed to have dominant effects. In
literature, for a given flow harmonic order, the contribution
proportional to the cumulant of the same azimuthal order
is attributed as much to the linear response. While those
proportional to the combinations of lower-order cumulants,
which give rise to the same azimuthal order, are referred to
as the nonlinear response. In practice, it is noted that the
response strength from different cumulant combinations is
different. Therefore, the “best estimator” is taken to mini-
mize the deviation from the perfect correlation [9,12]. To be
more specific, the established mapping between IC and flow
harmonics resides in the correlation between an optimized
linear combination of a given set of cumulant products and
the corresponding flow harmonics. Numerical studies have
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shown that such a mapping is indeed effective, particularly
for the most central collisions. These works have incited fur-
ther efforts concerning this train of thought [10,13]. As an
example, it might be interested in verifying whether each
individual component of a given azimuthal order indeed leads
to a linear response by explicitly separating them from the IC
[11]. We note that, in this context, a given azimuthal harmonic
order actually corresponds to an infinite set of moments or
cumulants. It is not entirely clear whether a specific one-to-
one mapping shall exist, or in other words, to what extent dif-
ferent terms associated with the same azimuthal order will
mix under dynamical evolution. As a result, it still leaves
room for other possibilities regarding the radial expansion.
In literature, it has also been speculated that cumulant expan-
sion might not provide the most ideal parametrization of ini-
tial conditions. For instance, the Bessel–Fourier expansion
proposed in Ref. [14,15] provides an exciting alternative in
terms of orthonormal basis. The advantage of the proposed
IC decomposition resides in that fluctuations are ordered with
respect to their wavelength. Moreover, a radial mode related
to a shorter wavelength can be suppressed more easily, and
different modes might be mainly treated independently in a
hydrodynamical formalism [16].

Another direction of approach is associated with flow anal-
ysis, and particularly concerning the higher harmonics and
particle correlations. Symmetric cumulant was proposed in
Ref. [17] as a distinct observable tailored for the correla-
tions between flow harmonics. In particular, the symmetric
cumulant does not depend on any particular event plane, nei-
ther on the correlation between them. Moreover, it vanishes
if the fluctuations of different flow harmonics are indepen-
dent. In this context, it is an excellent observable which is
exclusively dedicated to exploring the correlations between
the flow harmonics and their fluctuations. As a comparison,
event plane correlations can be studied by using the method
proposed in Ref. [18]. In fact, most of the above observ-
ables can be formally expressed in terms of the moments
of flow, as discussed in Ref. [19]. Here, the definitions of
other quantities are derived through that of the complex
anisotropic flow coefficient of nth harmonics Vn , namely, the
Fourier coefficient of one particle distribution. By evaluating
the Pearson correlation coefficients between moments and
other appropriately chosen quantities, one obtains the desired
flow fluctuations, symmetric cumulant, and event plane cor-
relations. More recently, the nonlinear response regarding
ratios of mixed higher-order harmonic moments has been
investigated by several authors. Numerical studies are car-
ried out in terms of transport as well as hydrodynamic mod-
els while the results are compared against the data [19–21].
The ratio of the event average of the products of anisotropic
flow coefficient, subsequently, give rise to various observ-
ables such as vn{�m}, event planes correlation measured by
STAR [22,23], CMS [24] and ATLAS [25] Collaborations.

Furthermore, according to the spirit of IC Fourier decompo-
sition, the flow harmonics are divided into linear and non-
linear parts. The analyzes are entirely based on flow har-
monics, not directly related to IC eccentricities. The linear
response is attributed to IC fluctuations while the nonlin-
ear part is to the mean geometric eccentricity. To separate
the linear and nonlinear decompositions, in particular, the
linear responses are assumed to be uncorrelated to the non-
linear ones. The latter can be, again, expressed in terms of
the ratios of the event average of the products of anisotropic
flow coefficients. Hydrodynamic simulations show that the
corresponding results are comparable to the data. Last but not
least, principal component analysis (PCA) [26] has recently
been employed by many authors for the flow analysis [27–
29]. PCA is a method widely applied in data analysis, inclu-
sively for machine learning, which attempts to reorganize a
complex data set into components expressed in most relevant
dimensions. As a result, the data can be presented in a lower-
dimensional space. In this context, when PCA applies, it sig-
nificantly simplifies the underlying data structure. Recently,
the method is introduced to carry out analysis of the data on
heavy-ion collisions [27]. The main procedure of the PCA is
to diagonalize a covariance matrix, where the covariance is
evaluated with respect to two distinct types measurements,
and the dimension of the matrix presents the total number
of different features being measured. In practice, the coordi-
nates are translated conveniently in such a way that expected
value is zero. For the application of heavy-ion collisions, the
covariance is calculated for the anisotropic flow coefficients
evaluated at two different values of a chosen kinematic vari-
able. Thus the dimension of the matrix is taken to be the
number of bins of the given quantity, for instance, transverse
momentum or rapidity. If the detector is azimuthally sym-
metric, the event average of Vn vanishes, and therefore the
numerical procedure can be readily implemented. The valid-
ity of the application of PCA in the context of heavy-ion
collisions resides in the fact that the dominant component
turns out to be much more significant than others. The main
advantage of the method, as claimed by the authors, is that it
makes use of all the information contained in the particle dis-
tribution function. Nonetheless, the robustness of the method
is being investigated [30].

