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Abstract The fission pathway of even–even actinide nuclei
have been systematically calculated using the deformation-
constrained nuclear density functional theory beyond the sec-
ond fission barriers within the UNEDF1 energy-density func-
tionals (EDFs). Our calculated results show that, allowing for
triaxial deformation, the second fission barriers are lowered
by a few hundreds of keV to 2 MeV. For the heaviest actinides,
it is found that inclusion of triaxial deformation reduces the
outer barrier significantly.

Michael Bender

1 Introduction

Since the 1950s, spontaneous fission has been understood
as a process where heavy compound nuclei undergo a series
of deformation changes or elongations, eventually splitting
into two or three lighter daughter nuclei. The height (EB),
and in general the shape, of the fission barrier of a nucleus
is a fundamental quantity. Indeed, a number of observables
related to the fission of a heavy nucleus as well as the fusion
of two nuclei depend on EB sensitively [1–6], such as the
fission half life, and the fusion cross section. Whether a good
description of EB can be achieved in turn provides valuable
constraints on the relevant nuclear model used.

From a perspective of nuclear mean-field model [7], the
total energy (Etot) of a nucleus is a function of its intrinsic
deformations [8,9]. In the fission process, the compound sys-
tem undergoes a complex shape trajectory towards scission,
before splitting up. To determine the optimal/favored trajec-
tory through which a fissioning nucleus most likely under-
goes, one needs to perform extensive nuclear calculations
as Etot is a function of a large set of shape degrees of free-
dom. For example, in the recent macroscopic-microscopic
calculations [10–16], one typically deals with 5 (or more)
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shape degrees of freedom, containing deformation points in
the order of a few millions.

With the self-consistent mean-field models such as the
nuclear density functional theory (DFT) [17–24], the rela-
tivistic mean field theory [26,27], or the DFT with the finite-
range Gogny force [28–30], performing the above-mentioned
amount of separate calculations is nearly impossible. Instead,
one picks a few important “active” deformation degrees of
freedom to map out Etot, and releases the “background”
deformations to be determined self-consistently through the
variational process. To balance the needs for a fully min-
imized fissioning path with respect to the various shape
degrees of freedom, and the huge amount of computing time,
one frequently chooses the “active” deformations based on
the physical insights. Frequently, the calculations enforce rel-
evant symmetries on the fissioning nucleus due to limitations
of computation resources.

For example, for the lowest-energy fission path of 240Pu
using SkM* energy-density functional (EDF), it is known
that the triaxial deformation is important for lowering the
height of the first fission barrier (EB1). After the first fis-
sion barrier, the inclusion of the triaxial deformation has
been shown to lower the second fission barrier [25]. Note,
that the above-mentioned second fission barrier of 240Pu has
been calculated with octupole moments being constrained to
zero, rather than the one following the lowest-energy path.
For enlongation larger than that corresponds to fission iso-
mer until scission [29,31,32], the axially symmetric octupole
deformation becomes important. The triaxial deformation
has been shown to be unable to lower the second barrier
of 240Pu with non-zero octupole deformation using SkM*
EDF [25]. The existence of this reflection-asymmetric path
is responsible for the dominance of the asymmetric fission
in these actinide nuclei.

In this work, we plan to study the optimal trajectory of the
fissioning actinide nuclei using the nuclear DFT. In particular,
our goal is to see if the triaxial degree of freedom could still
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lower the second fission barrier before fission in the actinide
nuclei. We notice that the triaxial deformation is important
for lowering the second fission barriers for these nuclei in
the relativistic mean field model [33,34]. Section 2 briefly
introduces the nuclear DFT calculation, and compares our
results with existing calculations. In Sect. 3, we show the
main results of the current work, before a summary in Sect. 4.

2 The model

We calculate Etot using the nuclear DFT. Being a self-
consistent mean-field theory, it allows for identifying the
optimal deformation minimizing the binding energy self-
consistently, given large enough model space. To access
the full trajectory through which the fissioning nucleus
undergoes, one needs to perform calculations where the
quadrupole moments are constrained to the desired values.
In this study, these calculations are performed using the
symmetry-unrestricted solver HFODD (version 2.68f) [35].
In the current work, where we discuss the favored paths of fis-
sion through the double-humped energy curve of the actinide
nuclei, we decide to adopt the more recent UNEDF1 EDF
[36] which is fitted taking into account the excitation ener-
gies of the fission isomers of the actinides.

