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Abstract. Determining the Equation of State (EOS) of dense neutron-rich nuclear matter is a shared
goal of both nuclear physics and astrophysics. Except possible phase transitions, the density dependence
of nuclear symmetry Esym(ρ) is the most uncertain part of the EOS of neutron-rich nucleonic matter
especially at supra-saturation densities. Much progresses have been made in recent years in predicting the
symmetry energy and understanding why it is still very uncertain using various microscopic nuclear many-
body theories and phenomenological models. Simultaneously, significant progresses have also been made
in probing the symmetry energy in both terrestrial nuclear laboratories and astrophysical observatories.
In light of the GW170817 event as well as ongoing or planned nuclear experiments and astrophysical
observations probing the EOS of dense neutron-rich matter, we review recent progresses and identify new
challenges to the best knowledge we have on several selected topics critical for understanding astrophysical
effects of the nuclear symmetry energy.
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1 Introduction

To understand the nature and constrain the Equation of
State (EOS) of dense neutron-rich nuclear matter is a ma-
jor science goal [1,2] shared by many astrophysical obser-
vations, see, e.g. refs. [3–12] and terrestrial nuclear exper-
iments, see, e.g. refs. [13–22]. Realizing this goal is very
important but rather challenging for many scientific rea-
sons. The energy per nucleon E(ρ, δ) in nuclear matter at
density ρ and isospin asymmetry δ ≡ (ρn − ρp)/ρ is the
most basic input for calculating the EOS of neutron star
matter regardless of the models used. It has a symme-
try energy term Esym(ρ) · δ2 which quantifies the energy
needed to make nuclear matter more neutron rich. While

much progress has been made over the last few decades in
constraining mostly the EOS of symmetric nuclear mat-
ter (SNM) and the symmetry energy Esym(ρ) around but
mostly below the saturation density of nuclear matter
ρ0 ≈ 2.8 × 1014 g/cm3 (0.16 fm−3), very little is known
about the symmetry energy at supra-saturation densities.
In fact, the high-density Esym(ρ) has been broadly rec-
ognized as the most uncertain part of the EOS of dense
neutron-rich nucleonic matter [23–27].

Because of the widely recognized importance of know-
ing precisely the density dependence of the nuclear sym-
metry energy in both astrophysics and nuclear physics, es-
sentially all existing nuclear many-body theories using all
available nuclear forces have been used to predict the sym-
metry energy Esym(ρ). Mostly by design, they all agree
with existing constrains available around and below the
saturation density. However, at supra-saturation densities
their predictions diverge very broadly. The fundamental
reason for the very uncertain high-density nuclear symme-
try energy is our poor knowledge about the relatively weak
isospin-dependence (i.e., the difference between neutron-
proton interactions in the isosinglet and isotriple channels)
of the two-body force as well as the spin-isospin depen-
dence of the three-body and tensor forces at short dis-
tances in dense neutron-rich nuclear matter. Determining
the high-density Esym(ρ) using nuclear reactions induced
by high-energy rare isotope beams has been identified as a
major science thrust in both the 2015 American [28] and
2017 European [29] nuclear physics long range plans for
the next decade.

Unlike the relatively small isospin effects in laboratory
experiments, neutron stars (NSs) are the natural testing
ground of the isospin-dependence of strong interactions
and the corresponding EOS of cold neutron-rich matter at
extremely high densities and isospin asymmetries. While
recent analyses of astrophysical data including the radii
and tidal deformability of canonical neutron stars already
ruled out many model predictions up to about 2ρ0, huge
uncertainties remain especially at higher densities. The
proton fraction xp(ρ) in NSs is uniquely determined by
the Esym(ρ) through the β-equilibrium and charge neu-
trality conditions. Consequently, the composition, criti-
cal nucleon density ρc (where xp(ρc) ≈ 1/9 in the npe
matter at β equilibrium) above which the fast cooling of
protoneutron stars by neutrino emissions through the di-
rect URCA process can occur, and the crust-core transi-
tion density in NSs all depend sensitively on the Esym(ρ).
Moreover, the frequencies and damping times of various
oscillations (especially the g-mode of the core and the tor-
sional mode of the crust), quadrupole deformations of iso-
lated NSs and the tidal deformability of NSs in inspiraling
binaries also depend on the Esym(ρ). Furthermore, there
is a degeneracy between the EOS of super-dense neutron-
rich matter and the strong-field gravity in understanding
both properties of super-massive NSs and the minimum
mass to form black holes. While understanding the na-
ture of strong-field gravity has been identified as one of
the eleven greatest physics questions for the new century
by the U.S. National Research Council in 2003 [30]. Thus,
a precise determination of the Esym(ρ) especially at high
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densities has broad impacts in many areas of astrophysics,
cosmology and nuclear physics.

In light of the GW170817 event as well as ongoing
or planned nuclear experiments and astrophysical obser-
vations probing the EOS of dense neutron-rich nuclear
matter using advanced facilities/detectors, we review here
recent progresses and identify new challenges in under-
standing astrophysics effects of the nuclear symmetry en-
ergy. In particular, we examine Esym(ρ) effects on sev-
eral structural and dynamical properties of non-rotating,
oscillating and rotating neutron stars as well as the as-
sociated gravitational wave (GW) signatures (e.g., strain
amplitude, frequency and damping time). We organize the
review into 8 sections with many subsection and subsub-
sections devoted to specific topics where the Esym(ρ) plays
a significant role. A summary is given at the end of each
section. Finally, some concluding remarks and outlook are
given in sect. 9.

2 The nuclear symmetry energy as we know it

2.1 The isospin dependence of nuclear EOS and
single-nucleon potential in neutron-rich nuclear matter

It is well known that the EOS of asymmetric nucleonic
matter (ANM) of isospin asymmetry δ and density ρ can
be written as

E(ρ, δ) = E0(ρ) + Esym,2(ρ)δ2 + Esym,4(ρ)δ4 + O(δ6)
(1)

in terms of the energy per nucleon E0(ρ) ≡ E(ρ, δ =
0) in symmetric nuclear matter (SNM), the isospin-
quadratic symmetry energy Esym,2(ρ) and the isospin-
quartic (fourth-order) symmetry energy Esym,4(ρ). In the
literature, the Esym,2(ρ) is normally referred as the nuclear
symmetry energy denoted often by Esym(ρ) or S. In the
following, we use the notations Esym(ρ) or Esym,2(ρ) in-
terchangeably for nuclear symmetry energy. The notation
Esym,2(ρ) is mostly used when the symmetry energy ap-
pears in the same equation with the isospin-quartic sym-
metry energy Esym,4(ρ). Specifically, they are defined as

Esym(ρ) ≡ Esym,2(ρ) ≡ 1
2

∂2E(ρ, δ)
∂δ2

∣
∣
∣
∣
δ=0

(2)

and

Esym,4(ρ) ≡ 1
24

∂4E(ρ, δ)
∂δ4

∣
∣
∣
∣
δ=0

. (3)

If the Esym,4(ρ) is negligibly small, eq. (1) is reduced to
the so-called empirical parabolic approximation (PA) of
nuclear EOS [31] and the symmetry energy can be ap-
proximated by the difference between energy per nucleon
in SNM and pure neutron matter (PNM)

Esym(ρ) ≈ E(ρ, 1) − E(ρ, 0). (4)

It is also well known that the single-particle potential
Un/p(k, ρ, δ) for nucleons τ = n/p with τ3 = ± at mo-
mentum k in ANM can be written as

Uτ (k, ρ, δ) = U0(k, ρ) + τ3Usym,1(k, ρ) · δ
+Usym,2(k, ρ) · δ2 + τ3Usym,3(k, ρ) · δ3 + O(δ4) (5)

in terms of the isoscalar U0(k, ρ) and Usym,2(k, ρ) as well
as the isovector Usym,1(k, ρ) and Usym,3(k, ρ) potentials,
respectively. Note that keeping only the zeroth and first
order terms of this expansion, eq. (5) reduces to the well
known Lane potential [32].

