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Abstract Various thermodynamic quantities and the phase
diagram of strongly interacting hot and dense magnetized
quark matter are obtained with the 2-flavour Nambu–Jona-
Lasinio model with Polyakov loop considering finite values
of the anomalous magnetic moment (AMM) of the quarks.
Susceptibilities associated with constituent quark mass and
traced Polyakov loop are used to evaluate chiral and decon-
finement transition temperatures. It is found that, inclusion
of the AMM of the quarks in presence of the background
magnetic field results in a substantial decrease in the chi-
ral as well as deconfinement transition temperatures in con-
trast to an enhancement in the chiral transition temperature in
its absence. Using standard techniques of finite temperature
field theory, the two point thermo-magnetic mesonic correla-
tion functions in the scalar (σ ) and neutral pseudoscalar (π0)
channels are evaluated to calculate the masses of σ and π0

considering the AMM of the quarks.

1 Introduction

Presence of a finite background magnetic field leads to a large
number of exotic phenomena in strongly interacting matter.
Among these some of the important ones are Chiral Mag-
netic Effect (CME) [1–4], Magnetic Catalysis (MC) [5–8]
and Inverse Magnetic Catalysis (IMC) [9,10] of dynami-
cal chiral symmetry breaking which may cause significant
change in the nature of electro-weak [11–14], chiral and
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superconducting phase transitions [15–18], electromagnet-
ically induced superconductivity and superfluidity [19,20]
and so on. Understanding these aspects could help us to get
a better picture of our main objective of understanding quan-
tum chromodynamics (QCD). It has been reported that strong
magnetic fields of the order of 1018 G [2,21] or larger may be
generated in non-central heavy-ion collisions, at RHIC and
LHC which can influence substantial change in the properties
of QCD matter as the magnitudes of these fields are compa-
rable to the QCD scale i.e. eB ≈ m2

π (note that in natural
units, 1018 G ≈ m2

π ≈ 0.02 GeV2). It is conjectured that the
presence of finite electrical conductivity of the hot and dense
medium created during heavy ion collisions can delay the
decay of these time-dependent magnetic fields substantially
[22–24]. Strong magnetic fields can be present in several
other physical environments. For example, during the elec-
troweak phase transition in the early universe the magnetic
field as high as ≈ 1023 G [25,26] might have been produced.
At the surface and in the interior of certain compact stars
called magnetars magnetic field of the order of ∼ 1015 G
and ∼ 1018 G respectively could be realized [27–29]. More-
over, observations of gravitational waves from collisions of
neutron stars have triggered simulative study of such events
where data for QCD phase diagram at large range of densities
and temperatures are required as input [30]. Thus study of
QCD matter in these extreme conditions has attracted a wide
spectrum of researchers in this domain of physics in recent
times.

It is well known that a first principle analysis of the above
mentioned phenomena is hindered due to the large coupling
strength of QCD in the low energy regime which restricts the
use of perturbative approach. One of the best alternatives is
to rely on Lattice QCD (LQCD) simulations. Methods, like
a Taylor expansion [31] or an analytical continuation from
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imaginary chemical potentials [32], have been developed to
extrapolate thermodynamical quantities at intermediate tem-
peratures (comparable to the QCD scale) and low baryonic
density which is relevant for highly relativistic heavy ion col-
lisions [31–37]. However, for compact stars one has to con-
sider high values of baryonic chemical potential, which are
not accessible via the LQCD simulation due to the so-called
sign problem in Monte Carlo sampling [9]. An alternative
approach is to work with effective models which are capable
of incorporating most of the essential features of QCD and are
mathematically tractable. Nambu–Jona-Lasinio (NJL) model
[38,39] is one such model, constructed by respecting the
global symmetries of QCD and it presents a useful scheme
to probe arbitrary temperatures and baryonic density. This
model has been extensively used to study the chiral sym-
metry restoration (see [40–43] for reviews). As mentioned
in [40], the point like interaction between quarks makes the
NJL model non-renormalizable. Thus, a proper regulariza-
tion scheme is adopted to deal with the divergent integrals and
the parameters associated with the model are fixed to repro-
duce some well known phenomenological quantities, e.g.,
pion-decay constant fπ , condensate etc [44]. However, the
NJL model lacks confinement: poles of the massive quark
propagator are present at any temperature and/or chemi-
cal potential. But in QCD both dynamical chiral symmetry
breaking and confinement are realized as global symmetries
of the QCD Lagrangian. It is well known that the Polyakov
loop can be used as an approximate order parameter for the
deconfinement transition associated with the spontaneous
symmetry breaking of the center symmetry [45,46]. Thus,
in order to obtain a unified picture of confinement and chiral
symmetry breaking the Polyakov loop enhanced Nambu–
Jona-Lasinio (PNJL) model is introduced and developed by
incorporating a temporal, static and homogeneous gluon-like
field [47–56]. Furthermore, the PNJL model belongs to the
same universality class of QCD due to the symmetries of
the Lagrangian which makes it better suited for studying the
phase structure and critical phenomena related with the chiral
and deconfinement phase transitions [50].

PNJL model has been extensively used to study the decon-
finement and chiral symmetry restoration in the presence of a
background electromagnetic field [57–63]. In [57] it is shown
that the external magnetic field is likely to strengthen the chi-
ral condensate resulting an increase of transition temperature
compared to the zero field case in agreement with the pre-
vious studies on magnetic catalysis(MC) in NJL-like mod-
els. The modification of the phase structure of the model
due to chiral chemical potential, which mimics the chiral-
ity induced by topological excitations according to the QCD
anomaly relation, has also been discussed [57]. In [63], it has
been observed that though the electric field partially restores
the chiral symmetry, the deconfinement phase transition
is marginally affected. Recent lattice results [4,35,36,64]

shows that although, at low temperature the magnetic field
catalyzes the chiral condensate, at higher values of the tem-
perature the opposite trend is observed. A combined effect
of these findings indicate an overall decrease in the transition
temperature leading to IMC. A significant amount of research
has been conducted to explain this discrepancy by adopt-
ing appropriate modifications in the NJL-type models (see
[10,65] for a review). For example, IMC is obtained in [66–
69] by considering a lattice-inspired eB-dependent coupling
constant. In [70,71], the effective potential was obtained
beyond mean field in the linear sigma model with fermions
interacting in presence of a background magnetic field and it
was shown that inclusion of the thermo-magnetically mod-
ified couplings leads to IMC behaviour. Chiral symmetry
breaking for quark matter in a magnetic background at finite
temperature and quark chemical potential is also studied in
[72], making use of the Ginzburg–Landau effective action
formalism in a renormalized quark–meson model. The obser-
vation of IMC at finite μ up to moderate values of eB is
confirmed up to eB ∼ 10m2

π in their calculations. However,
at large eB magnetic catalysis is seen to appear. In [73], it
has been demonstrated that the inclusion of AMM of pro-
tons and neutrons leads to a decrease in critical tempera-
ture for vacuum to nuclear matter transition with increasing
magnetic field which can also be identified as IMC. Now,
it is well known that quarks carry finite AMM [74]. Thus,
the main objective of our work is to include, for the first
time, the effects of the AMM of the quarks in the PNJL
model and study how the deconfinement and chiral symmetry
restoration are modified.A detailed study of susceptibilities
related to the constituent quark mass and the traced Polyakov
loop are executed to evaluate the modifications in chiral and
deconfinement transition temperatures due to inclusion of the
AMM of the quarks. Variations of quark number susceptibil-
ity, specific heat and velocity of sound are also demonstrated.

In addition, properties of light scalar (σ ) and pseudo-scalar
(π ) mesons have also been examined in this framework to
observe the effects of the Polyakov loop dynamics on the
physical properties of σ, π which have a direct relevance with
the dynamics of chiral symmetry restoration for hadronic sys-
tems at finite temperature and/or chemical potential. Proper-
ties of σ and π mass have already been discussed at vanishing
magnetic field [75–80]. From NJL model studies [67,81–85]
it is expected that the minimum temperature for which the
overlap interval starts in the crossover region increases with
the increasing magnetic field. But, we have not come across
any previous calculations regarding the effects of background
magnetic field or AMM of the quarks in the mesonic prop-
erties using PNJL model. We would like to mention that all
the results presented in this work have been evaluated by
taking all the Landau levels of the quarks into consideration
without resorting to any approximation on the strength of the
magnetic field.
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The paper is organized as follows. Section 2 is divided in
three subsections where we describe the PNJL model very
briefly (Sect. 2.1), derivation of thermodynamic quantities
(Sect. 2.2) and mesonic properties (Sect. 2.3) respectively.
Next in Sect. 3 we present the numerical results for various
observables followed by a summary and conclusion of our
work in Sect. 4.