At each deformation point, defined by a set of constrained
multipole moments, the Skyrme Hartree–Fock–Bogolyubov
equations are solved, where Etot of the system is always
minimized with respect to the unconstraint moments (“back-
ground” deformation). In practice, this is done by constrain-
ing the obtained multipole moments Qλμ using the Aug-
mented Lagrangian method (ALM) [37]. The quadrupole
moments, Q20 and Q22 moments, are defined as follows

Q20 = 〈2ẑ2 − x̂2 − ŷ2〉, (1)

Q22 = √
3〈x̂2 − ŷ2〉. (2)

The expectation value of the multipole moments, 〈Q̂λμ〉, with
λ > 2, are defined as

〈Q̂λμ〉 = 〈rλY ∗
λμ(θ, φ)〉. (3)

In the current work, which includes Qλμ with the positive μ,
the real part of 〈Q̂λμ〉 has been used [38], namely

Qλμ = R〈Q̂λμ〉, f or λ > 2. (4)

The HFODD code uses a set of three-dimensional (3D)
harmonic oscillator (HO) basis which is particularly efficient
for the calculation of nuclei with relatively smaller deforma-
tions. To compute systems involving large nuclear deforma-
tion (with long-axis-to-short axis ratio larger than 2), such as
those involved in the fission process, it is essential to find the
optimal parameters defining the HO basis.

To account for the deformed nucleus, HFODD allows for
using a non-uniform HO basis in three space directions. It
uses a set of numbers, βλμ, as coefficients to expand the sur-
face of the considered nucleus on the spherical harmonics [7].
Upon finding the (assumed) sharp edges in the three direc-
tions, Rx , Ry, Rz , one determines the frequencies according
to

ω3
0 = ωxωyωz = (41 × 1.2)3/A MeV, (5)

ωx Rx = ωy Ry = ωz Rz . (6)

The Nmax parameter adds limits on the largest number of the
HO basis in the three directions by requiring Nx,y,z < Nmax.
Finally, the Nstates parameter limits the total number of 3D
HO states. For an Nmax that is large enough, the parameters,
Nstates and βλμ, determine the largest number of the HO shells
in the three Cartesian directions.

Ideally, at each quadrupole deformation, one should opti-
mize the basis in such a way that it minimizes Etot for suffi-
ciently large total number of HO basis. However, this proce-
dure would be computationally laborious. To limit the free
deformation parameters, one first realizes that β ≡ β20 is the
most important one in determining the non-uniformity of the
3D HO basis. This is so because compared to other defor-
mations in the fission process, elongation (Q20) is by far the
largest compared to the triaxial or octupole deformations.

In practice, theβ value is determined to follow the physical
quadrupole deformation of the calculated nucleus [36,39].
Here we adopt an empirical procedure. Namely, we use a few
β values to compute the full energy-Q20 curves. An optimal
β value is then obtained for each Q20 interval by examining
whether it gives the lowest energy for that Q20 interval.

Figure 1a compares the energy-Q20 curves of 240Pu for
five different β values using the UNEDF1 EDF. In these cal-
culations, we consider only the variation of axially symmetric
quadrupole moments Q20 (Q30 = 0, Q22 = 0). Figure 1b–e
zooms in the important local intervals of the full curves of
Fig. 1a. We see from these figures a clear pattern that the
optimal β parameter minimizing Etot seems to follow the
growth of the physical deformation of the nucleus. Specif-
ically, for the Q20 in the interval of [0,75] b, a β ≈ 0.3 is
providing a lower Etot. Whereas for the Q20 = 75 − 200 b,
one needs a β value of 0.5 or 0.8. For Etot beyond the outer
barrier (Q20 > 200 b), one needs a β > 0.8.