The above prominent methods for decomposition of the
IC and flow harmonics have been extensively employed to
explore relevant information regarding the collectivity of the
system. However, due to the nonlinearity of hydrodynamics,
to what degree the mapping between IC and flow harmon-
ics can be established quantitatively and therefore captured
by the proposed methods is still not entirely settled. Also,
from the AdS/CFT viewpoint, hydrodynamics stands on the
other side where the system is strongly interacting with intri-
cate correlations, while according to the duality, the linear
response theory is valid only for its dual gravity theory. In this
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context, it is meaningful also to investigate some alternative
approaches regarding the description of IC and its subsequent
effect on collective phenomena, such as the Bessel–Fourier
expansion mentioned above.

Some time ago, we proposed a peripheral tube model [31–
33], which provides a natural dynamical mechanism for the
generation of the triangular flow and the origin of the ridge
structure in the di-hadron correlations. The model can also
be viewed as an attempt to capture the essential feature in
the event-by-event fluctuating IC, instead of the statistical
global flow parameters such as harmonic coefficients. It is
motived by heuristic arguments as well as numerical simu-
lations that in the transversal collisional domain, a few high-
energy-density peaks are eventually generated near the sur-
face region due to the elementary binary collisions. These
hot spots in the transverse plane naturally form a tube-like
structure in the rapidity direction, and they are shown to be
most relevant as the origin of the ridge structure observed in
the di-hadron correlations. On the other hand, it is rather dif-
ficult to visualize the physical mechanism in terms of simple
statistical global eccentricities in IC. Therefore, the primary
purpose of the present paper is to compare the above two
scenarios in observed flow harmonics and look for possible
observables to distinguish them.

The IC of the peripheral tube model is constructed rem-
iniscent of those generated by the event generator NEXUS
[34] and EPOS [35]. It is divided into background and fluctu-
ations. The former is obtained by averaging the distribution
over many events from the same centrality class. While for
the latter, the IC fluctuations are understood as consisting of
independent high energy spot located close to the surface of
the system, referred to as peripheral tubes due to its longi-
tudinal extension. The resultant higher-order harmonics are
attributed to how a peripheral tube affects the hydrodynami-
cal evolution of the system locally. The overall contributions
are obtained by the superposition of those of individual tubes.
The essential feature of our model is that the above picture
attempts to interpret the IC fluctuations in terms of the local-
ized ones, instead of the global sinusoidal expansion regard-
ing moments. To be specific, if a tube is located deep inside
the hot matter, which might, however, contribute significantly
to the moment expansion, is less relevant in our approach.
To the best of our knowledge, the effect of its hydrodynamic
expansion would be mostly suppressed by its surroundings,
causing less significant consequence in the media. This is
contrary to a tube staying close to the surface, which might
cause significant disturbance to the one-particle azimuthal
distribution, as well as the related two-particle correlations.
The model has been employed to study various features of the
observed two-particle correlations in comparison with data
[31–33,36,37].

In order to carry out a more close comparison between the
IC of the peripheral tube model and those related to moment

decomposition. The primary strategy is to prepare two sets
of event-by-event fluctuating IC with mostly identical eccen-
tricity distributions and then investigate the subsequent linear
as well as nonlinear hydrodynamic response and the resultant
flow harmonics. Although similar in terms of its Fourier com-
ponents, the IC in question are visually distinct by construc-
tion. By employing most of the methods of IC and flow anal-
ysis mentioned above, we evaluated various relevant observ-
ables. The differences between the two models are presented
and discussed. Furthermore, the implications of the present
findings are addressed.