2 Formalism

2.1 PNJL model in a hot and dense magnetized medium

The Lagrangian of the two-flavour PNJL-model considering
the AMM of free quarks in presence of constant background
magnetic field is given by

L = ψ̄(x)

(
i /D − m + γ0μq + 1

2
âσμνFμν

)
ψ(x)

+G
{(

ψ̄(x)ψ(x)
)2 + (

ψ̄(x)iγ5τψ(x)
)2}

−U
(
�, �̄; T ) (1)

where we have dropped the flavour ( f = u, d) and color
(c = r, g, b) indices from the Dirac field

(
ψ f c

)
for a con-

venient representation. In Eq. (1), m is current quark mass
representing the explicit chiral symmetry breaking (we will
takemu = md = m to ensure isospin symmetry of the theory
at vanishing magnetic field) and μq is the chemical poten-
tial of the quark. The constituent quarks interact with the
Abelian gauge field Aμ and the SUc(3) gauge field Aμ via
the covariant derivative

Dμ = ∂μ − i q̂ Aμ − iAa
μ. (2)

The Abelian gauge field Aμ describes the influence of the
external magnetic field B aligned along the z-direction, for
convenience we choose Aμ = (0, 0, x B, 0). The electric
charges of the quarks are defined by q̂ = diag(2e/3,−e/3).1

The SUc(3) gauge field Aμ represents a non-trivial back-
ground due to the Polyakov loop and defined as Aμ =
gsAa

μλa/2 where gs is the SUc(3) gauge coupling con-
stant and λa are the Gell-Mann matrices. In the Polyakov
gauge and at finite temperature Aμ = δμ0A0 [47,50,52]. In
Eq. (1), the factor â = Q̂κ̂ , where κ̂ = diag(κu, κd), is a
2 × 2 matrix in the flavour space. Note that, here κ f ’s are
AMM of the quarks, having dimension ∝ 1/[M], defined
as κ f = α f /2M f with M f being the constituent quark
mass to be defined later (note that in our case Mu = Md ).
α f ’s are dimensionless quantities defined as μ f = q f e(1 +
α f )σ

3/2M f , where μ f is the spin magnetic moment (see
Ref. [74] for details). Furthermore, Fμν = ∂μAν − ∂ν Aμ

1 The hat symbol on each quantity implies that they are 2 × 2 matrices
in flavor space.

Table 1 Parameter set for Polyakov potential

a0 a1 a2 a3 b3 b4

6.75 −1.95 2.625 −7.44 0.75 7.5

and σμν = i[γ μ, γ ν]/2. The metric tensor used in this work
is gμν = diag (1,−1,−1,−1). The potential U

(
�, �̄; T )

in the Lagrangian (Eq. (1)) governs the dynamics of the traced
Polyakov loop and its conjugate:

� = 1

3
TrcL; �̄ = 1

3
TrcL

† (3)

where L is the matrix in color space related to the gauge field
Aμ by

L(�x) = P exp

[
i
∫ β

0
dτA4 (�x, τ )

]
. (4)

Here P denotes the path ordering in Euclidean time, β =
1/T and A4 = iA0. In this work we adopt the following
Polyakov loop potential [47]

U
(
�, �̄; T )
T 4 = −b2(T )

2
�̄� − b3

6

(
�3 + �̄3

)

+b4

4

(
�̄�

)2
(5)

where

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (6)

Values of different co-efficients are tabulated in Table 1 [47].
Following the argument in [47] we have chosen T0 =

190 MeV. Now expanding ψ̄ψ around the quark-condensate〈
ψ̄ψ

〉
and dropping the quadratic term of the fluctuation one

can write

(
ψ̄ψ

)2 = (
ψ̄ψ − 〈

ψ̄ψ
〉+ 〈

ψ̄ψ
〉)2 ≈ 2

〈
ψ̄ψ

〉 (
ψ̄ψ

)−〈ψ̄ψ
〉2

.

(7)

There is no contribution from the second term as the expecta-
tion value of the pseudo-scalar channel is zero. In this mean
field approximation (MFA) and using the gauge choice for
external magnetic field, the Lagrangian becomes

L MF = ψ̄(x)
(
i /D − M + γ0μq + âσ 12B

)
ψ(x)

− (M − m)2

2G
− U

(
�, �̄; T ) (8)

where, M is the constituent quark mass given by

M = m − 2G
〈
ψ̄ψ

〉
. (9)
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Now following Refs. [57,86], the one-loop effective potential
i.e. the thermodynamic potential for a two-flavor Polyakov
NJL model considering the AMM of the quarks at finite tem-
perature ( T ) and chemical potential (μq ) in presence of a
uniform background magnetic field is expressed as

� = (M − m0)
2

2G
+ U

(
�, �̄; T )

−3
∑
n, f,s

∣∣q f B
∣∣

2π

∫ ∞

−∞
dpz
2π

ωn f s

− 1

β

∑
n, f,s

∣∣q f B
∣∣

2π

∫ ∞

−∞
dpz
2π

[
ln g(+)

(
�, �̄, T

)

+ ln g(−)
(
�, �̄, T

)]
(10)

where ωn f s are the energy eigenvalues of the quarks in the
presence of external magnetic field as a consequence of the
Landau quantization of the transverse momenta of the quarks
and is given by

ωn f s =
[
p2
z +

{(√∣∣q f B
∣∣ (2n + 1 − s) + M2 − sκ f q f B

)2
}] 1

2

(11)

with n and s being the Landau level and the spin indices
respectively. The quantities g(+)

(
�, �̄, T

)
and g(−)(

�, �̄, T
)

are defined as

g(+)
(
�, �̄, T

) = 1 + 3
(
� + �̄e−β(ωn f s−μq )

)
e−β(ωn f s−μq )

+e−3β(ωn f s−μq ) (12)

g(−)
(
�, �̄, T

) = 1 + 3
(
�̄ + �e−β(ωn f s+μq )

)
e−β(ωn f s+μq )

+e−3β(ωn f s+μq ). (13)

An important aspect of the PNJL model can be realized
by studying the qualitative behaviour of the thermodynamic
potential at low temperature values. From Eq. (10) it is evi-
dent that in the limit �, �̄ → 0, which is the case at low
temperatures, the contributions of one and two-quark states
in the expressions of g± are strongly suppressed compared to
the three-quark term ∼ e−3β(ωn f s±μq). In this sense the PNJL
model mimics the confinement of quarks within three-quark
states and on a qualitative level, this is similar to the proper-
ties of QCD. This justifies the suitability of PNJL model for
describing the low-temperature QCD phase over NJL model,
where the constituent quarks are abundant also at low tem-
peratures. However, at least in the mean-field approximation,
the PNJL model is deficient in one and two-quark states at
low temperatures which also plays an important role in the
investigations of the properties of QCD. Now from Eq. (10)
one can obtain the expressions for the constituent quark mass
(M) and the expectation values of the Polyakov loops � and

�̄ using the following stationary conditions:

∂�

∂M
= 0; ∂�

∂�
= 0; ∂�

∂�̄
= 0; (14)

which leads to the following sets of coupled integral equa-
tions

M = m + 3G
∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞
0

dpz
M

ωn f s

(
1 − sκ f q f B

Mn f s

)

−3G
∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞
0

dpz
M

ωn f s

(
1 − sκ f q f B

Mn f s

)

×
[
f + (�, �̄, T

)+ f − (�, �̄, T
)]

, (15)
{
−b2(T )

2
�̄ − b3

2
�2 + b4

2

(
�̄�

)
�

}
− 3

T 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞
0

dpz

[
e−β(ωn f s−μq )

g(+)
+ e−2β(ωn f s+μq )

g(−)

]
= 0 , (16)

{
−b2(T )

2
� − b3

2
�̄2 + b4

2

(
�̄�

)
�̄

}
− 3

T 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞
0

dpz

[
e−2β(ωn f s−μq )

g(+)
+ e−β(ωn f s+μq )

g(−)

]
= 0 (17)

where

Mnf s =
√∣∣q f B

∣∣ (2n + 1 − s) + M2 , (18)

f + (�, �̄, T
)

=
(
� + 2�̄e−β(ωn f s−μq )

)
e−β(ωn f s−μq ) + e−3β(ωn f s−μq )

1 + 3
(
� + �̄e−β(ωn f s−μq )

)
e−β(ωn f s−μq ) + e−3β(ωn f s−μq )

,

(19)
f − (�, �̄, T

)

=
(
�̄ + 2�e−β(ωn f s+μq )

)
e−β(ωn f s+μq ) + e−3β(ωn f s+μq )

1 + 3
(
�̄ + �e−β(ωn f s+μq )

)
e−β(ωn f s+μq ) + e−3β(ωn f s+μq )

.