2.2 Decomposition of the nuclear symmetry energy
according to the Hugenholtz-Van Hove (HVH)
theorem

The general Hugenholtz-Van Hove (HVH) theorem [33]

EF =
d(ρE)

dρ
= E + ρ

dE

dρ
= E + P/ρ (6)

governs the relation between the Fermi energy EF and
the energy per nucleon E in all Fermionic systems with
pressure P at zero temperature. This fundamental theo-
rem provides a link between the EOS of eq. (1) and the
single-nucleon potentials of eq. (5) at the Fermi momenta
of neutrons and protons. For more detailed discussions on
this topic, we refer the reader to ref. [27].

In terms of the components of the nucleon potentials,
the quadratic symmetry energy can be written as [34–42]

Esym,2(ρ)=
1
3

k2
F

2m
+

1
2
Usym,1(ρ, kF)+

kF

6

(
∂U0

∂k

)

kF

− 1
6

k4
F

2m3

(7)
and the quartic symmetry energy Esym,4(ρ) can be written
as [40]

Esym,4(ρ) =
�

2

162m

(
3π2
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)2/3

ρ2/3

+
[
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. (8)

While the density slope L of the symmetry energy Esym(ρ)

L(ρ) ≡ [3ρ (∂Esym/∂ρ)]ρ (9)

at an arbitrary density ρ can be expressed generally as [40]

L(ρ) =
2
3

�
2k2

F

2m∗
0

+
3
2
Usym,1(ρ, kF ) − 1

6
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2k3
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0
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+
∂Usym,1
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kF

kF + 3Usym,2(ρ, kF ), (10)

where kF = (3π2ρ/2)1/3 is the nucleon Fermi momen-
tum and m∗

0/m = (1 + m
�2kF

∂U0/∂k)−1|kF
is the nucleon

isoscalar effective mass of nucleons with free mass m. In
terms of the m∗

0, the symmetry energy of eq. (7) can be
rewritten as

Esym,2(ρ) =
1
3

k2
F

2m∗
0(ρ, kF)

+
1
2
Usym,1(ρ, kF). (11)
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Fig. 1. (Color online) Isoscalar (top panels) and isovector (bottom panels) components of the single-particle potential as a
function of momentum. Results for all 11 Gogny functionals are displayed at 3 densities: ρ = 0.08 fm−3 (left panels), ρ =
0.16 fm−3 (central panels) and ρ = 0.24 fm−3 (right panels) are displayed. The gray band in the bottom central panel is the
allowed region of saturation isovector single-particle potentials obtained in ref. [48]. The arrows mark the position of the Fermi
momentum at each density. Taken from ref. [45].

The above decompositions of both the quadratic and quar-
tic symmetry energies as well as the density slope L(ρ)
in terms of the density and momentum dependences of
the isoscalar and isovector single-nucleon potentials re-
veal clearly the underlying microscopic physics at the non-
relativistic mean-field level. The above decompositions of
Esym(ρ) and L(ρ) are transparent and model independent.
They are useful for identifying the important underlying
physics as we shall discuss next. The relativistic decompo-
sitions of Esym(ρ) and L in terms of the Lorentz covariant
nucleon self-energies will be discussed in sect. 3.5.

At this point, it is also worth mentioning that not in
all many-body theories the average energy per nucleon can
be explicitly separated into kinetic and potential contri-
butions. Some techniques, such as the Hellmann-Feynman
theorem used in the BHF approach [43], have to be used to
separate the kinetic from the potential contribution to the
symmetry energy. Moreover, in some other approaches,
such as the self-consistent Green’ s function (SCGF) ap-
proach the energy expression involves the integration over
the spectral function, see e.g. ref. [44]. The Fermi energy,
energy per nucleon and pressure from the SCGF approach
have been shown to satisfy numerically the HVH theorem.
However, it is unknown to us if it is possible to decompose
the symmetry energy in terms of the kinetic contribution
and single-particle potentials within this approach.

In non-relativistic frameworks, the Esym(ρ) has a ki-
netic term equivalent to 1/3 the Fermi energy of quasi-

nucleons with an isoscalar effective mass m∗
0 and a poten-

tial part equal to 1/2 the isovector potential Usym,1(ρ, kF )
at the Fermi momentum kF . The L(ρ) has five terms de-
pending, respectively, on 1) the isoscalar nucleon effective
mass m∗

0, 2) the momentum dependence of m∗
0, 3) the

isovector potential Usym,1(ρ, kF ), 4) the momentum de-
pendence of the isovector potential and 5) the second-
order isoscalar potential Usym,2(ρ, kF ). Analyses of the
momentum dependence of the isoscalar and isovector po-
tential at ρ0 using experimental data from (p,n) charge-
exchange and nucleon-nucleus elastic scatterings [39,
48] indicate that the magnitude and the momentum-
dependence of the symmetry potential Usym,1(ρ, k) play
dominating roles but are also currently most uncertain.

Theoretical studies indicate that the density and mo-
mentum dependence of the isovector potential depends
strongly on the interactions used [40,41,45–47]. For exam-
ple, the finite-range Gogny-type interactions and the re-
sulting single-particle potentials are widely used in study-
ing fruitfully nuclear structures and reactions. Sellahewa
and Rios conducted an extensive study of isovector prop-
erties of neutron-rich nuclear matter using all 11 param-
eter sets of Gogny interactions available in the litera-
ture [45]. Shown in fig. 1 are the results of their Hatree-
Fock calculations for the isoscalar (top) and isovector
(bottom) components of the single-particle potential as
a function of momentum at 3 densities of ρ = 0.08 fm−3

(left), ρ = 0.16 fm−3 (central) and ρ = 0.24 fm−3 (right)
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ρ
Fig. 2. (Color online) Symmetry energy as a function of den-
sity for all 11 Gogny functionals. The shaded region corre-
sponds to the constraints arising from IAS of refs. [49, 50].
Taken from ref. [45].

using the 11 parameter sets. The gray band in the
bottom central panel is the allowed region of isovector
single-particle potentials at saturation density obtained
in ref. [48] from analyzing the nucleon-nucleus optical po-
tentials. The arrows mark the position of the Fermi mo-
mentum at each density. Largely be design, the different
parameter sets give results consistent around the satura-
tion density. However, especially at supra-saturation den-
sities the predicted momentum dependence of especially
the isovector single-particle potentials is rather different.
The corresponding predictions for the Esym(ρ) using all 11
Gogny functionals are shown in fig. 2. It is seen that the
predicted Esym(ρ) at supra-saturation densities diverge
rather wildly, while in the sub-saturation region, most of
the 11 calculations are generally consistent with the result
from analyzing the isobaric analog states in the shaded re-
gion [49,50].