To illustrate the accuracy of our calculation, the other two
sets of calculations using the continuous β values (shown
in Fig. 2b) are also performed. The first scheme in Fig. 2b
shown by a solid red line with squares is from Ref. [36],
where the ω0 and β values vary with the desired expectation
value of Q20 according to
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(a)

(b) (c)

(d) (e)

Fig. 1 Etot (with respect to the ground states) as functions of the Q20
values of 240Pu using UNEDF1 EDF with the axial and reflection-
symmetric deformations (a). A few β values (0.3, 0.5, 0.8, 1.2, 1.5)
for basis deformations are used to find out an optimal one at a certain
deformation interval. The sub-plots b–e zoom in important local parts:
the top areas of the two fission barriers, the minima for the ground states,
as well as those of the fission isomers for better visualization

(a) (b)

Fig. 2 The parameters used to specify the HO basis, adopted in this
work (solid lines), as well as those adopted in Refs. [36,39]

ω0 =
{

0.1 × Q20e−0.02Q20 + 6.5 MeV if |Q20| ≤ 30b,

8.14 MeV if |Q20| > 30b,

(7)

Fig. 3 Etot (with respect to the ground state) of 240Pu as a function of
Q20, calculated using UNEDF1 EDF. The curves have been minimized
with respect to Q22 for Q20 ≤ 100 b; and with respect to Q30 for
Q20 > 100 b. The three curves are obtained using the basis parameters
shown in Fig. 2. The vertical dashed lines partition the graph into four
Q20 intervals where different β parameters are used (see Fig. 2b)

and

β = AQ3
20 + BQ2

20 + CQ20, (8)

with A = 3.16721 × 10−8 b−3, B = −2.75505 × 10−5 b−2,
C = 0.00954925 b−1. The other scheme is from Ref. [39],
where the β value is determined through

β = 0.05
√
Q20. (9)

From Fig. 2b we see that our scheme seems to be closer to
that adopted in Ref. [36].

Etot of 240Pu as a function of the Q20 value, calculated
using the three schemes as described above are summarized
in Fig. 3. One can see that the energy obtained within these
three schemes are fairly close to each other for the quadrupole
moment concerned in the current work (Q20 < 250 b). The
same β parameter used in the relevant deformation intervals
are marked out. At the border of the discrete β values, there
appears to be a continuous variation of Etot . We have checked
that the multipole moments vary continuously when the β

value varies.
The current survey shown in Figs. 1 and 3, indicates that

all three schemes seem to provide reasonable precisions for
the calculated energy curves. Our results in this section is
necessary, for it numerically adds, in a way, justifications
for the optimal parameters in the form shown in Eq. (7),
especially for the Q20 ≥ 100 b.

To examine the convergence of the calculation with
respect to the Nstates and Nmax parameters, we show the
results with the increase of them in Fig. 4. We see that for
a fixed Nmax, increasing Nstates from 1140 to 1540 results
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Fig. 4 Similar curves as those in Fig. 3, except that this figure con-
tains additional results with different (Nmax, Nstates) combinations. The
energy curve calculated using a given (Nmax, Nstates) combination has
been normalized with respect to the ground state

Fig. 5 Etot (with respect to the ground state) as a function of the Q20
value, calculated using UNEDF1 EDF. The curve with diamonds cor-
responds to a situation where both Q20 and Q30 values are constrained
to 0; the one with circles is identical with those shown in Fig. 3; and
the one with triangular symbols corresponds to the results where a min-
imization with respect to the Q22 has been carried out for the outer
barrier based on the curve with circles

in the excitation energies (with respect to their respective
ground states) at the top of the outer barrier being lowered

(a)

(b)

Fig. 6 The two-dimensional total-energy surfaces of 240Pu as func-
tions of (Q20, Q30) (a) and (Q20, Q22) (b) using the UNEDF1 EDF.
The purple dots, which are resulted from the unconstrained calculations,
denote the lowest-energy pathways

by ≈150 keV. For a fixed Nstate, increasing Nmax value from
20 to 31 results in a lowering of Etot by ≈150 keV.

It has to be mentioned that even with the largest basis
shown in Figs. 3 and 4, where (Nstates, Nmax)=(1540, 31),
the absolute Etot is still converging. Indeed, a Hartree-Fock
calculation in the 3D Cartesian coordinate space with a large
enough box, and a fine enough grid give Etot about 1 MeV
lower for EII of 240Pu, compared to the current HFODD result
with (Nstates, Nmax) = (1540, 31). Nevertheless, the results
in the current section suggest that, with properly optimized
basis, the relative Etot with respect to the ground states can
be adequately converged, as shown in Figs. 3 and 4. This
justifies earlier studies using even smaller number of HO
basis to calculate fission curves. Similar basis optimizations
have been performed in Refs. [33,36].