(20)

Note that in Eq. (15), the medium independent integral is
ultraviolet divergent. Since the theory is known to be non-
renormalizable owing to the point-like interaction between
the quarks, a proper regularization scheme is necessary. Reg-
ularization schemes to handle such divergences are discussed
in [83,87,88].

2.2 Thermodynamic quantities

The thermodynamics of the PNJL model in presence of the
background magnetic field can be characterized by the poten-
tial � defined in Eq. (10). Since the system is uniform, pres-
sure and energy density are given by [43]

p(T, μq) = −�(M,�, �̄, T, μq) , (21)

ε(T, μq) = −p(T, μq) + T s(T, μq) + μqnq(T, μq) (22)
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where, nq is the quark number density given by

nq(T, μq) = − ∂�

∂μq
= 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞

0
dpz

× (
f + (�, �̄, T

)− f − (�, �̄, T
))

(23)

while the entropy density (s(T, μq)) is defined as

s(T, μq ) = − ∂�

∂T
=
∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞
0

dpz

×
[
ln g(+)

(
�, �̄, T

)+ ln g(−)
(
�, �̄, T

)]

+3T
∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞
0

dpz

[
ωn f s − μq

T 2 f + (�, �̄, T
)

+ωn f s + μq

T 2 f − (�, �̄, T
)]

−4T 3
[
− b2(T )

2
�̄� − b3

6

(
�3 + �̄3

)
+ b4

4

(
�̄�

)2]

− 1

2

[
a1T0T

2 + 2a2T
2
0 T + 3a3T

3
0

]
�̄�. (24)

During the derivation of the expression for entropy, we have
used the gap equations for M,� and �̄ given in Eqs. (15),
(16) and (17) respectively to get rid of the term involving
T -derivatives of M,� and �̄. The response of nq and s due
to the variations of μq and T can be measured by the quark
number susceptibility (χq ) and the specific heat (CV ) respec-
tively. They can be defined as

χq = ∂nq
∂μq

= χ0
q + T 2AM,μq

(
∂M

∂μq

)
+ T 3A�,μq

(
∂�

∂μq

)

+T 3A�̄,μq

(
∂�̄

∂μq

)
(25)

CV = T

(
∂s

∂T

)
V

= TC0
V + T 3 AM,T

(
∂M

∂T

)

+T 4 A�,T

(
∂�

∂T

)
+ T 4 A�̄,T

(
∂�̄

∂T

)
(26)

where

χ0
q = 3

T

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞

0
dpz

[
e−β(ωn f s−μq)

g(+)2

×
{
�+4�̄e−β(ωn f s−μq)+3

(
1+�̄�

)
e−2β(ωn f s−μq)

+4�e−3β(ωn f s−μq)

+�̄e−4β(ωn f s−μq)
}

+ {
� ↔ �̄;μq → −μq

} ]

(27)

and

C0
V = 3

T 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞
0

dpz

[
e−β

(
ωn f s−μq

)

g(+)2

(
ωn f s − μq

)2

×
{
� + 4�̄e−β

(
ωn f s−μq

)
+ 3

(
1 + �̄�

)
e−2β

(
ωn f s−μq

)

+4�e−3β
(
ωn f s−μq

)
+ �̄e−4β

(
ωn f s−μq

)}

+ {� ↔ �̄; μq → −μq
} ]− 12T 2

{
−b2(T )

2
�̄�

−b3

6

(
�3 + �̄3

)
+ b4

4

(
�̄�

)2}

+2T 3 ∂b2(T )

∂T
�̄� −

(
a1T0T + a2T

2
0

)
�̄� . (28)

All the other terms appearing in Eqs. (25) and (28) are defined
in Appendices 1 and 1. One can also calculate the velocity
of sound (cs) which is closely related to CV and is given by

c2
s =

(
∂p

∂ε

)
= s

CV
. (29)

Now as discussed in [50], the constituent quark mass and
the Polyakov loops are effective fields associated with the
order parameters of chiral and Z(3) symmetry. Hence the
susceptibilities corresponding to these fields show signals of
phase transitions. In order to calculate them we introduce the
following dimensionless matrix

C =
⎡
⎣CMM CM� CM�̄

C�M C�� C��̄

C�̄M C�̄� C�̄�̄

⎤
⎦ (30)

with

CMM = 1

T�

∂2�

∂M2 ; CM� = 1

T�2

∂2�

∂M∂�
= C�M ;

CM�̄ = 1

T�2

∂2�

∂M∂�̄
= C�̄M ;

C�� = 1

T�3

∂2�

∂�2 ; C��̄ = 1

T�3

∂2�

∂�∂�̄
= C�̄�;

C�̄�̄ = 1

T�3

∂2�

∂�̄2
. (31)

In Appendix 1 we have calculated different double deriva-
tives of � with respect to M,�, �̄. Susceptibilities are
defined as the inverse of C and can be expressed as

χ = C−1 =
⎡
⎣χMM χM� χM�̄

χ�M χ�� χ��̄

χ�̄M χ�̄� χ�̄�̄

⎤
⎦ (32)

Here χMM , χ�� and χ�̄�̄ are chiral and diagonal Polyakov
loop susceptibilities respectively. The off-diagonal terms are
mixed susceptibilities. Note that one can find out the κ f → 0
and eB → 0 limit of the results obtained in this sec-
tion, Sect. 2.1 and the Appendices by making the following
replacements:

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞

0
dpz −→ 2N f

∫
d3 �p

(2π)3 , (33)
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ωn f s −→ E �p =
√

�p2 + M2 , (34)

M

ωn f s

(
1 − sκ f q f B

Mn f s

)
−→ M

E �p
(35)

and

1

ωn f s

(
1 − sκ f q f B

Mn f s

)
− M2

ω3
n f s

(
1 − sκ f q f B

Mn f s

)2

+M2sκ f q f B

ωn f sM3
n f s

−→
(

1

E �p
− M2

E3
�p

)
. (36)

A discussion on these replacements and analytical derivation
of the limiting procedure can be found in [83,89,90].

2.3 Mesonic properties

The mesons being the bound states of quarks and anti-quarks,
their propagations can be studied within the PNJL model
using the Bethe–Salpeter equation [40]. We are interested in
the evaluation of two-point mesonic correlation functions of
the type:

Ca(q) = i
∫

d4xeiq·x 〈T Ja(x)J
†
a (0)

〉
(37)

where T is the time ordering symbol and Ja(x) represents
the local current for the channel a ∈ {π0, σ } given by

Jπ0(x) = ψ̄(x)iγ 5τ 3ψ(x) (pseudoscalar), (38)

Jσ (x) = ψ̄(x)ψ(x) (scalar) (39)

with τ 3 being the third component of Pauli matrices in isospin
space. In the Random Phase Approximation (RPA), the cor-
relator in Eq. (37) can be recast into the form of a Dyson-
Schwinger equation [75]in the following way:

Ca(q) = �a(q) + �a(q)(2G)Ca(q) (40)

where, �a(q) is the one-loop in-medium polarization func-
tion of the mesons. Its explicit form is given by [75,83]

�a(q) = i
∫

d4k

(2π)4 Trd,f,c [S(k)�a S(p = q + k)�a] ;
a ∈ {π0, σ }. (41)

Here, S(k) is the dressed Hartree quark propagator and Trd,f,c

represents the trace over the Dirac, colour and flavour spaces.
In the above equation �π0 = iγ 5τ 3 and �σ = 1. The polar-
ization functions of π0 and σ mesons in the NJL model are
explicitly calculated in Ref. [83] employing thermal field
theoretic methods at both vanishing as well as non-vanishing
external magnetic field. In Ref. [75], the mesonic polarization
functions are calculated at B = 0 within both NJL and PNJL
models where it has been demonstrated that, going from NJL
to PNJL model requires only the replacement of the Fermi-
Dirac distribution functions of the quarks and antiquarks with

the functions given in Eqs. (19) and (20) respectively. There-
fore, following Refs. [75,83], the thermal polarization func-
tions in the PNJL model at B = 0 and at vanishing three
momentum of the mesons can be written as