The present work is organized as follows. In the next sec-
tion, we briefly review the peripheral tube model and device
an anisotropic Gaussian model which primarily consists of
moments of Fourier decompositions. The latter is mostly
Gaussian in the radial direction, and in the azimuthal direc-
tion, it is parameterized to contain different harmonic orders.
Subsequently, in Sect. 3, we explain how the parameter of the
anisotropic Gaussian IC are adjusted so that it gives largely
identical eccentricity distributions to those of the peripheral
tube model. Both models are then fed to the hydrodynamic
code SPheRIO. The calculations are carried out for flow har-
monics and its probability distributions, symmetric cumu-
lant, mixed harmonics, as well as nonlinear response coeffi-
cients. The results are presented in Sect. 4. The last section
is devoted to discussions and concluding remarks.

2 The models

In this section, we discuss the two models employed in the
present study. First, the main characteristics of the periph-
eral tube model are briefly summarized. Then we devise an
anisotropic Gaussian model, whose IC is tailored to repro-
duce the probability distribution of the eccentricities of the
former.

As mentioned above, the IC of the peripheral tube model
consist of a smoothed background and a few high energy
tubes close to the surface of the system. The background
gives rise to the averaged bulk properties of the system, while
the tubes characterize the event-by-event fluctuations. Sub-
sequently, the energy density profile of the model is given
by

ε = εbgd + εtube. (1)

Here, the averaged background distribution reads

εbgd = (K + Lr2 + Mr4)e−r2c
, (2)

with

r =
√
ax2 + by2, (3)

123



222 Page 4 of 13 Eur. Phys. J. A (2020) 56 :222

Table 1 The model parameters
of the peripheral tube model
employed in the present stud

K L M

103.9 −89 28.5

a b c

0.077 0.033 2

Atube r0 Rtube

30 1.3 1.05

where the parameters K , L , M, a, b, c are determined by
a numerical fit to the averaged IC of Pb+Pb collisions for
the 20–25% centrality class at 2.76 TeV, generated by EPOS
[34,35,38–40]. The profile of a high energy tube is given by

εtube = Atube exp

[
− (x − xtube)

2 − (y − ytube)
2

R2
tube

]
, (4)

with

rtube = r0√
a cos2 θ + b sin2 θ

(5)

xtube = rtube cos(θ)

ytube = rtube sin(θ),

where Atube and Rtube are the maximum energy and radius of
the tube, while rtube give the radial location of the tube, subse-
quently determined by r0, a, b, and θ . The azimuth angle θ is
randomly chosen for an individual tube. In the present study,
we will focus ourselves on IC with three randomly generated
peripheral tubes, as the number of tubes was shown to be
irrelevant regarding the two-particle correlations [36]. The
values of the above parameters were extracted from typical
NEXUS IC [32], and are summarized in Table 1.

For the purpose of the present study, we introduce the fol-
lowing parameterization for an anisotropic Gaussian model.

ε(r, θ) = Ze
− r2

R2(θ) , (6)

R(θ) = R0

[
1 +

∑
n=2

Cn cos(n(θ − θn))

]1/2

. (7)

Here, for a given azimuthal direction, the radial distribution
is essentially Gaussian. The azimuthal dependence of the
radius is contained within the specific form of R(θ). The
latter draws a closed curve as one varies the azimuthal angle
θ from 0 to 2π . The value of the parameters R0 and Z are
chosen accordingly so that its size and total energy

ET =
∫ 2π

0
dθ

∫ ∞

0
dr

√−grε(r, θ) = πτ0R
2
0 Z , (8)

are reminiscent to those of the averaged EPOS IC. Here,
Cn and θn are randomized accordingly to reproduce the
same eccentricity distribution of the tube model, as will be

Table 2 The model parameters
of the anisotropic Gaussian
model employed in the present
study

R0 3.1

Z 133

n σn Mn

2 0.075 0.39

3 0.095 0.045

4 0.145 0.073

5 0.128 0.063

further discussed below. The parameters employed for the
anisotropic Gaussian model are summarized in the Table 2.
To be specific, the parameters Cn are randomly chosen to
satisfy a normal distribution centered at Mn with standard
deviation σn using the Box-Muller method.