In this work, we choose to use (Nstates, Nmax) = (1140, 20).
This choice is a compromise between the computing resources
available and the precision needed. From Fig. 4, it can be said
that the outer barrier is ≈300 keV overestimated using this
set of basis. The lowering increases with the Q20 value. The
main conclusion that the additional Q22 minimization brings
down the heights of the outer barriers of actinide nuclei is
independent from this limitation of basis number.
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Fig. 7 Similar quantities as
those shown in Fig. 5, except
that the calculations have been
extended to a number of actinide
nuclei with neutron number
N ≤ 146. Specifically, the solid
black curves in this plot
correspond to the situation with
red circles, and the dashed red
curves correspond to the blue
triangles shown in Fig. 5. The
experimental data, denoted with
horizontal lines, are extracted
from Refs. [41,42]

3 Results and discussions

In Fig. 5 we show Etot with respect to the ground-state ener-
gies of 240Pu as a function of the Q20 value from a value
near the ground state (Q20 ≈ 30 b) to a Q20 > 200 b cor-
responding to a deformation beyond the second barrier. The
different curves display the results with increasing restric-
tions on multipole moments being removed.

The green solid curve with squares takes into account only
the Q20 quadrupole moment, whereas the Q22 and Q30 val-
ues are constrained to be zero. The red solid line with circles
shows the results where Q30, which measures the axially
symmetric octupole deformation, is allowed to deviate from
zero. This energy curve is denoted with EQ30(Q20). Further,
the curve of EQ30(Q20) is minimized with respect to the axi-
ally asymmetric quadrupole moment Q22 (blue triangular
symbol), which is denoted with EQ30,22(Q20).

We see from Fig. 5 that the red line with circles allowing
for asymmetric fission considerably brings down the outer
fission barrier compared to the reflection-symmetric curve
for 240Pu with the UNEDF1 EDF. Further removal of the
constraint on the Q22 value lowers the first fission barrier by
about 3 MeV. We notice a small decrease in energy for the
second fission barrier due to the additional inclusion of the
triaxial degree of freedom. For 240Pu, the largest lowering

is about 400 keV. With SkM* EDF [25] the inclusion of the
Q22 minimization has been shown to be unable to lower this
second barrier along the lowest-energy path. Recently, a set
of new parametrizations, SLy5sX have been obtained [40].
These new fits apply a constraint on the extracted surface term
(asurf ) in the fitting process. Using the SLy5sX EDFs, the
calculated lowest-energy fission paths of 240Pu show nonzero
Q22, and a similar decrease of the heights of the outer barrier
[40]. Similar results have also been obtained in relativistic
mean field calculations [33,34].

To better illustrate the effects of these two degrees of free-
dom, (Q30, Q22), on the second fission barrier, we plot the
total-energy (with respect to the ground-state energies) sur-
faces of 240Pu as functions of (Q20, Q30) in Fig. 6a, and as
functions of (Q20, Q22) in Fig. 6b. For Fig. 6a, the Q22 values
are constrained to be 0. The rest of the multipole moments
other than Q22 and Q30 are unconstrained. We observe that
the fission path denoted by the purple dots follows a mass-
asymmetric (non-zero Q30) path, which means that the mass
distribution of the fission fragments of 240Pu is predomi-
nantly asymmetric. Along this asymmetric fission pathway,
we plot Etot in the (Q20, Q22) plane, shown in Fig. 6b. We
see a clear favorable path around the second fission barrier
with Q22 
= 0 at Q20 ∼ 130 b.
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Fig. 8 The (Q20, Q22) (upper), and (Q20, Q30) (lower) values along
the lowest-energy fission paths for nuclei in Fig. 7

Figure 7 displays the potential energies as functions of
the Q20 values for a few Th, U, Pu, and Cm isotopes with
N ≤ 146. For the solid black lines, the results with the Q20

smaller than the values corresponding to the fission isomers
are obtained with the Q22 values being minimized. Whereas
the Q30 values are zero by asking the HFB problem to con-
serve the parity symmetry. For the Q20 values larger than the
values corresponding to the fission isomers, the Q22 values
are constrained to zero using ALM. Here, the Q30 values are
allowed to deviate from zero by removing the parity sym-
metry. The dashed red lines differ from the solid black ones
by the fact that, for the Q20 values larger than the one corre-
sponding to the fission isomers, an additional Q22 minimiza-
tion has been performed based on the solid black lines.