Re�a(q
0, �q = �0, B = 0)

= 1

4π2

∫ �

0

�k2d|�k|
(

1

ωkq0

)

×P
[Na(k0 = −q0 + ωk)

q0 − 2ωk
+ Na(k0 = ωk)

q0 + 2ωk

]

− 1

4π2

∫ ∞

0

�k2d|�k|
(

1

ωkq0

)
P
[Na(k0 = −ωk) f −(ωk)

q0 − 2ωk

+Na(k0 = ωk) f +(ωk)

q0 + 2ωk

+Na(k0 = −q0 − ωk) f −(ωk)

q0 − 2ωk

+Na(k0 = −q0 + ωk) f +(ωk)

q0 + 2ωk

]
(42)

where the Cauchy principal value integral is denoted by P
and Na(k, q)’s (for a = σ, π0) are given by

Nσ (k, q) = 3N f Tr
[
(�k + �q + M)(�k + M)

]
= 12N f (M

2 + k2 + k · q), (43)

Nπ0(k, q) = −3N f Tr
[
γ 5(�k + �q + M)γ 5(�k + M)

]

= −12N f (M
2 − k2 − k · q) . (44)

On the other hand, we have the following expressions for the
thermo-magnetic polarization function in the PNJL model at
�q = 0:

Re�a(q
0, �q = �0, B 
= 0)

=
∑
f

∑
sk ,sp

∞∑
l=0

⎡
⎣∫

√
�2−�k2⊥l

0

×dkz
π

�
(�k2⊥l

)
�
(

�p2⊥l

)
�
(
�2 − �k2⊥l

)
�
(
�2 − �p2⊥l

)

× P

⎧⎪⎪⎨
⎪⎪⎩

N a
lsk sp

(
k0 = −q0 + ω

lsp
k

)

2ω
lsp
k

{(
q0 − ω

lsp
k

)2 −
(
ω
lsk
k

)2
}

+
N a

lsksp
(k0 = ω

lsk
k )

2ω
lsk
k

{(
q0 + ω

lsk
k

)2 −
(
ω
lsp
k

)2
}
⎫⎪⎪⎬
⎪⎪⎭

+
∫ +∞

−∞
dkz
(2π)

�
(�k2⊥l

)
�
(

�p2⊥l

)

×P

⎧⎪⎪⎨
⎪⎪⎩

−
N a

lsksp
(k0 = −ω

lsk
k ) f −(ω

lsk
k )

2ω
lsk
k

{(
q0 − ω

lsk
k

)2 −
(
ω
lsp
k

)2
}
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−
N a

lsksp
(k0 = ω

lsk
k ) f +(ω

lsk
k )

2ω
lsk
k

{(
q0 + ω

lsk
k

)2 −
(
ω
lsp
k

)2
}

−
N a

lsk sp
(k0 = −q0 − ω

lsp
k ) f −(ω

lsp
k )

2ω
lsp
k

{(
q0 + ω

lsp
k

)2 −
(
ω
lsk
k

)2
}

−
N a

lsk sp
(k0 = −q0 + ω

lsp
k ) f +(ω

lsp
k )

2ω
lsp
k

{(
q0 − ω

lsp
k

)2 −
(
ω
lsk
k

)2
}
⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦ (45)

where the flavour index f in different terms within the square
bracket of the right hand side of the above equation has been
suppressed and

ω
lsk
k =

√
k2
z + (Ml − skκeB)2 , (46)

�k2⊥l = 2leB + (κeB)2 − 2skMl(κeB) , (47)

�p2⊥l = 2leB + (κeB)2 − 2spMl(κeB) (48)

with Ml = √
M2 + 2l |eB|. The expression for N a

lsk sp
is

given by

N a
lsk sp (k, q)

= 6 ja
eB

4πM2
l

(
1 − δ0

l δ
−1
sk

) (
1 − δ0

l δ
−1
sp

)

×
[

− 4eBl
{
sksp(k

2‖ + k0q0) + jasksp(κeB)2 + jaM
2
l

− jaκeBMl(sp + sk)
}

+
(

1 − δ0
l

) {
j (k2‖ + k0q0)(Ml − skM)(Ml − spM)

+{skκeBM − Ml(M − skMl + κeB)
}{
spκeBM

−Ml(M − spMl + κeB)
}}+ ja(k

2‖ + k0q0)

×(Ml + skM)(Ml + spM)

+{skκeBM − Ml(M + skMl − κeB)
}

×{spκeBM − Ml(M + spMl − κeB)
}]

(49)

with jσ = 1 and jπ0 = −1. The different step functions
appearing on the rhs of Eq. (45) represent the UV and AMM
blocking as discussed in [83].

Having obtained the polarization functions of the mesons,
it is now straightforward to evaluate the masses of π0 and σ

by solving the following transcendental equations

1 − 2G�a(q
0 = ma, �q = �0) = 0, a ∈

{
σ, π0

}
(50)

representing the pole of the meson propagators.

3 Numerical results

In this section, we present numerical results for the dynami-
cally generated constituent quark mass (M), expectation val-
ues of Polyakov loops � and �̄ as well as several thermo-
dynamic quantities in a hot and dense magnetized medium
considering finite values of the AMM of the quarks. Follow-
ing Refs. [47,48], we have chosen the three momentum cut-
off � = 651 MeV, coupling constant G = 10.08 GeV−2

and bare quark mass m = 5.5 MeV. These parameters
have been fixed by fitting the empirical values of pion mass
mπ = 139.3 MeV and pion decay constant fπ = 92.4
MeV at zero temperature and zero baryon density in the
absence of the background magnetic field. For these val-
ues of parameters we obtain

∣∣〈ψ̄ψ
〉∣∣1/3 = 251 MeV and

M = 325 MeV at T → 0, μq → 0. We have considered
constant values of AMM of the quarks, κu = 0.29 GeV−1

and κd = 0.36 GeV−1 following Ref. [74].
In Fig. 1a, b we have shown the variation of constituent

quark mass (M) as a function of temperature (T ) for zero and
non-zero values of AMM of the quarks in the presence of a
uniform background magnetic field i.e. at eB = 0.05 GeV2.
In both the plots we have varied the chemical potential as
μq = 0, 100, 150 and 200 MeV. Comparing Fig. 1a, b, it can
be seen that there are two immediate effects of the consid-
eration of AMM of the quarks. Firstly, it leads to significant
decrease of M in the limit T → 0. Secondly, the transition
from chiral symmetry broken to the restored phase occurs at
lower values of temperature for all μq values. We will come
back to this behaviour of M later while describing Fig. 2a–d.
The overall behaviour of M is qualitatively similar in both the
cases as it starts from a high value at low T , remains almost
constant up to T ≈ 100 MeV and finally becomes nearly
equal to the bare quark mass. Thus, the transition from the
chiral symmetry broken to the restored phase is a crossover.
Note that, since we have considered finite value of the bare
quark mass i.e. m0 = 5.5 MeV, the chiral symmetry is never
restored fully. However, as we increase μq , the crossover
pattern moves towards lower values of T in both occasions.

In Fig. 1c, d the expectation value of the Polyakov loop
(�) is plotted as a function of T for vanishing and non-
vanishing values of AMM of the quarks respectively at
constant background magnetic field eB = 0.05 GeV2 for
different values of the quark chemical potential (μq =
0, 100, 150 and 200 MeV) . As described in [50], although the
Polyakov potential introduced in Eq. (5) is Z(3) symmetric,
due to the interaction with quarks this symmetry is explic-
itly broken. Thus, the transition from confined to deconfined
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(a)

(c)

(b)

(d)

(e)

(g)

(f)

(h)

Fig. 1 Variation of M and � as a function of T and μq at eB = 0.05 GeV2 with and without considering the AMM of the quarks

phase is a rapid crossover in all the cases considered in the
above mentioned plots. However, as we include finite μq ,
Polyakov loop � keeps on decreasing with increasing values
of μq . It is interesting to note that, AMM of the quarks affects
the temperature variation of � marginally. This is opposite
when compared to constituent quark mass, as we have already
seen a significant decrease in M due to the consideration of
finite AMM of the quarks (see Fig. 1a, b).