2.3 What have we learned about the symmetry energy
so far?

Over the last two decades, significant efforts have been
devoted to understanding and constraining the Esym(ρ)
from both the theoretical and experimental/observational
communities in nuclear physics and astrophysics. Indeed,
much progress has been made, see, e.g., refs. [14–17, 23–
26, 51–56] for reviews. To our best knowledge, basically
all available nuclear many-body theories and forces have
been used to predict the density dependence of nuclear
symmetry energy. However, as illustrated using selected
examples in fig. 3, model predictions spread over large re-

gions at both sub-saturation and supra-saturation densi-
ties although they agree often by construction at ρ0. What
have we learned about the symmetry energy so far? There
is probably no community consensus for the answer to
this question. In the following we highlight a few points
that might be biased and certainly incomplete. For a more
comprehensive reviews, we refer the reader to some of the
recent reviews mentioned above and the references cited
therein.

Extensive efforts have also been devoted to extract-
ing the Esym(ρ) from sub-saturation to supra-saturation
densities from both terrestrial nuclear experiments and as-
trophysical observations. Aa an example, shown with the
magenta dot-dashed lines in fig. 3 are the boundaries of
the Esym(ρ) extracted from studying properties of neu-
tron stars [58]. While the boundaries span over a large
range above about twice the saturation density, they can
already exclude some of the predictions. Similarly, labora-
tory nuclear experiments have also been used to constrain
the symmetry energy. In particular, various reaction ob-
servables and phenomena, energy and strength of various
collective modes, various forms of isospin transport, hard
photon production, ratios and differential flows of pro-
tons and neutrons as well as mirror nuclei in heavy-ion
reactions at intermediate energies, pion, kaon and η pro-
duction in heavy-ion collisions up to 10GeV/nucleon have
been proposed as probes of the symmetry energy, see, e.g.,
reviews collected in ref. [24]. Most of these observables
probe directly the density and momentum dependence of
the isovector potential Usym,1(ρ, k). Depending on the con-
ditions of the reactions, these observables often probe the
Esym(ρ) over a broad density range. For example, as shown
in fig. 4 with the gray band and labeled as HIC Sn+Sn,
transport model analyses of the isospin diffusion data in
reactions involving several Sn isotopes taken by Tsang et
al. [59,60] have consistently extracted a constraining band
on the Esym(ρ) in the range of ρ0/3 to about ρ0. This band
is also consistent with constraints obtained from analyz-
ing other observables. At supra-saturation densities, how-
ever, the situation is quite different as indicated by the
different trends obtained from analyzing different observ-
ables or the same observables but using different models.
In the examples shown in fig. 4, the decreasing trend of
Esym(ρ) was found from analyzing the π−/π+ data from
the FOPI/GSI collaboration [62, 66] using a BUU-type
(Boltzmann-Uehling-Uhlenbeck) transport model [63,64].
Such kind of decreasing Esym(ρ) at supra-saturation densi-
ties is possible as indicated by some model predictions and
is not ruled out by the constraints from analyzing neutron
star observables as shown in fig. 3. However, the analysis
of the pion ratio data is still quite model dependent. On
the other hand, the ASY-EOS Collaboration found that
the Esym(ρ) increases continuously with density from an-
alyzing their data on the relative flows of neutrons w.r.t.
protons, tritons w.r.t. 3He and yield ratios of light isobars
using two versions of the QMD-type (Quantum Molec-
ular Dynamics) transport models [61, 65]. Thus, exist-
ing analyses of heavy-ion reaction experiments have not
reached a consensus regarding the high-density behavior
of the symmetry energy. Certainly, ongoing and planned
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Fig. 3. (Color online) Examples of the nuclear symmetry energy Esym(ρ) predicted by nuclear many-body theories using
different interactions, energy density functionals and/or techniques (made by amending a compilation in ref. [57]) in comparison
with the constraining boundaries (magenta dot-dashed lines) extracted from studying properties of neutron stars. Taken from
ref. [58].

new experiments coupled with better coordinated theo-
retical efforts using systematically tested reaction mod-
els will help improve the situation hopefully in the near
future. Comparing the theoretical predictions with con-
straints from analyzing observables of neutron stars and
terrestrial nuclear experiments as shown in fig. 3 and fig. 4,
it is seen clearly that the Esym(ρ) at supra-saturation den-
sities are still largely unconstrained. Certainly, the multi-
messengers approach combing tools in nuclear theories,
astrophysical observations and terrestrial experiments has
the great potential of helping us resolve this longstanding
challenge.

Within the parabolic approximation of the EOS, it is
customary to either Taylor expand (e.g., in energy density
functional theories) at densities near ρ0 or simply param-
eterize up to certain supra-saturation densities (e.g., in
conducting Bayesian inferences and directly solving nu-
merically the inverse-structure problem of neutron stars
especially at supra-saturation densities) the E0(ρ) and
Esym(ρ), respectively, according to

E0(ρ) = E0(ρ0) +
K0

2

(
ρ − ρ0

3ρ0

)2

+
J0

6

(
ρ − ρ0

3ρ0

)3

,

(12)

Esym(ρ) = Esym(ρ0) + L

(
ρ − ρ0

3ρ0

)

+
Ksym

2

(
ρ − ρ0

3ρ0

)2

+
Jsym

6

(
ρ − ρ0

3ρ0

)3

. (13)

For the EOS of SNM, extensive studies have determined
the most probable incompressibility of symmetric nuclear

matter as K0 = 230± 20MeV [71,72], while the skewness
parameter J0 is only roughly known to be in the range
of −800 ≤ J0 ≤ 400MeV [73, 74]. For the symmetry en-
ergy, past efforts in both nuclear physics and astrophysics
have been most fruitful in constraining the magnitude and
slope, i.e., Esym(ρ0) and L(ρ0), of the Esym(ρ) around ρ0.
For example, shown in figs. 5 are the central values of
the Esym(ρ0) and L(ρ0) from 28 analyses of some data
from both nuclear experiments and astrophysical obser-
vations available before 2013 [75]. The fiducial values ex-
tracted from these data are Esym(ρ0) = 31.6 ± 2.7MeV
and L(ρ0) = 58.9 ± 16MeV, respectively. More recent
surveys of more data analyses found that the central
values of Esym(ρ0) and L(ρ0) are 31.7 ± 3.2MeV and
58.7 ± 28.1MeV [7], respectively, consistent with the ear-
lier findings [75], while the two high-density parameters
are poorly known. Mostly based on surveys of calcula-
tions using over 500 energy density functionals, the cur-
vature and skewness of the symmetry energy have been
predicted to be in the range of −400 ≤ Ksym ≤ 100MeV,
−200 ≤ Jsym ≤ 800MeV, respectively. Given this situa-
tion, for many purposes, one can fix the K0, Esym(ρ0) and
L(ρ0) at their most probable values presently known while
use the J0,Ksym and Jsym as free high-density parameters.

3 Why is the symmetry energy still so
uncertain especially at supra-saturation
densities?

Of course, answers to the above question are likely model
dependent and the different techniques used in solving
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nuclear many-body problems certainly contribute to the
diverse behaviors of Esym(ρ) at high densities. However,
a few common key physics ingredients can be identified
based on the HVH decomposition of Esym(ρ) and L(ρ)
presented earlier. In the following we discuss effects of a
few such ingredients on the high-density behavior of nu-
clear symmetry energy.