The eccentricities for a given IC of the anisotropic Gaus-
sian model can be readily derived by evaluating the moments
〈rm〉, 〈rm cosmθ〉, and 〈rm sinmθ〉, which turn out to be

〈rm〉 = Rm
0

2π
�

(m
2

+ 1
)
Im, (9)

〈rm cosmθ〉 = Rm
0

2π
�

(m
2

+ 1
)
I Cm ,

〈rm sinmθ〉 = Rm
0

2π
�

(m
2

+ 1
)
I Sm,

and therefore,

εn =
√〈rn cos(nθ)〉2 + 〈rn sin(nθ)〉2

〈rn〉
=

√
(I Cm )2 + (I Sm)2

Im
, (10)

where

Im =
∫ 2π

0

(
1 +

∑
n=2

Cn cos n(θ − θn)

)m
2 +1

dθ,

I Cm =
∫ 2π

0
cos(mθ)

(
1 +

∑
n=2

Cn cos n(θ − θn)

)m
2 +1

dθ,

I Sm =
∫ 2π

0
sin(mθ)

(
1 +

∑
n=2

Cn cos n(θ − θn)

)m
2 +1

dθ.

(11)

For small angular inhomogeneities, namely, Cn � 1, one
finds the following simplified expressions for the eccentric-
ities

εn ∼ n + 2

4
Cn, (12)

and eccentricity planes


n ∼ 1

n
arctan2

I Sn
ICn

+ π

n
. (13)
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In practice, numerical integrations are employed for the cal-
culations.

For given IC, we solve the hydrodynamic equations by
using the SPheRIO code [31,33,41–46]. It is an ideal hydro-
dynamic code using the Smoothed Particle Dynamics algo-
rithm [47–49]. The present study adopted the same setup
utilized for the peripheral tube model, described in detail in
a recent study [37].

3 Numerical results

As discussed above, the parameterization of the peripheral
tube model is adjusted to mimic event-by-event fluctuating
initial conditions generated by EPOS. On the other hand,
those of the anisotropic Gaussian model is tailored accord-
ingly to produce mostly identical eccentricity distribution.
However, both the IC and the subsequent temporal evolu-
tions are quite different visually, as clearly demonstrated in
Fig. 1. In the case of the tube model, evolution is evidently
dominated by the deflection of the flow by the high energy
tubes. To be specific, the resultant peaks of particle emission
are clearly associated with the locations of the three tubes, as
discussed in Refs. [32,37]. On the other hand, in the case of
anisotropic Gaussian model, the overall energy distribution is
more smooth. It is rather difficult to predict the resultant evo-
lution. Although, on an event-by-event average, the apparent
mapping between IC eccentricities and flow harmonics can
be established, as discussed below.

The resultant relationship between eccentricities and flow
harmonics for both models are shown in Figs. 2 and 3. Fig-
ure 2 presents the scatter plots regarding the relationship
between the flow harmonics vn and eccetricities εn . For each
plot, we also evaluated the corresponding Pearson correlation
coefficients defined by

ρn ≡ ρ(vn, εn) = cov(vn, εn)

σvnσεn

, (14)

where cov(X,Y ) and σX are the covariance and standard
deviations of the two quantities in question. As the resulting
values of ρn are bounded by [− 1, 1], larger value close to 1
implies a stronger positive linear correlation. Figure 2 indi-
cates significant positive linear correlation in ε2 vs. v2 and ε3

vs. v3. However, as observed in previous studies [10,13],
the above correlations substantially decrease as n further
increases. The magnitude of the resultant Pearson correla-
tion coefficient drops nearly by an order of magnitude as
one goes from n = 3 to n = 4. A comparison between the
tube model and the anisotropic Gaussian model shows that
the linearities presented in the two models are mostly sim-
ilar. To be specific, the calculated Pearson correlation coef-
ficients is slightly larger for the tube model for n = 2 and
3. The difference becomes more significant in the case of ε4

vs. v4. Even though the obtained correlation coefficient is
more significant, however, as shown in the upper left panel
of Fig. 2, a degree of nonlinearity is observed in the elliptic
flow response in the tube model. This feature will be further
addressed below.