The μq -dependences of M and � are demonstrated in
Fig. 1e–h for temperatures T = 100, 125 and 150 MeV
respectively. In Fig. 1e, f the variation of M as function of μq

is shown and it can be seen that for a particular temperature,
M remains almost constant up to certain μq value and then
smoothly goes to the bare quark mass limit as we increase
μq . With increasing values of temperature M decreases for
all values of μq irrespective of the consideration of finite
AMM of the quarks and the transition shifts towards smaller
values of μq . Furthermore, as AMM of the quarks is turned
on a noticeable decrease in M as μq → 0 is observed from
Fig. 1f for each temperature values. Also note that, in the
later case, the transition from symmetry broken to restored
phase occurs for lower as well as wider range of the chemical
potential compared to the case when it is switched off. We
will again come back to this point while discussing Fig. 3a–
d. In Fig. 1g, h we observe that at μq → 0, the value of
� increases for higher values of temperature which follows
from the fact that as T increases the expectation value of the
Polyakov loop also increases as can be seen from Fig. 1c, d.
Inclusion of AMM of the quarks hinders the rapid change in
� at higher values of μq which will be more clear when we

discuss the results for
(

∂�
∂μq

)
later.

From Fig. 1e–h, it is evident by comparing μq -dependence
of M and �, the order parameters for chiral and deconfine-
ment transition respectively, that, there is a region where the
expectation value of � is � 0.4 and the constituent quark

mass goes to the bare quark mass limit. This is usually
referred to as quarkyonic phase [53,91–94]. Thus at finite
chemical potential we may find a state where the chiral sym-
metry has been restored while it is still in a confined phase.
Figure 1e–h also depicts the fact that the formation of a
quarkyonic phase is preferable at small values of temperature
[for example, see the red-solid line in sub-figures (e)–(h) is
for T = 100 MeV]. On top of this, when the finite values
of AMM of the qurks are turned on the restoration of chi-
ral symmetry happens at smaller values of T (μq) for a fixed
μq(T ). As a consequence, the criteria of getting a quarkyonic
phase is satisfied even at larger values of T as can be seen
by comparing Fig. 1g, h. For example, notice that for κ 
= 0,
the quarkyonic phase may exist even at T = 150 MeV.

In Fig. 2a, b we have shown the variation of M as a func-
tion of T for μq = 0 and 150 MeV respectively for three
different cases (i) eB = 0, (ii) eB = 0.05 GeV2, κ = 0 and
(iii) eB = 0.05 GeV2, κ 
= 0. From Fig. 2a it is evident that
as we turn on the magnetic field, M increases with respect to
its value at eB = 0 for all values of T and as a result the transi-
tion temperature from chiral symmetry broken to the restored
phase also increases. Since we have considered finite values
of bare quark mass, the pseudo-chiral transition temperature
can be defined as the temperature ( T χ

C ) for which M has the
highest change. Now from Fig. 2c, one can observe that the
peak of − ( ∂M

∂T

)
has shifted marginally towards the higher

values of temperature when finite value of eB is considered
(the blue-dashed line), which is evident from the inset plots.
This indicates magnetic catalysis (MC), which implies that
the finite values of the magnetic field results in the enhance-
ment of chiral condensates

〈
ψ̄ψ

〉
. On the contrary, an opposite

behaviour is observed when we include non-zero values of
AMM of the quarks in presence of the background magnetic
field and the transition temperature (T χ

C ) decreases. This fea-
ture is also evident from Fig. 2c where the peak of − ( ∂M

∂T

)
shifts towards the lower values of T (dash-dot green curve),
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(a)

(c)

(b)

(d)

(e)

(g)

(f)

(h)

Fig. 2 Variation of M , − ( ∂M
∂T

)
, � and

(
∂�
∂T

)
as a function of T at different values of μq and eB considering zero and non-zero values of the

AMM of the quarks. Inset plots in c and d show the two peaks by enlarging the relevant temperature region

confirming inversemagnetic catalysis (IMC). At finite values
of the quark chemical potential we observe further decrease
in T χ

C values which is evident from Fig. 1a, b but the overall
nature remains same. However, it is interesting to note that
as we increase μq , the magnitude of − ( ∂M

∂T

)
becomes larger

and the peak becomes narrower. Thus, one can conclude that
as we increase μq the rate of change of M increases and the
transition occurs at smaller range of temperatures.

In Fig. 2e, f we present the variation of � as a function
of T for μq = 0 and 150 MeV respectively for three dif-
ferent cases (i) eB = 0, (ii) eB = 0.05 GeV2, κ = 0 and
(iii) eB = 0.05 GeV2, κ 
= 0. From both the plots (Fig. 2e,
f) it can be seen that when only the effect of background
magnetic field is taken into consideration the change in �

as a function of temperature is practically negligible. How-
ever with the inclusion of AMM of the quarks the transition
temperature decreases substantially. This fact is also seen
from Fig. 2g, h where one can observe the shift of

(
∂�
∂T

)
peaks towards the lower values of T when we consider non-
zero AMM of the quarks (dash-dot-green line) in both the
figures. Finite values of quark chemical potential results in
the following noticeable effects. Firstly, the magnitude of �

decreases as compared to μq = 0 case and the difference
becomes larger with increasing values of temperature. Sec-
ondly, as the magnitude of � is lower, the rate of change of �

with the variation of temperature (i.e.
(

∂�
∂T

)
) is also small in

magnitude (results in broadening). Finally, the peak of
(

∂�
∂T

)
is slightly left shifted as compared to the μq = 0 scenario.

From Fig. 2c–f, it is evident that the critical tempera-
tures for chiral and deconfinement transition do not coin-
cide. This is expected in local PNJL approach [47] which
has been considered in this work, irrespective of the form
of Polyakov potential [49,93]. But there are many important
modifications of this model available in the literature e.g.
inclusion of the effect of the SU (3) measure with a Van-

dermonde term such that the Polyakov loop always remains
in the domain [0, 1] [95]. Lattice QCD simulation [96,97]
has confirmed that these two transitions occur almost at the
same temperature. It was proposed in [98] that this coinci-
dence can be ensured through a strong correlation or entan-
glement between the chiral condensate (σ ) and the expecta-
tion value of (�) within the PNJL model, which is referred to
as entanglement PNJL (EPNJL). Moreover, using non-local
four fermion interaction [99], one can extend NJL model fur-
ther with the intention to provide a more realistic effective
approach to QCD (see [100–102] and references therein for
details).

In Fig. 3a, b the variation of M as a function of μq for T =
100 and 150 MeV respectively is depicted for three different
cases (i) eB = 0 (ii) eB = 0.05 GeV2, κ = 0 and (iii)
eB = 0.05 GeV2, κ 
= 0. From Fig. 3a it can be seen that the
presence of non-zero background magnetic field increases
the values of M for the whole range of μq and consequently
the transition temperature from chiral symmetry broken to
restored phase also increases, which is evident from Fig. 3c

where the peak of −
(

∂M
∂μq

)
is shifted towards the higher

values of T indicating MC. On the other hand, inclusion of
finite AMM of the quarks leads to a substantial decrease in
M for all the values of μq and as a results the transition
temperature decreases which is evident from Fig. 3c. This
phenomena can be classified as IMC. However, notice that
the peaks for cases (i) and (ii) are much higher and sharper

compared to case (iii) (we have scaled down −
(

∂M
∂μq

)
in

Fig. 3c by a factor of 2). Furthermore, as we increase the
temperature from 100 to 150 MeV, we observe a broadening
of the peaks. This is expected from the discussions of Fig. 1e,
f, where we have already pointed out that the transition from
symmetry broken to restored phase occurs for lower as well
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(a)

(c)

(b)

(d)

(e)

(g)

(f)

(h)

Fig. 3 Variation of M , −
(

∂M
∂μq

)
, � and

(
∂�
∂μq

)
as a function of μq at different values of T and eB considering zero and non-zero values of the

AMM of the quarks. In subfigures c and g the graphs corresponding to κ = 0 (solid-red and dashed-blue lines) are scaled by a factor 1/2 for
convenience of presentation

(a)

(c)

(b)

(d)

(e) (f)

Fig. 4 Variation of scaled ε, p, s, (ε − 3p) and nq as function of T
for different values of eB and κ

as over a wider range of chemical potential compared to the
case when AMM of the quarks is switched off.