3.1 The most important but poorly known physics
behind the nuclear symmetry energy

In fact, lying under the Esym(ρ) is the isospin-dependence
of strong interactions. Our poor knowledge about the lat-
ter in dense neutron-rich matter is ultimately responsi-
ble for the uncertain Esym(ρ) at high densities. As shown
earlier, the Esym(ρ) and its density slope L(ρ) depend
on the density and momentum dependence of both the
isoscalar and isovector potentials. Currently, the density
and momentum dependence of the isoscalar single-nucleon
potential is much better known than that of the isovec-
tor potential. For example, even at the saturation density
of nuclear matter ρ0, the isovector (symmetry) potential
Usym,1(ρ, k) around and above the Fermi momentum is
very poorly known [27]. Consequently, the density depen-
dence of the Esym(ρ) is still very uncertain especially at
supra-saturation densities.

To be more specific, it is instructive to inspect what
is behind the Usym,1(ρ, k) within simple and transparent
models. For example, the Hartree term of the isovector
potential at kF in the interacting Fermi gas model can be
written as [78,79]

Usym,1(kF , ρ) =

ρ

4

∫

[VT1 · fT1(rij) − VT0 · fT0(rij)]d3rij (14)

in terms of the isosinglet (T = 0) and isotriplet (T = 1)
nucleon-nucleon (NN) interactions VT0(rij) and VT1(rij),
as well as the corresponding NN correlation functions
fT0(rij) and fT1(rij), respectively. The charge indepen-
dence of NN interaction requires that Vnn = Vpp = Vnp

in the T = 1 channel. However, because of the isospin
dependence of the NN strong interaction, the Vnp inter-
actions and the associated NN correlations in the T = 1
and T = 0 channels are not necessarily the same. As man-
ifested in properties of the deuteron, the tensor force and
the resulting short-range correlation in the T = 0 channel
is much stronger than that in the T = 1 channel [80–83].
While the Usym,1(ρ, k) from the Fock term using Gogny-
type finite-range, isospin-dependent interactions [84] is of-
ten parameterized by using different strengths of interac-
tions between like and unlike nucleon pairs [46]. There-
fore, the isospin dependence of strong NN interactions
plays the key role in determining the density and mo-
mentum dependence of the isovector single-nucleon poten-
tial, and thus the density dependence of nuclear symmetry
energy. Indeed, numerical calculations within microscopic
many-body theories [31, 85] have shown that the poten-

Fig. 4. (Color online) Constraints on the density depen-
dence of Esym(ρ) using isospin diffusion data from MSU [59],
world data of excitation energies of the isobaric analog states
(IAS) [49, 50], isospin-dependent flow measurements by the
ASY-EOS Collaboration at GSI [61, 65] in comparison with
the trend (arrow) of Esym(ρ) from an earlier analysis of the
FOPI/GSI pion data by Xiao et al. using the IBUU04 trans-
port model [66] as well as the constraints at ρ0 from analyzing
properties of double magic nuclei by Brown [67] and binding
energies and neutron-skins by Chen and Zhang [68–70]. Taken
from ref. [61].

tial symmetry energy is dominated by the T = 0 interac-
tion channel while the T = 1 contribution is almost zero.
Thus, the isospin dependence of NN interactions and cor-
relations determines the potential symmetry energy. This
general feature is qualitatively consistent with findings
within microscopic nuclear many-body theories, see, e.g.,
ref. [86].

While at the mean-field level, the tensor force has
no contribution to the potential part of the symmetry
energy, its secondary contribution is important. More-
over, the isospin dependence of short-range correlation
(SRC) induced by tensor forces leads to a high-momentum
tail (HMT) in the single-nucleon momentum distribu-
tion [80,82,83]. In neutron-rich matter, the HMT is highly
isospin dependent. Namely, a larger fraction of protons
than neutrons are in the HMT [83]. The isospin depen-
dent HMT affects both the kinetic and potential parts of
the symmetry energy when a momentum-dependent inter-
action is used. Furthermore, as illustrated in many studies
in the literature, nuclear saturation properties can be well
described by either using an in-medium tensor force or
spin-isospin dependent three-body nuclear force [87–91].
Thus, in many studies only the latter is considered while
effects of the tensor force are either completely ignored
or mimicked by using the three-body force. In the fol-
lowing, we briefly discuss respective effects of the tensor
force, SRC and the three-body force on the high-density
behavior of nuclear symmetry energy.
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Fig. 5. (Color online) Central values of Esym(ρ0) and L(ρ0) from 28 model analyses of terrestrial nuclear experiments and
astrophysical observations. Modified from similar plots in ref. [75] by updating the result of Sotani et al. in their analyses of the
quasi-periodic oscillations of neutron stars [76,77].

Fig. 6. (Color online) The radial part of the tensor force due
to pion and ρ meson exchange at densities of ρ = 0, ρ0, 2ρ0,
and 3ρ0 with the in-medium ρ mass of m�

ρ/mρ = 1 − 0.2ρ/ρ0.
Taken from ref. [78].

3.2 The role of the tensor force in the isosinglet
nucleon-nucleon interaction channel

The second-order tensor contribution to nuclear symmetry
energy has been studied for a long time, see, e.g., refs. [92–
95]. It is approximately

〈Vsym〉 =
12
eeff

〈V 2
t (r)〉, (15)

where eeff ≈ 200MeV and Vt(r) is the radial part of the
tensor force [95]. In the one-boson-exchange picture, the
tensor interaction results from exchanges of the isovector
π and ρ mesons. The tensor part of the one-pion exchange
potential can be written as [96–98]

Vtπ = − f2
π

4π
mπ(τ1 · τ2)S12

·
[

1
(mπr)3

+
1

(mπr)2
+

1
3mπr

]

exp(−mπr) (16)

where r is the inter-particle distance and

S12 = 3
(σ1 · r)(σ1 · r)

r2
− (σ2 · σ2) (17)

is the tensor operator. The ρ-exchange tensor interaction
Vtρ has the same functional form but an opposite sign,
namely, the mπ is replaced everywhere by mρ, and the
f2

π by −f2
ρ . The magnitudes of both the π and ρ contri-

butions grow quickly but in opposite directions with de-
creasing r as the density increases. The net result from
the π and ρ exchanges depends strongly on the poorly
known ρ-nucleon coupling strength. Moreover, while there
is still no solid experimental confirmation, it is possible
that the in-medium ρ meson mass mρ is different from its
free-space value. A density-dependent in-medium ρ me-
son mass mρ leads to very different tensor forces in dense
medium [96–98], and thus different Esym(ρ) at high densi-
ties [78,88,89,99,100]. As an illustration, shown in fig. 6 is
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Fig. 7. (Color online) Left panel: radial parts of the tensor in-
teractions having different short-range behaviors but the same
long-range (r > 0.7 fm) part as the Av18, Right panel: the cor-
responding potential symmetry energies. Taken from ref. [105].

the radial part of the total tensor force VT = V ρ
T (r)+V π

T (r)
at densities ρ = 0, ρ0, 2ρ0, and 3ρ0, respectively, with re-
duced in-medium ρ meson mass according to m�

ρ/mρ =
1 − 0.2ρ/ρ0 [78, 96–98]. As one expects, the total tensor
force becomes more repulsive in denser matter when the ρ
meson mass is reduced. It was shown within the simple in-
teracting Fermi gas model assuming all isosinglet neutron-
proton pairs behave as bound deuterons with S12 = 2, the
potential symmetry energy at supra-saturation densities is
indeed found very sensitive to the strength of the tensor
force [78].