To present the results from a different perspective, we
show the probability density distributions of event-by-event
eccentricities εn , as well as those of flow harmonics vn , in
Fig. 3. Here the calculated probability distributions from the
two models are compared against each other. The plots in the
left column of Fig. 3 give the probability density distributions
of initial eccentricities. This mostly serves to ensure quantita-
tively that the tuned models do possess “similar” IC in terms
of eccentricity components. The right column, on the other
hand, presents the resulting event-by-event distributions of
flow harmonics. Here, a sizable difference is observed in the
case of the elliptic and quadrangular flow coefficients. We
note that this observation is not contradicting to the linearity
that one may draw from Fig. 2. In fact, this is consistent with
the previous findings, namely, the slope of the top-right plot
of Fig. 2 is slightly larger than that of the top-left plot.

To further investigate the linearity, we rescale the above
results and present the normalized probability distributions
in Fig. 4. However, for the present purpose, we show in the
same plot, the normalized distribution of εn against that of
vn . In this case, we quantify the linearity by introducing the
relative discrepancies of the two curves

dn ≡ d(P (vn/〈vn〉) , P (εn/〈εn〉)

=
∫
d (vn/〈vn〉, εn/〈εn〉) |P(vn/〈vn〉)−P(εn/〈εn〉)|

max(P(vn/〈vn〉),P(εn/〈εn〉))∫
d (vn/〈vn〉, εn/〈εn〉) , (15)

which is evaluated for each plot. It is found that linearity is
mostly confirmed to a satisfactory degree, except for d2 of the
tube model. We note that, in comparison with existing cal-
culations [13,50,51], the peripheral tube model does present
somewhat distinct features. However, since eccentricity can-
not be measured experimentally, the present findings do not
contradict with any existing theory straightforwardly. On the
other hand, this result can be intuitively understood in terms
of the peripheral tube model. When a tube is located deep
inside the system, the effect of its hydrodynamic expansion
is mostly absorbed by the surrounding medium. As a result,
although it contributes significantly to the eccentricity, due
to the smallness of its radial coordinate, it causes relatively
insignificant impact to the flow harmonics. On the contrary, a
tube sitting close to the surface possesses the precisely oppo-
site characteristic. It leads to a significant disturbance to the
one-particle distribution, resulting in sizable inhomogeneity
in the media, while contributes little to the initial eccentric-
ity. As the IC configuration exaggerate the above feature, to
some extent, its subsequent manifestation observed in Fig. 4
is expected.
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Fig. 1 The calculated temporal evolution of two random events of the peripheral tube model with three tubes (left column) and of anisotropic
Gaussian model (right column). The length of the arrow indicates the magnitude of the speed of light
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Fig. 2 The calculated scatter plots of the event-by-event correlations
between the flow harmonics vn and eccentricities εn . The results are
obtained by the peripheral tube model (left column) as well as by the

anisotropic Gaussian model (right column). In both cases, a total of
2000 events have been used to draw the plot. The corresponding Pear-
son correlation coefficients are also given
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Fig. 3 Left: the probability density distribution of the event-by-event εn in the peripheral tube model and anisotropic Gaussian model; right: the
probability density distributions of the resultant flow harmonics vn in the two models. The corresponding relative discrepancies are also evaluated
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Fig. 4 The normalized probability density distribution of the event-by-event εn and vn in the peripheral tube model (left column) and anisotropic
Gaussian model (right column)
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Fig. 5 A comparison of the di-hardron correlations for 0.4 <

passociated < 1 and 2 < ptrigger < 3 for the peripheral tube model
and anisotropic Gaussian model

In Fig. 5, we evaluate the di-hadron correlations for the
peripheral tube model and the anisotropic Gaussian model.
We note that the resulting correlations shown in Fig. 5 do not
attains zero at the minimum. This is simply because the IC
prepared in the present study does not contain any fluctuation
in total entropy, and therefore, the resultant multiplicity fluc-
tuations are minimized. In fact, one can numerically check
that the correlations presented in Fig. 5 integrate to zero over
a period 0 < �φ ≤ 2π . As primarily determined by the
average elliptic and triangular flows, the main features of
the obtained di-hadron correlations are very similar among
different models, consistent with previous studies [46,52–
60]. It is noted that similarity in two-particle correlations
does not imply further information on quantities regarding
higher-order correlations, as shown in the present study.