In Fig. 3e, f the variation of � as function of μq is dis-
played for T = 100 and 150 MeV respectively for three
different cases (i) eB = 0, (ii) eB = 0.05 GeV2, κ = 0
and (iii) eB = 0.05 GeV2, κ 
= 0. Here we observe that the
presence of the background magnetic field affects the μq -
dependence of � marginally. However, as we include AMM
of the quarks a noticeable difference can be seen. In both
the cases this leads to a decrease in the deconfinement tran-
sition temperature as compared to the zero AMM case. The
results shown in Fig. 3g, h further confirm our observations.

Note that, the behaviour of
(

∂�
∂μq

)
are quite similar to that

discussed in the last paragraph.
In Fig. 4a–c we plot the scaled pressure, entropy and

energy density respectively as a function of temperature at

zero chemical potential. The scaling is done in the usual fash-
ion:

XN
(
T, μq , eB

) ≡ X
(
T, μq , eB

)− X
(
0, μq , eB

)
(51)

where X ∈ {p, s, ε} and is divided by different powers of T to
make the quantities dimensionless. Since the transition from
the symmetry broken to the restored phase, as previously
discussed, is a rapid crossover, the pressure, entropy and the
energy densities are continuous functions of the temperature.
The overall behaviour is similar in the three curves: a sharp
increase in the vicinity of the transition temperature followed
by a tendency to saturate. Finite values of magnetic field i.e.
eB = 0.05 GeV2 hardly brings any noticeable change in
the above mentioned quantities. However, when we include
the AMM of the quarks, the transition temperature shifts
towards the lower values of temperature which is expected
from the previous discussions. From Fig. 4d it is evident that
the non-zero values of AMM of the quarks shift the peak of
the interaction measure (ε−3p)N towards lower temperature
values.

The reduced quark number density nq/T 3 is presented in
Fig. 4e, f as a function of temperature for μq = 100 and 200
MeV respectively. The behaviour of nq can be explained fol-
lowing [47,50]. Let us first concentrate on Fig. 4e where we
have considered the following three cases: (i) eB = 0, (ii)
eB = 0.05 GeV2, κ = 0 and (iii) eB = 0.05 GeV2, κ 
= 0
at μq = 100MeV . In each case, for temperatures below
the transition, the interaction with the effective gluon field
leads to suppressions of one and two-quark contributions
to the density. As a result, the three-quark states become
more dominant. Thus, we observe a strong suppression of
the quark density below transition. However, for tempera-
tures above the transition, this suppression is less effective.
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(a) (b)

Fig. 5 Variation of χMM and χ��̄ as function of T for different values of μq , eB and κ

(a) (b)

Fig. 6 Variation of χq as function of μq for different values of T , eB and κ . The graphs corresponding to κ = 0 (solid-red and dashed-blue lines)
are scaled by a factor 1/4 for convenience of presentation

But as � is still less than unity (see Fig. 1c, d) a marginal
suppression can be observed compared to the quark density
of a free gas (which is also observed in NJL model). In case
(ii) we observe a similar qualitative behaviour of nq/T 3.
This is because when we turn on the background magnetic
field, at high values of temperature the difference in M is
almost negligible (see Fig. 2a) compared to the zero field
case. Furthermore, at low values of temperature the one and
two-quark contributions remain strongly suppressed as finite
eB strengthen the chiral condensate (as a result M increases).
However, when we include AMM of the quarks, M has suffi-
ciently low magnitude even at high values of T compared to
cases (i) and (ii). Thus the suppression of nq is larger at high
temperature in case (iii). On the other hand, from Fig. 2a,
e one can observe that the magnitude of M (�) is smaller
(higher) at lower values of temperature when AMM of the
quarks is taken into consideration. As a result, the one and
two-quark states become dominant at lower values of temper-
ature in contrast to the other two cases and thus the transition
occurs at lower values of T . Now, in Fig. 4f we have used
higher values of μq which leads to the decrease in transi-
tion temperature at much faster rate as discussed earlier (see

Fig. 2a–d). This explains the rise of nq at lower values of T
compared to the previous one.

We now focus on the results for different susceptibilities.
As discussed earlier, susceptibilities associated with M and
� are the effective fields, which show signals of phase tran-
sitions and can be considered as order parameters for chi-
ral and deconfinement transitions respectively. Now the off-
diagonal susceptibility χ��̄ is Z(3) invariant but the diago-
nals are not. This property makes χ��̄ a good candidate to
study the deconfinement transitions in PNJL model [50]. Fur-
thermore, results for quark number susceptibility (χq ), spe-
cific heat (CV ) and velocity of sound (cs) are also obtained
using Eqs. (25) (26) and (29) respectively. All these results
are shown for the following three cases: (i) eB = 0, (ii)
eB = 0.05 GeV2, κ = 0 and (iii) eB = 0.05 GeV2, κ 
= 0.
Figure 5a, b show the T -dependence of χMM and χ��̄ at
μq = 0 and 150 MeV respectively for the three cases pre-
viously mentioned. It is evident that when only the presence
of background magnetic field is taken into consideration T χ

C
moves towards the higher values of temperature implying
MC. On the contrary, inclusion of AMM of the quarks results
in decrease in T χ

C which can be identified as IMC. Clearly,

123



213 Page 12 of 20 Eur. Phys. J. A (2020) 56 :213

inclusion of AMM of the quarks decreases the deconfinement
transition temperature (T d

C ) substantially which is evident
from both the plots. Now, for finite values of μq we notice
that there is an overall decrease in T χ

C and T d
C but the quali-

tative nature remains similar. These results are in agreement
with our observations while discussing Fig. 2. Note that as
we increase the quark chemical potential, the peak position of
the chiral and Polyakov loop susceptibilities approach each
other, as seen in [50]. The perfect coincidence of the chiral
and deconfinement transitions are lost due to our choice of
T0 = 190 MeV, following the argument presented in [47].
The similar behaviour is also reported in [103].

In Fig. 6a, b we have shown χq as a function of μq at two
different temperatures. As expected, we get IMC (MC) when
we consider finite values of AMM of the quarks in presence
of the background magnetic field (AMM of the quarks are
switched off). One can make direct correspondence between
these two plots with the results shown in Fig. 3c, d. Absence
of any discontinuity in the curves implies that the transition
is crossover.

In Fig. 7a, b we have plottedCV /T 3 as a function of T for
zero and finite values of μq . It is observed that, in both occa-
sions, CV grows with increasing temperature and reaches a
peak at the transition point and decreases sharply for a short
range of temperature. Thereafter it slowly saturates to a value
slightly lower than the ideal gas value at high temperature.
Inclusion of AMM of the quarks at non-zero background
magnetic field consequently shifts the peak towards lower
values of T . At finite μq , there are overall leftward shifts of
all the plots, but the qualitative natures remain the same.

In Fig. 8 we have shown the variation of c2
s and p/ε as a

function of temperature at μq = 0 for three different cases.
As defined in Eq. (29), denominator of c2

s is nothing but CV ,
a minima is expected near the transition. In all the plots, one
such pronounced dip can be seen. After the crossover, release
of the new degrees of freedom results in rapid increase of
the speed of sound, which is evident from all the plots. The
minimum of the speed of sound, known as the softest point,
may be an important indicator of the transition observed in
heavy-ion collisions [104]. As a consequence of incorpora-
tion of finite values of AMM of the quarks this minima shifts
towards lower values of T . It is important to note that, the
value of p/ε nearly matches with c2

s below transitions and
becomes close again as we increase the temperature. But in
between, c2

s is distinctly greater than p/ε (see [49,55,56] for
discussions).

In Fig. 9a, b we have plotted eB-dependence of M at two
different values of quark chemical potential with and with-
out AMM of the quarks for T = 0 and 150 MeV. Since
we have not used a sharp cutoff during numerical evalua-
tion, an oscillatory behaviour of M is observed. These oscil-
lations are related to the well known de Haas–van Alphen
(dHvA) effect [105] in the weak magnetic field regime and

have also been observed in Refs. [15,16,74,81,83,106–110].
It occurs whenever the Landau levels pass the quark Fermi
surface. From Fig. 9 it is evident that, the dHvA oscillations
get smeared out with the increase of the background magnetic
field (as LLL dominates) in agreement with Refs. [74,83]. As
expected from Fig. 2a, b, for a particular temperature there is
an overall increase of M with eB when AMM of the quarks
are not taken into consideration. On the other hand, inclusion
of AMM leads to a reduction in M with increasing eB. These
two phenomena indicates the occurrence of MC or IMC dur-
ing the transition from broken to symmetry restored phase,
as discussed earlier.