It is well known that various realistic nuclear poten-
tials usually have widely different tensor components at
short range (r ≤ 0.8 fm). While the different behaviors of
the tensor force at short-distance have no effect on nuclear
structure calculations as often a common cut-off of about
r = 0.8 fm is normally used [101,102], they do affect signif-
icantly the high-density behavior of the symmetry energy.
As an example, shown in the left panel of fig. 7 are the
strengthes of several typical tensor forces widely used in
the literature. They are the standard π + ρ exchange (la-
belled as a), the G-Matrix (GM) [101,102] (labelled as b),
M3Y [103] (labelled as c) and the Av18 [104] (labelled as
Av18). They are rather differently at short distance but
merge to the same Av18 tensor force at longer range. For
comparisons, in the case d the tensor force vanishes for
r ≤ 0.7 fm. The corresponding potential symmetry ener-
gies evaluated using eq. (15) are shown in the right panel
of fig. 7. Clearly, the variation of the short-range tensor
force leads to significantly different potential symmetry
energies at supra-saturation densities [105].

It was predicted a long time ago based on an ear-
lier version of the variational many body theory [106,107]
that the tensor force in the isosiglet channel may lead to
decreasing Esym(ρ) at high densities when the repulsive
ρ contribution to the tensor dominates. In PNM effects
of the tensor force is negligible while the tensor force in

the isosinglet channel in SNM makes its potential energy
increases very fast at high densities. Depending on the
strength of the tensor force at short distance in dense mat-
ter, it is then possible that the energy in SNM increases
much faster than that in PNM, leading to decreasing or
even negative symmetry energies at supra-saturation den-
sities. Possible astrophysical consequences of such kind of
Esym(ρ) have been explored in the literature, see, e.g.,
refs. [66, 108–115]. However, whether or not the Esym(ρ)
can decrease or become negative at high densities remains
a controversial issue.

3.3 The role of the spin-isospin dependence of
three-body forces

As we mentioned earlier, three-body nuclear forces play
similar roles and thus are often used to mimic tensor
force effects on saturation properties of nuclear matter.
Effects of the spin-isospin dependence of the three-body
force on the Esym(ρ) are also better understood than those
due to the tensor force. Within over 300 Skyrme Hatree-
Fock [116–120] and/or Gogny Hartree-Fock [121] energy
density functionals, a zero-range three-body force is often
reduced to an effective two-body force [121–124]

V3 = t0(1 + x0Pσ)ραδ(r), (18)

or its improved version involving separate densities ρi and
ρj of the two interacting nucleons i and j

V3ij = t0(1 + x0Pσ)[ρi(ri) + ρj(rj)]αδ(rij) (19)

where t0, α and x0 are parameters while Pσ is the
spin-exchange operator [34–37, 125–132]. To differentiate
from calculations using the original MDI (Momentum-
Dependent Interaction) with the three-body force of
eq. (18), the MDI with the three-body force of eq. (19)
is referred as the Improved MDI (IMDI). The parameter
x0 controls the relative contributions from the isosinglet
and isotriple NN interactions. More specifically, the po-
tential energies due to the three-body force in the T = 1
and T = 0 NN interaction channels are, respectively [121],

V T1
d =

1 − x0

2
3t0
8

ρα+1 and V T0
d =

1 + x0

2
3t0
8

ρα+1.

(20)
One sees immediately that the terms containing x0 cancel
out in calculating the EOS of SNM. While the three-body
force contribution to the Esym(ρ) is [134]

Esym(V3) = −(1 + 2x0)
t0
8

ρα+1. (21)

Thus, both the x0 and α affect the symmetry energy but
only the latter also affects the EOS of SNM. Many energy
density functionals have used either the V3 or V3ij for the
three-body force term with different values of x0 and α,
leading to diverse predictions for the Esym(ρ) at supra-
saturation densities.

Within a given energy density functional (EDF), when
the x0 parameter is varied other parameters have to be
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adjusted self-consistently to satisfy the same set of con-
straints. As an illustration of three-body force effects on
the symmetry energy, we quote in the following results of a
study [134] using the MDI energy density functional [46].
The latter has been used extensively in both simulating
heavy-ion reactions [63,64,135,136] and studying proper-
ties of neutron stars [137–144]. It is developed from a mod-
ified Gogny-type interaction within the Hartree-Fock ap-
proach [46]. Using the MDI, the energy per nucleon E(ρ, δ)
can be written as [145]

E(ρ, δ) =
∑

J=n,p

1
ρJ

∫ ∞

0

k2

2M
nJ
k(ρ, δ)dk

+
A	(ρ2

p + ρ2
n)

2ρρ0
+

Auρpρn

ρρ0
+

B

σ + 1

(
ρ

ρ0

)σ

(1 − xδ2)

+
∑

J,J ′

CJ,J ′

ρρ0

∫

dkdk′fJ(r,k)fJ ′(r,k′)Ω(k,k′). (22)

The first term is the kinetic energy while the second to
fourth terms are the usual zero-range 2-body and effec-
tive 3-body force contributions, respectively. The param-
eters B and σ are related to the t0 and α in the Gogny
effective interaction via t0 = 8

3
B

σ+1
1

ρσ
0
, and σ = α + 1,

respectively. The parameter x is related to the x0 via
x = (1 + 2x0)/3 [134]. As the x parameter varies, the
competition between the isosinglet and isotriplet 2-body
interactions is changed.

The last term in eq. (22) is the contribution from
the finite-range 2-body interactions characterized by the
strength parameter CJ,J ≡ C	 for like and CJ,J ≡ Cu

for unlike nucleon paris, respectively, using the notations
n = p and p = n. The fJ (r,k) and nJ

k(ρ, δ) are the nu-
cleon phase space distribution function and momentum
distribution function, respectively. In equilibrated nuclear
matter at zero temperature, they are related by

fJ(r,k) =
2
h3

nJ
k(ρ, δ) =

1
4π3

nJ
k(ρ, δ), � = 1. (23)

For example, in the free Fermi gas (FFG), nJ
k = Θ(kJ

F −
|k|) with the standard step function Θ, then

fJ(r,k) = (1/4π3)Θ(kJ
F − |k|). (24)

The regulating function Ω(k,k′) originating from the me-
son exchange theory of nuclear force normally has the form
of [46,146]

Ω(k,k′) =

[

1 +
(

k − k′

Λ

)2
]−1

(25)

where k and k′ are the momenta (p = �k) of two in-
teracting nucleons and Λ is a parameter regulating the
momentum dependence of the single-particle potential.

Using the step function for the momentum distribution
function, namely, neglecting the high momentum tail due
to short-range correlation (its effects will be studied in

Fig. 8. (Color online) The density dependence of nuclear sym-
metry energy using the MDI interaction by varying the param-
eter x from −2 to +1 in steps of Δx = 0.1 but using the same
σ = 4/3. Taken from ref. [133].

the next subsection) at zero temperature, the symmetry
energy can be expressed as

Esym(ρ) =
�

2

6m

(
3π2ρ

2

) 2
3

+
ρ

4ρ0
(Al(x) − Au(x)) − Bx

σ + 1

(
ρ

ρ0

)σ

+
C	

9ρ0ρ

(
4πΛ

h3

)2
[

4p4
f − Λ2p2

f ln
4p2

f + Λ2

Λ2

]

+
Cu

9ρ0ρ

(
4πΛ

h3

)2
[

4p4
f − p2

f (4p2
f +Λ2) ln

4p2
f +Λ2

Λ2

]

. (26)

With the 3-body force V3 of eq. (18), the parameters
A	, Au in the two-body forces have to be adjusted with
the varying x parameter via [46,135]

Au(x) = −95.98 − x
2B

σ + 1
,

Al(x) = −120.57 + x
2B

σ + 1
. (27)

Different values of x can lead to widely different trends
for the Esym(ρ) without changing the SNM EOS and the
magnitude of the symmetry energy at saturation density.
This is illustrated in fig. 8 which displays representative
examples of the Esym(ρ) using eq. (26) for values of x in
the interval between −2 and +1 but the same σ = 4/3. It
needs to be emphasized that various values of x correspond
to various values of L and Ksym, i.e., varying x changes
both parameters simultaneously as shown in fig. 9.
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Fig. 9. (Color online) The slope L (upper panel) and curvature
Ksym (lower panel) of the MDI symmetry energy shown in
fig. 8. Taken from ref. [133].