Now, we move to the study of linear and nonlinear
response coefficients and other observables related to higher
moments. By making use of the complex anisotropic flow
coefficient [19]

P(φ) = 1

2π

+∞∑
n=−∞

Vne
−inφ (16)

where Vn = vn exp(in�n), and vn = |Vn|. Subsequently,
one may study the nonlinear response coefficients given by
[19,20]

χ4 = 〈V4(V ∗
2 )2〉

〈|V2|4〉 = 〈v4v
2
2 cos(4[�4 − �2])〉

〈v4
2〉 , (17)

χ5 = 〈V5V ∗
2 V

∗
3 〉

〈|V2|2|V3|2〉
= 〈v5v2v3 cos(5�5 − 2�2 − 3�3)〉

〈v2
2v2

3〉 , (18)

χ62 = 〈V6(V ∗
2 )3〉

〈|V2|6〉 = 〈v6v
3
2 cos(6[�6 − �2])〉

〈v6
2〉 , (19)

χ63 = 〈V6(V ∗
3 )2〉

〈|V3|4〉 = 〈v6v
2
3 cos(6[�6 − �3])〉

〈v4
3〉 , (20)

χ7 = 〈V7(V ∗
2 )2V ∗

3 〉
〈|V2|4|V3|2〉

= 〈v7v
2
2v3 cos(7�7 − 4�2 − 3�3)〉

〈v4
2v2

3〉 , (21)

where, for instance, the imaginal part of the first expression
〈v4v

2
2 sin(4[�4 − �2])〉 = 0 for a large number of events.

In Table 3, we present the calculated nonlinear response
coefficients evaluated for the two models in comparison
to those extracted from CMS and ATLAS data [21,24,25].
Though the results are mostly of the same order of magni-
tude when compared to the experimental values, the discrep-
ancies are attributed to the fact that the IC considered in the
present study are not entirely realistic. The results between
the peripheral model and anisotropic Gaussian model are,
on the other hand, obtained by IC with essentially identical
probability distribution of eccentricity. Although the differ-
ence between the two models are of similar magnitude, one
observes that the difference is sizable. In particular, when
compared against the linear response presented above, we
note that the difference between the two models regarding
nonlinear response coefficients is more substantial. As fur-
ther discussed below, these differences may partly be traced
back to the subtlety in ICs.

In Table 4, we present the results on symmetric cumulants
as well as normalized symmetric cumulants, calculated by
using the following definitions.

SC(m, n) = 〈v2
nv

2
m〉 − 〈v2

n〉〈v2
m〉, (22)

NSC(m, n) = 〈v2
nv

2
m〉 − 〈v2

n〉〈v2
m〉

〈v2
n〉〈v2

m〉 . (23)

The normalized symmetric cumulant is understood as a mea-
sure for the correlation of the magnitude of flow fluctuations.
Meanwhile, the information on event planes and the magni-
tudes of the flow is intended to be canceled out. Although the
order of magnitude is comparable to the experimental data
[61], the obtained values of symmetric cumulant, as well
as normalized symmetric cumulant, are substantially differ-
ent for the two models. By construction, in the peripheral
tube model, ε2, ε3, and ε4 are correlated, and therefore, it is
straightforward to understand why the evaluated symmetric
cumulants are positively correlated. In the anisotropic Gaus-
sian model, however, these three eccentricity components,
for both magnitudes and orientations, are randomized. As a
result, positive definite correlations mostly come from the
nonlinear contributions. As is observed in Table 4, SC(4, 2)

and NSC(4, 2) may attain negative values.
Lastly, we show in Table 5 the calculated mixed cumu-

lants. The mixed harmonics, on the other hand, are related
to the ratios between flow harmonics evaluated by different
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Table 3 The calculated
nonlinear response coefficients
for 2.76 TeV Pb + Pb collisions
for the 20–25% centrality class

Number of events χ4 χ5 χ62 χ63

CMS and ATLAS data 0.818 1.878 0.715 0.878

Peripheral tube model (2000 events) 1.50 2.44 3.46 2.33

Anisotropic Gaussian model (2200 events) 1.69 2.794 2.97 1.12

Table 4 The calculated
symmetric cumulants for 2.76
TeV Pb + Pb collisions in
20–25% centrality class

SC(4, 2) SC(3, 2) NSC(4, 2) NSC(3, 2)

Peripheral tube model 0.043 × 10−6 0.134 × 10−6 0.035 0.035

Anisotropic Gaussian model − 0.252 × 10−6 0.0552 × 10−6 − 0.063 0.011

Table 5 The mixed harmonics
for 2.76 TeV Pb + Pb collisions
in 20–25% centrality class