We have used the peak positions of the χMM and χ��̄

susceptibilities to determine the phase boundaries in the T -
μq plane following [50] and thus a direct correspondence
between Fig. 5a, b with the phase diagram of PNJL model,
shown in Fig. 10, is evident. Notice that, with these param-
eters the boundary lines of chiral symmetry restoration and
deconfinement transitions do not coincide [50,103]. When
we include only the background magnetic field there is a
slight increase in the chiral symmetry restoration temperature
for all values of quark chemical potential. On the contrary,
consideration of non-zero AMM of the quarks decreases the
chiral transition temperature throughout the whole range of
(μq)C in the phase diagram. For deconfinement transition we
observe that, magnetic field alone does not affect the decon-
finement transition significantly. However, incorporation of
finite AMM of the quarks results in a substantial decrease
in the deconfinement transition temperature at each value of
(μq)C .

Now we turn our attention to the mesonic properties in
the PNJL model under external magnetic field. In Fig. 11,
mσ , mπ0 and 2M have been plotted as a function of temper-
ature. Figure 11a, b depict the variation of these quantities at
eB = 0 and 0.05 GeV2 without considering the AMM of the
quarks at μq = 0 and μq = 200 MeV respectively, whereas
Fig. 11c, d depict the same for non-zero AMM of the quarks.
It can be noticed that, at T = 0 and B = 0, all the mass graphs
starts from the corresponding vacuum values. It can be seen
that,mσ remain almost unchanged up to T � 100 MeV in all
the cases, then decreases with the increase in temperature up
to TC , attains a local minima around the transition temper-
ature (T � Tc) and then increases with the increase in T at
higher temperatures (T > TC ). On the contrary, mπ0 , being
the mass of Goldstone boson associated with the chiral sym-
metry breaking, remains almost constant with the variation of
temperature at the lower temperature ranges (T < TC ) in all
the cases. Above the transition temperature (T > TC ), mπ0

increases monotonically with the increase in T and finally
merges with mσ as a consequence of the partial restora-
tion of the chiral symmetry. It can also be observed that,
mσ remains always greater that 2M in all the cases imply-
ing that σ is always a resonant excitation whereas the value
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(a) (b)

Fig. 7 Variation of CV /T 3 as function of T for different values of μq , eB and κ

(a) (b) (c)

Fig. 8 Variation of c2
s and p/ε as function of T for different values of eB and κ at μq = 0

(a) (b)

Fig. 9 Variation of M as function of eB for different values of T , μq and κ

of mπ0 is less than that of 2M at lower temperature range
(T � TC ) indicating that π0 is bound state at lower temper-
ature. At higher temperatures (T � TC ), mπ0 > 2M making
π0 a resonant excitation. The effect of increase of μq is seen
to decrease the transition temperature for the chiral symme-
try restoration and thus an overall shift of the mass graphs
(keeping the qualitative nature same) towards the lower tem-
peratures as can be noticed as one goes from Fig. 11a and
c to b and d respectively. When the AMM of the quarks is
switched off, the change in the mass graphs with the increase
in the external magnetic field is small as compared to the non-
zero AMM case. At κ = 0, mσ increases whereas the mπ0

decreases with the increase in eB in the lower temperature
range. The scenario is completely reversed when the AMM
of the quarks are switched on. In this case, mσ decreases
whereasmπ0 increases with the increase in external magnetic
field at low temperature. Similar results for scalar and pseu-
doscalar mass in presence of a background magnetic field
without considering the finite values of AMM of the quarks
have also been found in Ref. [111] using the non-local PNJL
model. Moreover mπ0 suffers a sudden jump [67,83,112]
at some particular temperature (for both cases) which is a
consequence of the dimensional reduction to (1+1)D due to
external magnetic field.
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Fig. 10 TC -(μq )C phase diagram for chiral and deconfinement transi-
tion at different values of eB and κ

(a) (b)

(c) (d)

Fig. 11 Variation of scalar (σ ) and neutral pseudo-scalar (π0) meson
masses as a function of temperature for different values of μq and eB
with and without considering the AMM of the quarks. The variation of
twice the constituent quark mass has also been shown for comparison

It may be noted that, the IMC in chiral and deconfinement
transitions due to inclusion of the AMM of the quarks, as
we have seen while discussing Fig. 2, is not particular to the
choice of Polyakov loop potential (Eq. (5)). In the following
we have considered another form of Polyakov loop potential
used frequently in the literature [49,53,57–59]:

U
(
�, �̄; T )
T 4 = −a(T )

2
�̄� + b(T )

ln
[
1 − 6�̄� + 4

(
�̄3 − �3

)
− 3

(
�̄�

)2]
(52)

where

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2
;

b(T ) = b3

(
T0

T

)3
.

(53)

All the parameters are defined in [49]. Using this form of the
potential in Fig. 12a–d we have shown the variation of con-
stituent quarks mass M and the expectation value of Polyakov
loop � and their derivatives as a function of temperature at
μq = 0. Comparing this with Fig. 2, one can see that the
results are qualitatively the same. Both the chiral as well
as deconfinement transitions show IMC when finite values
of the AMM of the quarks are taken into consideration. An
opposite effect is observed when the AMM of the quarks are
switched off, which can be identified as MC.

4 Summary and conclusion

In the present work, we have studied the 2-flavor PNJL model
at finite temperature and baryonic density in presence of arbi-
trary external magnetic field with the inclusion of AMM of
the quarks. The variation of constituent quark mass (M) and
the traced Polyakov loop (�) as a function of T and μq is
obtained by solving the coupled gap equations. Examining
M as a function T for a given value of μq , the transition
temperature from chiral symmetry broken to restored phase
is observed to increase with the increase in external magnetic
field owing to the enhancement of quark anti-quark conden-
sate. This observation is further confirmed by studying the
T -dependence of the quantity − ( ∂M

∂T

)
where the peak of the

curve, which can be identified as chiral transition temperature
(T χ

C ) is found to move towards higher values of temperature
as the magnetic field is increased. This phenomena can be
classified as MC. On the contrary, when we include finite
values of the AMM of the quarks in presence of external
magnetic field of same strength, M is found to be smaller as
compared to the zero AMM case (for all values of T ). T χ

C
for non-zero AMM case decreases with the increase in eB
which is also evident if one considers the plot of − ( ∂M

∂T

)
as

a function of T whose peak is found to shift towards lower
temperature values indicating IMC. But, when AMM of the
quarks are switched off, the external magnetic field is found to
affect the T -dependence of � marginally. However, when the
AMM of the quarks are considered, the temperature for tran-
sition from confined to deconfined phase (T d

C ) is observed
to decrease with the increase in external magnetic field. A
similar conclusion about the effect of inclusion and exclu-
sion of AMM in presence of background magnetic field in
the behaviour of T χ

C and T d
C is evident from studying μq -

dependence of M and �. Evidence for the occurrence of a
possible quarkyonic phase, i.e., the phase in which quarks
remain confined (� � 0.4) even though chiral symmetry
has been restored, is found at low T and high μq . Searching
for this phase is one of the important goals of NICA [113].
Interestingly when we consider finite value of AMM of the
quarks the presence of the quarkyonic phase may be possible
even at higher values of T .
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(a) (b)

(c) (d)

Fig. 12 Variation of M , − ( ∂M
∂T

)
, � and

(
∂�
∂T

)
as a function of T at μq = 0 and different values of eB considering zero and non-zero values of the

AMM of the quarks using the Polyakov loop potential defined in Eq. (52)

Several thermodynamic quantities such as scaled pressure,
entropy and energy density are calculated at zero quark chem-
ical potential and it is observed that they behave similarly as
all the three curves increase sharply in the vicinity of the
phase transition owing to the liberation of degrees of free-
dom and eventually saturate (approaching the corresponding
Stefan–Boltzmann limits). For all values of temperature as
well as finite values of background magnetic field with or
without including the AMM of the quarks, all the thermody-
namic variables previously mentioned are observed to vary
smoothly with temperature indicating the fact that the associ-
ated phase transition is a crossover. Although for finite values
of AMM of the quarks, we find that the transition occurs at
lower T values. Reduced quark number density is studied at
different values of μq and it is observed that with increasing
temperature it increases monotonically, attains a local max-
ima around the transition temperature and finally decreases
slowly with increasing temperature. Inclusion of AMM of
the quarks causes two noticeable differences. Firstly, when
AMM of the quarks is turned on, because of the finite values
of � and lower values of M compared to the zero AMM
case, the dominance of three-quark states survives for lower
range of T values. This results in a sharp increase in nq/T 3

at lower values of T . Secondly, even at high values of T ,
M has sufficiently low magnitude in case of finite AMM of

the quarks which leads to larger suppression in nq compared
to the cases when AMM of the quarks are ignored. Similar
features are also reflected in other thermodynamic quantities
such as the specific heat (CV ), velocity of sound squared (c2

s )
and quark number susceptibility (χq ).