While with the 3-body force V3ij of eq. (19), the A	

and Au have to be modified to [134]

A′
u(x) = −95.98 − 2B

σ + 1
[

1 − 2σ−1(1 − x)
]

,

A′
l(x) = −120.57 +

2B

σ + 1
[

1 − 2σ−1(1 − x)
]

, (28)

with B = 106.35MeV to reproduce the same saturation
properties of nuclear matter and Esym(ρ0) = 30MeV at
ρ0 = 0.16/fm3. We notice that, by design, with x = 1, the
above two parameters are identical to those in eq. (27).
The improved MDI then reduces to the original MDI in-
teraction. The Esym(ρ) for the improved MDI is given
by [134]

Esym(ρ) =
�

2

6m

(
3π2ρ

2

) 2
3

+
ρ

4ρ0
(A′

l(x) − A′
u(x))

+
B

σ + 1

(
ρ

ρ0

)σ
[

2σ−1(1 − x) − 1
]

+
Cl

9ρ0ρ

(
4πΛ

h3

)2
[

4p4
f − Λ2p2

f ln
4p2

f + Λ2

Λ2

]

+
Cu

9ρ0ρ

(
4πΛ

h3

)2
[

4p4
f − p2

f (4p2
f +Λ2) ln

4p2
f +Λ2

Λ2

]

. (29)

To see the relative effects of the X and σ parameters,
shown in fig. 10 are the Esym(ρ) obtained using the im-
proved MDI with x = 1, 0 and −1 and three σ1,2,3 values of
4
3−

1
30 , 4

3 , and 4
3 + 1

30 , respectively. While the variation of σ

Fig. 10. (Color online) The symmetry energy Esym(ρ) ob-
tained with the improved MDI interaction using the three-body
force given in eq. (19) with x = 1, 0 and −1 and three σ1,2,3 val-
ues of 4

3
− 1

30
, 4

3
, and 4

3
+ 1

30
, respectively. Taken from ref. [134].

parameter alters appreciably the high density behavior of
Esym(ρ), it is the x parameter that has the most dramatic
influences on the Esym(ρ) especially at supra-saturation
densities.

In summary of this subsection, both the form and the
spin-isospin dependence of the three-body force are im-
portant for determining the high-density behavior of the
symmetry energy.

3.4 The role of the isospin-dependent short-range
correlation (SRC) induced by tensor forces

Another major source of uncertainties of the high-density
Esym(ρ) is the poorly understood but very interesting
isospin dependence of SRC in neutron-rich matter. It
is well known that nucleon-nucleon short-range repulsive
core (correlations) and tensor force lead to a high (low)
momentum tail (depletion) in the single-nucleon momen-
tum distribution above (below) the nucleon Fermi sur-
face in both finite nuclei and nuclear matter [147–152].
As an example, shown in fig. 11 are single nucleon mo-
mentum distributions in all T = 0 nuclei with mass num-
ber between 2 to 12 from the variational Monte Carlo
theory [153]. One outstanding feature of these momen-
tum distribution functions is the universal scaling of the
high momentum tail (HMT) in all nuclei considered. Such
scaling was actually seen in all nuclei from deuteron to
infinite nuclear matter, see, e.g., ref. [154], indicating the
shared short-range nature of the HMT in all systems. More
quantitatively, the un-normalized population of momen-
tum space up to the wave number k is shown with the
blue line in fig. 12. As indicated, the fractional occupation
up to k = 1.33 fm−1 corresponding to the Fermi momen-
tum at saturation density of nuclear matter is about 79%,
leaving about 21% nucleons distributed above the Fermi
momentum.

It is important to note here that systematic analyses of
many experiments, see e.g., ref. [155] for a recent review,
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Fig. 11. (Color online) The proton momentum distributions
in all T = 0 nuclei from A = 2–12 calculated by Wiringa et al.
using their variational Monte Carlo theory in ref. [153].

Fig. 12. (Color online) The un-normalized population of nu-
cleons in 12C up to momentum k (blue) (Courtesy of B.J. Cai,
2015) from the variational Monte Carlo prediction shown in
fig. 11.

indicate that about 25% nucleons are in the HMT in SNM,
while calculations are still model dependent. For exam-
ple, the Self-Consistent Green’s Function (SCGF) theory
using the Av18 interaction predicts a 11–13% HMT for
SNM at saturation density ρ0 [156, 157], while Bruckner-
Hartree-Fock calculations predict a HMT between about
10% using the N3LO450 to over 20% using the Av18, Paris
or Nij93 interactions [158, 159]. Thus, there is a qualita-
tive agreement but quantitative disagreement regarding
the size of the HMT even in SNM.

Significant progresses have been made in understand-
ing the source and features of the nucleon momentum dis-
tributions in finite nuclei especially from electron-nucleus
scattering experiments during the last two decades [83,
160–170], albeit there are still controversies especially
from those experiments using nuclear probes, see, e.g.,
refs. [171–175]. Theoretically, large uncertainties exist in

quantifying the shape, size and isospin dependence of
the HMT of single-nucleon momentum distributions in
neutron-rich matter, for a recent review, see, e.g., ref. [27].
While some strong and consistent indications about the
isospin dependence of the HMT have been found in elec-
tron scattering experiments [176], quantitative predictions
are still model dependent. More specifically, based on the
observation that the SRC strength of a neutron-proton
pair is about 18–20 times that of two protons, the HMT
in PNM was estimated to be about 1–2% [177]. How-
ever, some theories predict a significantly higher HMT in
PNM. For example, the SCGF predicted a 4–5% HMT
in PNM [156, 157]. More specifically, based on the lad-
der SCGF approach [157], Rios, Polls and Dickhoff have
shown clearly that the momentum distribution of neutrons
with respect to that of protons depends strongly on the
interactions used especially in neutron-rich matter. The
integrated strength defined as [157]

φ2(ki, kf ) =
1

π2ρτ

∫ kf

ki

dk k2nτ (k) (30)

can be used to quantify the population in the momentum
range between ki and kf . Shown in fig. 13 are the values
of φ2(ki, kf ) in the three windows of momentum. As dis-
cussed in [157], the low-momentum region, from ki = 0
to kf = 400MeV, includes depletion effects as well as the
shifts in the Fermi momenta, the middle panels represent
approximately the tensor-dominated region while the bot-
tom panels illustrate the remaining strength in the very
high-momentum region above 850MeV where three-body
short-range correlations may play a significant role.