For 230,232Th, where the ground states might have nonzero
Q30 values, we have performed calculations where the Q30

is constrained to a few finite values, while other multipole
moments, such as Q20, are unconstrained. We note that, for
both nuclei, the ground states have Q30 = 0. The energy
curve for 230Th is flat in the Q30 direction, indicating a
ground state with nonzero Q30, when the parity projection is
performed on the currently obtained HFB ground state.

For some of the heaviest isotopes calculated in Fig. 7,
experimental data1 exist for the inner barrier heights (EB1),
the excitation energies of the fission isomers (EII), and the
outer barrier heights (EB2), which are marked out in the
plots by blue, purple, and green lines, respectively. Figure 8
shows the (Q20, Q30) and the (Q20, Q22) values correspond-
ing to EQ30,22(Q20) curves in Fig. 7. We see a similar pattern
in these curves where a (Q20, Q22)-path around the second
barrier appears by having a non-zero Q22 value. The low-
ering in the height of the second barrier is relatively small
(< 400 keV) as compared to their heavier isotopes, as will
be shown below.

For the heavier U, Pu, Cm, and Cf isotopes, the same
quantities as those in Figs. 7 and 8 are plotted in Figs. 9
and 10, respectively. Compared to their lighter isotopes, EB2
values of these nuclei are lowered more significantly by hav-
ing nonzero Q22 values near the outer barrier. For 248,250Cm,
248−254Cf, the second barriers become thinner when the axial
symmetry is relaxed. From Fig. 10 it can be seen that the
largest deviations of the Q22 values from zero is around 7 b
for these Cm and Cf nuclei.

From Fig. 10, an interesting observation is that, the appear-
ance of the non-zero Q22 around the top of the second fission
barriers is accompanied with the decrease of the slopes of the
Q30 values as functions of the Q20 values. This effect is par-
ticularly significant for the heaviest Cm and Cf isotopes, com-
pared to the rest of the actinide nuclei studied here. In Fig. 11,
we plot the Q22,32,42,30,40 multipole moments along the paths
with and without the Q22 minimization. We notice that the
removal of the axial symmetry results in the nonzero values
for the high-order (λ > 2) non-axial multipole moments.

Figure 12 shows the proton and neutron pairing energies
of 254Cf with and without the Q22 minimization near the
outer barrier. If the fission barrier follows the Q22 = 0 path,
there seems to be an enhancement of the neutron pairing
energy near the barrier. But this enhancement is reduced by
a minimization on the Q22 values. The fairly large different
neutron pairing energies (�En

pairing ≤ 3 MeV) along the
paths with and without axial asymmetry indicate different
underlying single-particle structures. This may suggest some
adjustments of the predicted half lives when the Q22 value
is allowed to deviate from zero.

Table 1 lists EB1, EII, and EB2 values extracted from
Figs. 7 and 9. For EB1 and EB2 values, the numbers are mea-
sured from the ground states, which are zeros, to the highest
points of the maxima. A comparison can be made with exper-
imental data [41,42]. Since the UNEDF1 EDF is fitted taking
into account EII values, we focus on the influence of the Q22

1 The experimental EB1, EB2, and EII values are obtained by fitting
them to reproduce a variety of measured properties associated with the
fission reactions of actinides featuring the double-humped barriers. For
details, see Refs. [41,42].
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Fig. 9 The same as Fig. 7,
except for selected actinide
nuclei with N > 146

Fig. 10 The same as Fig. 8, except for nuclei in Fig. 9
Fig. 11 The Q22, Q32, Q42, Q30, and Q40 values of 254Cf as a func-
tion of the Q20 value, near the outer fission barrier. The dashed lines
correspond to the pathways with Q22 = 0
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Fig. 12 The proton and neutron energies as a function of Q20 near the
outer fission barrier. The dashed lines denote quantities along a path
with Q22 = 0

minimization on EB2 values. We have added results from
Ref. [36], where Q22 minimization is not taken into account.
Together with our results suppressing Q22, there are four
columns in Table 1 for EB2 values.

Comparing our results with Q22 = 0 (“Axial”) with that
of Ref. [36], we see that our results are higher by < 200 keV.
This is due to the fact that we use Nmax = 20, instead of
Nmax = 31, which has been used in Ref. [36]. For 242,244Pu,
244−248Cm, the Q22 minimization brings the curves closer
to the experimental data. In particular, EB2 values are low-
ered by about 1 MeV for 248Cm, which is much closer to
experimental data compared to the axial results.