Next using χMM and χ��̄, which are the susceptibilities
related to M and � respectively, we evaluate the chiral (T χ

C )
and deconfinement (T d

C ) transition temperatures. With our
choice of parameters, T χ

c and T d
C do not coincide at vanish-

ing quark chemical potential. The peaks of χMM and χ��̄

are then used to draw the TC -(μq)C phase diagram for both
chiral and deconfinement phase transitions for the three cases
previously mentioned. We find that switching on the back-
ground magnetic field results in a slight increase in T χ

C for the
whole range of (μq)C values, however, T d

C remains nearly
unaltered. On the other hand, while considering finite AMM
of the quarks in presence of background magnetic field we
observe that both the chiral and deconfinement transitions
occur at lower values of temperature throughout the whole
range of (μq)C in the phase diagram.

The masses of the scalar (σ ) and neutral pseudoscalar (π0)
mesons have been evaluated considering a hot and dense
magnetized medium using the RPA in the PNJL model. For
this, both the AMM of the quarks as well as infinite number
of quark Landau levels are taken into consideration in the
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analytical and numerical calculations so that the results are
valid for an arbitrary strength of the external magnetic field.
It is observed that, mσ at finite values of external magnetic
field noticeably decreases while considering the AMM of the
quarks as compared to the zero AMM case. On the contrary,
the mπ0 remains almost constant (close to the vacuum value
� 140 MeV) at the lower temperature range irrespective of
the consideration of the AMM thus maintaining the signature
of the Nambu–Goldstone boson.

We end by noting that in a theory with massless charged
fermions it is not possible to find an anomalous magnetic
moment using Schwinger’s perturbative approach [114] so
that the linear-B ansatz [115] is not valid anymore. Presence
of an AMM would break the chiral symmetry of the mass-
less theory which is protected against any perturbatively gen-
erated breaking term. However, massless charged fermions
in the presence of a magnetic field can acquire a dynami-
cal magnetic moment [114,116] which goes to zero in the
chiral symmetry restored phase [116]. Since the chiral limit
is achieved in this phase and κ f → 0, the gapless nature
of the LLL is maintained. Since we have considered a con-
stant value of AMM, this feature is absent here. A dynamic
evaluation of AMM of the quarks incorporating the essential
features will be presented elsewhere.
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AppendixA: double derivatives of�with respect toM,�

and �

From Eq. (10) we get

∂�

∂M
= M − m

G
− 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞

0
dpz

M

ωn f s(
1 − sκ f q f B

Mn f s

)[
1 − f + (�, �̄, T

)

− f − (�, �̄, T
) ]

. (A1)

Following relations can be used to arrive at the above result

∂ωn f s

∂M
= M

ωn f s

(
1 − sκ f q f B

Mn f s

)
, (A2)

∂e−nβ(ωn f s∓μq)

∂M
= −nβM

ωn f s

(
1 − sκ f q f B

Mn f s

)

×e−nβ(ωn f s∓μq), (A3)

∂ln g(+)

∂M
= −3βM

ωn f s

(
1 − sκ f q f B

Mn f s

)
f + (�, �̄, T

)
, (A4)

∂ln g(−)

∂M
= −3βM

ωn f s

(
1 − sκ f q f B

Mn f s

)
f − (�, �̄, T

)
. (A5)

Note that in Eq. (A1) the medium independent term has to
be regularized by introducing a field dependent cutoff (see
[83] for details):

�z =
√

�2 − (2n + 1 − s)
∣∣q f B

∣∣+ 2Mnf ssκ f q f B − (κ f q f B)2.

(A6)

So the regularized version of Eq. (A1) is

∂�

∂M
= M − m

G
− 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ �z

0
dpz

M

ωn f s

×
(

1 − sκ f q f B

Mn f s

)
+ 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞

0
dpz

× M

ωn f s

(
1 − sκ f q f B

Mn f s

)

×
[
f + (�, �̄, T

)+ f − (�, �̄, T
)]

. (A7)

Now to evaluate the second derivative with respect to M , the
following relations will be useful:

M

ωn f s

(
1 − sκ f q f B

Mn f s

) ∣∣∣∣
pz=�z

= M2

�z
√

�2 + M2

sκ f q f B

Mn f s

×
(

1 − sκ f q f B

Mn f s

)
(A8)

∂�z

∂M
= sκ f q f B

�z

M

Mnf s
, (A9)

∂

∂M

(
1 − sκ f q f B

Mn f s

)
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ωn f s
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1 − sκ f q f B

Mn f s
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− M2

ω3
n f s

(
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+ M2sκ f q f B

ωn f sM3
n f s
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Thus we can finally write

∂2�

∂M2 = 1

G
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2π2
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+e−2β(ωn f s−μq)
)}

+
{

� ↔ �̄;μq → −μq
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(A11)
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Appendix B: T -derivatives of M,�,�

We have
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Now using the above relations and results given in Appendix 1,
T -derivatives of the gap equations of M,� and �̄ can be cal-
culated starting from Eqs. (15), (16) and (17). The expression
can be written in a matrix form in the following way:
⎡
⎢⎢⎣
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∂T
�̄ − 9

T 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞

0
dpz

×
(
e−β(ωn f s−μq)

g(+)
+ e−2β(ωn f s+μq)

g(−)

)

+ 3

T 4

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞

0
dpz

[
e−β(ωn f s−μq)

g(+)2

(
ωn f s − μq

)

×
{

1 − 3�̄e−2β(ωn f s−μq) − 2e−3β(ωn f s−μq)
}

+ e−2β(ωn f s+μq)

g(−)2

(
ωn f s + μq

)

×
{

2 + 3�̄e−β(ωn f s+μq) − e−3β(ωn f s+μq)
}]

(B10)

and

A�̄,T = A�,T

{
� ↔ �̄; μq → −μq

}
. (B11)

During this calculation we have put a combination of T and
� with several quantities to make sure we get matrix with
dimensionless co-efficients as introduced in Sect. 2.2.
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Appendix C: μq-derivatives of M,�,�

Similar matrix form can also be written for μq -derivatives of
the gap equations as shown below

⎡
⎢⎢⎣
CMM CM� CM�̄

C�M C�� C��̄

C�̄M C�̄� C�̄�̄

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

1
�

∂M
∂μq

∂�
∂μq

∂�̄
∂μq

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

T
�2 AM,μq

T 2

�3 A�,μq

T 2

�3 A�̄,μq

⎤
⎥⎥⎥⎦ (C1)

where

AM,μq = − 3

T 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞

0
dpz

M

ωn f s

×
(

1 − sκ f q f B

Mn f s

)[
e−β(ωn f s−μq)

g(+)2

{
� + 4�̄e−β(ωn f s−μq)

+3
(
1 + �̄�

)
e−2β(ωn f s−μq)

+4�e−3β(ωn f s−μq) + �̄e−4β(ωn f s−μq)
}

−
{

� ↔ �̄; μq → −μq

}]
, (C2)

A�,μq = 3

T 3

∑
n, f,s

∣∣q f B
∣∣

2π2

∫ ∞

0
dpz

[
e−β(ωn f s−μq)

g(+)2

×
{

1 − 3�̄e−2β(ωn f s−μq) − 2e−3β(ωn f s−μq)
}

+ e−2β(ωn f s+μq)

g(−)2

{
2 + 3�̄e−β(ωn f s+μq)

−e−3β(ωn f s+μq)
}]

, (C3)

A�̄,μq
A�,μq

{
� ↔ �̄; μq → −μq

}
. (C4)
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