It is seen from fig. 13 clearly that as the isospin-
asymmetry increases, higher fractions of protons popu-
late the HMT while in the low-momentum region neutrons
dominate. Most importantly, the integrated strength espe-
cially at high momentum is very interaction dependent. In
particular, either turning off the tensor or high-momentum
component of the interaction leads to significant reduc-
tions of the HMT. The relative populations of the HMT
is also strongly interaction dependent. Moreover, within
the SCGF approach it was also shown that the shape of
the HMT is also model dependent. The HMT does not
always scale as 1/k4 as predicted in some other models
discussed in detail in ref. [27]. Nevertheless, the SCGF
and all other models qualitatively confirm the deuteron-
like neutron-proton dominance picture illustrated in fig. 14
for the creation of the HMT. In neutron-rich systems, neu-
trons are in the majority. The minority protons have a rel-
atively larger chance of finding a neutron partner to form
a T = 0 pair for the tensor force to be active. Within
the neutron-proton dominance approximation, there are
equal number of neutrons and protons in the HMT. Thus,
a larger fraction of protons is in the HMT. An inter-
esting example from data mining of electron-nucleus and
proton-nucleus scattering experiments [176, 178] is shown
in fig. 15. The measured fraction of high-momentum pro-
tons relative to that of 12C is shown as a function of the
isospin-asymmetry (N −Z)/A. It is seen clearly that from
neutron-poor to neutron-rich systems the relative proton
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Fig. 13. (Color online) Integrated single-particle strength for neutrons (circles) and protons (squares) in the three momentum
regions using different NN interactions indicated in the figure. Taken from ref. [157].

Fig. 14. (Color online) The neutron-proton dominance pic-
ture of short-range correlations in isospin-asymmetric systems.
Taken from ref. [83].

fraction in the HMT changes from less than 1 to signif-
icantly larger than 1 as one expects qualitatively based
on both the schematic neutron-proton dominance picture
and microscopic nuclear many-body calculations.

The isospin dependence of the HMT is expected to
affect both the kinetic and potential parts of the energy
density functionals, and thus the symmetry energy. In par-
ticular, because of the k4 weighting in calculating the av-
erage kinetic energies of nucleons, a small change in the
HMT may have a significant effect on the kinetic part of

the symmetry energy [100]. The kinetic EOS can be ex-
panded in δ as

Ekin(ρ, δ)≈Ekin
0 (ρ) + Ekin

sym(ρ)δ2 + Ekin
sym,4(ρ)δ4 + O(δ6).

(31)
For the free Fermi gas (FFG), it is well known that

Ekin
0 (ρ) =

3EF(ρ)
5

, Ekin
sym(ρ) =

EF(ρ)
3

,

Ekin
sym,4(ρ) =

EF(ρ)
81

, (32)

where EF(ρ) = k2
F/2M is the nucleon Fermi energy. Thus,

in the FFG picture, the average kinetic energy of neu-
trons are higher than that of protons because of their
higher Fermi energy. However, depending on the strength
of the SRC the larger fraction of protons in the HMT
may reverse this picture. As an example, shown in fig. 16
are the ratio of average kinetic energy of protons over
that of neutrons within the independent particle model
(IPM) and the low order correlation operator approxima-
tion (LCA) [179], respectively. Clearly, the correlations
make the protons more energetic. More recently, within
the IPM and LCA approaches, a systematic study of the
isospin composition and neutron/proton ratio (N/Z) de-
pendence of the SRC was carried out [180]. It further con-
firmed that the minority species (protons) become increas-
ingly more short-range correlated as the neutron/proton
ratio increases. The main feature shown in fig. 16 is con-
sistent with that found experimentally in systems from C
and Pb [176]. Such change in kinematics of neutrons and
protons in isospin asymmetric matter is expected to affect
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Fig. 15. (Color online) The fraction of high-momentum pro-
tons relative to that of 12C as a function of the isospin-
asymmetry (N − Z)/A from data mining of electron-nucleus
scattering experiments [176,178]. Note that the values for nega-
tive isospin-asymmetry correspond to the fraction measured for
neutrons for positive asymmetry. Taken from ref. [178] based
on the measurements reported in ref. [176].
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Fig. 16. (Color online) Ratio of the average kinetic energy
of protons to that of neutrons as a function of proton frac-
tion xp = Z/A within the independent particle model (IPM)
and the low order correlation operator approximation (LCA).
Taken from ref. [179].

the nuclear symmetry energy. However, we note that the
sign and magnitude of such phenomenon is still model and
interaction dependent [157].

Effects of the HMT on the nuclear energy density func-
tional can be examined by replacing the step function
with the single-nucleon momentum distribution including
the HMT at zero temperature. For example, within phe-
nomenological models one can make the following substi-
tution in both the kinetic and momentum dependent parts
of the MDI EDF in eq. (22)

∫ kJ
F

0

nJ
k(FFG step function) · dk

−→
∫ φJkJ

F

0

nJ
k(ρ, δ)(with HMT) · dk

where φJ is the HMT cut-off parameter [181] in the single-
nucleon momentum distribution. The latter can be param-
eterized by [181]

nJ
k(ρ, δ) =

⎧

⎪⎨

⎪⎩

ΔJ , 0 < |k| < kJ
F,

CJ

(
kJ
F

|k|

)4

, kJ
F < |k| < φJkJ

F,
(33)

where ΔJ is the depletion of the Fermi sphere at zero mo-
mentum while CJ is the so-called “contact” characterizing
the size of the HMT. While some of the parameters are
constrained by the HMT data and normalization condi-
tions, there are large uncertainties [181]. As an example,
shown in fig. 17 are the kinetic symmetry energy Ekin

sym(ρ)
(left) and the isospin-quartic term Ekin

sym,4(ρ) (right) as a
function of the HMT fractions in SNM xHMT

SNM and in PNM
xHMT

PNM , respectively. It is seen that the strength of HMT in
SNM plays a leading role in determining the kinetic sym-
metry energy, while a large quartic term is generated by a
large difference between the xHMT

SNM and xHMT
PNM . Compared

to their corresponding values for the FFG, it is seen that
the isospin-dependent HMT decreases the kinetic symme-
try energy Ekin

sym(ρ0) from 12.3MeV in FFG significantly
to even negative values depending on the size of HMT.
Taking xHMT

SNM = (28± 4)% and xHMT
PNM = (1.5± 0.5)% con-

sistent with the recent analyses of electron-nucleus scat-
tering data at Jlab [83], the resulting kinetic symmetry
energy (red open circle with error bar) is compared in
fig. 18 with findings of several studies using both phe-
nomenological models [177, 182] and microscopic nuclear
many-body theories [43, 157, 183–185]. While the results
are quantitatively different, they all consistently show sig-
nificant reductions compared to the FFG value. Overall,
the results cited above indicate clearly that the isospin de-
pendent SRC and the associated HMT affect significantly
the kinetic symmetry energy of quasi-nucleons in isospin-
asymmetric matter.