However, one has to be careful interpretating the seem-
ingly closeness to the data for EB2 values, when the Q22

minimization is allowed. First, as noted before, the experi-
mental data for EB1, EII, and EB2 [41,42] are extracted by
fitting them, through model calculations, to calculate a num-
ber of observables. These observables are confronted with
direct experimental data, such as the cross sections of the
slow-neutron induced fission reactions. Hence, these indi-
rect data may serve as references for the current static cal-
culations. To evaluate the success of such calculations, one
needs to compute the direct observables, such as the fission
half live, which is our future work.

Second, the heights of the outer barriers of these actinides
may have been overestimated by about 300 keV due to the
limited number of basis, see the discussions of Figs. 3 and
4. Nevertheless, it is reasonable to say that the inclusion of
Q22 minimization brings the outer barrier heights closer to
data for 248Cm. For the even heavier actinides, one needs
to take into account of the triaxial degree of freedom near
the outer barrier when performing potential-energy surface
calculations.

4 Summary

To summarize, we apply the deformation-constrained nuclear
density-functional theory (DFT), using the UNEDF1 energy-
density functional (EDF), to the description of the fission
barriers of even–even actinide nuclei. To find out the lowest
Etot that follows the optimal fission pathways, we adopt a set
of parameters where the β value takes a stepped function with
the Q20 value of the nucleus. With this choice of parameter,
our results are very close to those of previous studies about
the fission barriers of 240Pu and reproduce the experimental
data reasonably well.

In order to study the impact of the Q22 moments on the
outer fission barrier of the actinide nuclei, we conduct sys-
tematic constraint calculations of the lowest-energy fission
pathways for these nuclei. It is found that the outer barriers
calculated using the UNEDF1 EDF are lowered by including
the minimization of the Q22 value. The lowering increases
with neutron and proton numbers. For the heaviest isotopes
of the Cm and Cf isotopes, the width of the barriers are also
reduced. This work indicates the importance of triaxial defor-
mation for calculating fission properties which depend on the
precise fission pathway such as the half-lives and the fusion
cross sections and so on. Our future work will study how the
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Table 1 EB1, EII, and EB2 values extracted from Figs. 7, and 9. The columns with “exp.” are from Refs. [41,42]. For EB2 values (the last 4
columns), we add the results without Q22 (red dashed lines in Figs. 7, and 9). For comparison, we also add the axial results from Ref. [36] for EB2

Nuclei EB1 EB1 (exp.) EI I EI I (exp.) EB2 EB2 (Axial) EB2 [36] EB2 (exp.)

230Th 5.57 6.10 2.91 6.39 6.51 6.80
232Th 5.96 5.80 2.25 6.32 6.43 6.70
234Th 6.13 6.10 2.23 6.52 6.71 6.50
236Th 6.04 2.21 7.01 7.37
234U 6.43 4.80 2.67 5.51 5.55 5.50
236U 6.65 5.00 2.67 2.75 5.72 5.88 5.56 5.67
238U 6.46 6.30 2.77 2.557 6.16 6.56 6.42 5.50
240U 6.09 2.93 6.54 7.23
242U 5.46 3.02 6.68 7.52
238Pu 6.79 5.60 2.43 2.40 4.78 4.78 4.62 5.10
240Pu 6.83 6.05 2.74 2.80 5.36 5.55 5.42 5.15
242Pu 6.56 5.85 2.86 2.20 5.89 6.33 6.20 5.05
244Pu 6.07 5.70 2.97 6.21 6.73 6.50 4.85
246Pu 5.53 2.83 6.33 6.76
242Cm 7.10 6.65 2.10 1.90 4.22 4.22 4.08 5.00
244Cm 6.95 6.18 2.42 2.20 5.05 5.19 5.03 5.10
246Cm 6.59 5.00 2.51 5.35 5.69 5.51 4.80
248Cm 6.08 5.80 2.35 4.72 5.75 5.55 4.80
250Cm 5.48 2.05 4.48 5.50
248Cf 7.21 1.54 3.88 4.14
250Cf 6.79 1.44 4.02 4.30
252Cf 6.18 1.10 3.46 4.10
254Cf 5.52 0.63 2.40 3.62

inclusion of the triaxial degree of freedom near the outer bar-
rier would impact the predicted fission half lives and fission
yields.
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