Peripheral tube model Anisotropic Gaussian model

〈v4v
2
2 cos(4[�4 − �2])〉 4.09 × 10−5 8.39 × 10−5

〈v5v2v3 cos(5�5 − 2�2 − 3�3)〉 0.954 × 10−5 1.38 × 10−5

〈v6v
3
2 cos(6[�6 − �2])〉 0.0721 × 10−5 0.129 × 10−5

〈v6v
2
3 cos(6[�6 − �3])〉 0.301 × 10−5 0.119 × 10−5

event planes. Similar to the results presented in Table 3, the
relative values of mixed harmonics are found to be flipped
for the two models for those quantities involving harmonic
order n ≥ 6. As will be discussed shortly, this feature may
be attributed to the different construction of ICs.

Regarding the eccentricity components, ε2 is determined
by the initial almond shape, while εn with n ≥ 3 are gener-
ally attributed to event-by-event initial state fluctuations. In
the anisotropic Gaussian model, it is reflected by the fact that
the magnitude of the second component, C2 is much larger
than others. By construction, components with n = 1 and
n ≥ 6 are assumed to be vanishing, and the orientation of
each component, θn is chosen randomly. As a result, a given a
higher-order flow harmonics with n ≥ 6 is generated solely
due to the nonlinear contributions, namely, those from the
“disconnected” combinations of the lower orders ones, first
discussed in Refs. [7,8]. Subsequently, the corresponding
event plane is, by and large, determined by those lower-order
flow harmonics. In other words, if the mapping is exact, they
will not receive any linear contribution from the eccentricity
component of the same order, whose event plane is mostly
random. On the other hand, for the peripheral tube model, we
have not introduced any specific parameterization regarding
the eccentricity components. For a given peripheral tube, dif-
ferent components are naturally correlated by its geometric
construction. Therefore, a higher-order flow harmonics with
n ≥ 6 will receive the contribution from both linear and
nonlinear contributions. The above distinction may largely
account for the relative difference in magnitude between the
two models, for components n ≤ 5 and those n ≥ 6, as
shown in Tables 3 and 5.

The numerical results presented above indicate that the
difference between the two models is substantial. As dis-
cussed above, we understand that the observed difference
residing in higher harmonics and nonlinear response coeffi-
cients are originated from the distinct IC between these two
models.

4 Concluding remarks

To summarize, in this work, we devised an anisotropic Gaus-
sian model to match the eccentricity probability distribution
of the peripheral tube model. By doing this, we carried out
a back-to-back comparison between the two models regard-
ing the mapping between the event-by-event IC fluctuations
and flow harmonics. In particular, we studied the linear as
well as the nonlinear response of the system in terms of
flow harmonic coefficients, di-hadron correlations, symmet-
ric cumulants, mixed harmonics, among others. Although the
di-hadron correlations seem similar in their shapes, the dis-
tinction between the two models can be revealed by more
detailed observables. In particular, the discrepancies in the
normalized probability distributions of ε2 and v2 can be read-
ily understood in terms of the physical nature of the peripheral
tube model. Furthermore, the calculated Pearson correlation
coefficient regarding higher-order harmonics also demon-
strated a substantial difference between the two models. In
this context, it might be interesting to follow this train of
thought by proposing observables, which may quantify the
nonlinearity to a greater extent.
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From a hydrodynamic point of view, one has to deal with
physical concepts such as the degree of local thermal equilib-
rium, the equation of state, and transport coefficients. Subse-
quently, one must choose appropriate tools that reflect the
characteristics of the long-wavelength limit of a strongly
interacting system, which is, by and large, genuinely non-
linear. In this context, the subtle difference which carries
the vital information may reside in quantities such as higher-
order correlators [13,18,19]. In particular, the deviation from
the linearity, even though it can be insignificant in mag-
nitude, might be particularly meaningful This is because,
in the framework of the event-by-event fluctuations, a state
close to the local thermal equilibrium only corresponds to a
tiny space-time domain during the entire dynamical evolu-
tion (Refs. [3,62]). This topic is also closely related to the
question concerning to what degree the genuine event-by-
event hydrodynamics is feasible. Besides the study of the
deviations from linearity, one may also look for quantities
that are intrinsically associated with the nonlinear nature of
the system. Moreover, it is interesting to explore the effect
of viscosity on the physical quantities in question. Recently,
the calculations regarding the peripheral tube model with
the presence of viscosity have been carried out and will be
reported in future work. Further studies concerning this topic
are in progress.
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