Effects of the HMT on the potential part or the to-
tal Esym(ρ) can be studied within nuclear energy density
functionals [145, 182]. For example, making the replace-
ment of eq. (33) in the modified MDI EDF in eq. (22),
one can study how the HMT may affect both the ki-
netic and potential parts of the symmetry energy. This
requires re-optimizing the model parameters to reproduce
all known constraints. Nevertheless, this approach can be
considered as inconsistent because the quasi-nucleon mo-
mentum distribution with a HMT may not be produced
self-consistently by the MDI interaction. Thus, this ap-
proach can only be viewed as a perturbative method for
an orientation of the HMT effect. For comparisons, shown
in fig. 19 are the Esym(ρ) from the modified Gogny EDF
of eq. (22) using the following 3 parameter sets: 1) with
the nJ

k adopting a 28% HMT in SNM and a 1.5% HMT in
PNM (abbreviated as HMT-exp), 2) with the nJ

k adopting
a 12% HMT in SNM and a 4% HMT in PNM (abbrevi-
ated as HMT-SCGF) and 3) the original MDI interaction
with the FFG nucleon momentum distribution. As dis-
cussed in detail in ref. [145], all three parameter sets have
the same Esym(ρ0) and L at ρ0. While they all agree with
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Fig. 17. (Color online) Dependence of the kinetic symmetry energy and the isospin-quartic term on the fractions of high-
momentum nucleons in symmetric nuclear matter (xHMT

SNM ) and pure neutron matter (xHMT
PNM). Taken from ref. [27].

the constraints on the Esym(ρ) around ρ0 from interme-
diate energy heavy-ion collisions (HIC) [52] and the iso-
baric analog states (IAS) [49,50], they have quite different
Esym(ρ) especially at high densities. More quantitatively,
the curvature coefficient

Ksym ≡ 9ρ2
0d

2Esym(ρ)/dρ2|ρ=ρ0 (34)

of Esym(ρ) was found to change from −109MeV in the
FFG set to about −121MeV and −188MeV in the HMT-
SCGF and HMT-exp set, respectively. This helps repro-
duce the experimentally measured

Kτ = Ksym − 6L − J0L/K0, (35)

where the skewness of SNM

J0 ≡ 27ρ3
0d

3E0(ρ)/dρ3|ρ=ρ0 (36)

is approximately −381, −376 and −329MeV in the FFG,
HMT-SCGF and HMT-exp set, respectively. The resulting
Kτ was found to change from −365MeV in the FFG set to
about −378MeV and −457MeV in the HMT-SCGF and
HMT-exp set [145], respectively, in better agreement with
the best estimate of Kτ ≈ −550 ± 100MeV from analyz-
ing several different kinds of experimental data currently
available [186].

Considering the SRC-induced reduction of kinetic sym-
metry energy of quasi-nucleons with respect to the FFG
value given in eq. (32), a reduction factor η was intro-
duced to parameterize the Esym(ρ) around the saturation
density as [187]

Esym(ρ) = η · Ekin
sym(FFG)(ρ)

+
[

S0 − η · Ekin
sym(FFG)(ρ0)

]
(

ρ

ρ0

)γ

. (37)

ρ 0

Fig. 18. (Color online) SRC-induced reductions of nucleon
kinetic symmetry energy from several models with respect to
the value (12.3 MeV) for the free Fermi gas (FFG). Taken from
ref. [27].

Normally, without considering the SRC effects one sets
η = 1 and varies the parameter γ of the potential sym-
metry energy in transport model simulations of heavy-ion
reactions. Taking both η and γ as free parameters, their
correlation is determined by that between the Esym(ρ0)
and L. Unfortunately, within the current uncertain ranges
of Esym(ρ0), L and γ, the η can be anything between 0 and
1 [27, 187]. It is interesting to note that efforts are being
made to better constrain the value of η and investigate its
effects on the finite temperature EOS for applications in
astrophysics [188].

In short, the isospin dependence of SRC induced by
tensor force leads to different momentum distributions
for neutrons and protons in neutron-rich matter. Subse-
quently, both the kinetic and potential parts of the sym-
metry energy may be affected. While there are still large
uncertainties about the SRC physics, the Esym(ρ) carries
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Fig. 19. (Color online) Comparisons of the nuclear symme-
try energy obtained within a modified Gogny energy density
functional using the FFG, HMT-SCGF and HMT-exp param-
eter sets. Constraints on the symmetry energy from analyzing
heavy-ion collisions (HIC) [52] and the Isobaric Analog States
(IAS) [49,50] are also shown. Taken from ref. [145].

fundamental and interesting information about the isospin
dependence of strong interaction at short distance in dense
neutron-rich matter.

3.5 The role of the Fock exchange terms in relativistic
models

As mentioned earlier, besides the isospin-dependence of
nuclear forces and correlations another well-known reason
limiting our current knowledge on the Esym(ρ) is the long-
standing challenge of treating accurately nuclear many-
body problems. In this regard, perhaps one of the most
important problems is the treatment of Fock (exchange)
terms and the associated energy/momentum dependence
of nucleon self-energies. Very often, only the mean-field
(Hartree) terms are included. Consequently, the resulting
Schrödinger-equivalent potential (SEP) from these mod-
els can not properly describe the energy/momentum de-
pendence of even the isoscalar nucleon optical potentials
extracted from nucleon-nucleus scattering data. For the
isovector optical potential and the corresponding neutron-
proton effective mass splitting even at the saturation den-
sity ρ0, the situation is much worse [27]. Of course, these
problems are well recognized by the community. Indeed,
much efforts and progresses have been made in recent
years. In particular, effects of the Fock terms on the
symmetry energy have been studied in the Relativistic
Hartree-Fock (RHF) model or covariant density functional
theory [189–194]. In the following, a few main results of the
very recent work by Tsuyoshi Miyatsu et al. [194] within
their extended RHF (ERHF) approach are used to illus-
trate the main roles of the Fock exchange terms on the
Esym(ρ) and some remaining issues.

To our best knowledge, the HVH decomposition of
Esym(ρ) and L based on the Lorentz-covariant nucleon

self-energies in relativistic approaches was first given by
Cai and Chen in ref. [195]. Similar to their non-relativistic
counterparts discussed in sect. 2.2, the relativistic expres-
sions for Esym(ρ) and L from the HVH decomposition were
found useful [27,193,194]. The self-energy ΣN (k) of a nu-
cleon with (three) momentum k can be written as

ΣN (k) = Σs
N (k) − γ0Σ

0
N (k) + (γ · k̂)Σv

N (k) (38)

in terms of the scalar (s), time (0), and space (v) com-
ponents of ΣN (k). The kinetic Ekin

sym and potential Epot
sym

parts of Esym(ρ) in the RHF approximation are respec-
tively given by [194]

Ekin
sym =

1
6

k∗
F

E∗
F

kF , (39)

Epot
sym =

1
8
ρB

(
M∗

N

E∗
F

∂Σs
sym − ∂Σ0

sym +
k∗

F

E∗
F

∂Σv
sym

)

,

(40)

with kF = kFp
= kFn

, E∗
F =

√

k∗2
F + M∗2

N , and

∂Σs(0)[v]
sym ≡

(
∂

∂ρp
− ∂

∂ρn

)(

Σs(0)[v]
p − Σs(0)[v]

n

)
∣
∣
∣
∣
ρp=ρn

.

(41)
By construction, the direct part in Epot

sym is exactly the
same as in the relativistic Hartree (RH) approxima-
tion [196,197]

Epot,dir
sym =

1
2

g2
ρ

m2
ρ

ρB (42)

in terms of the ρ − N coupling constant gρ. The kinetic
part of L corresponding to eq. (39) is

Lkin =
1
6
kF

[

k∗
F

E∗
F

+
kF

E∗
F

(
M∗

N

E∗
F

)2
]

+
1
6
kF

[
kF

E∗
F

M∗
N

E∗
F

(
M∗

N

E∗
F

∂Σv
N

∂ρB
− k∗

F

E∗
F

∂Σs
N

∂ρB

)]

(43)

while the potential part of L corresponding to eq. (40) is

Lpot = 3Epot
sym

+
3
8
ρB

∂

∂ρB

(
M∗

N

E∗
F

∂Σs
sym − ∂Σ0

sym +
k∗

F

E∗
F

∂Σv
sym

)

.

(44)

Neglecting the exchange contributions, i.e., setting

k∗
F = kF , ∂Σs

N/∂ρB = ∂M∗
N/∂ρB , ∂Σv

N/∂ρB = 0,

and ∂
(

∂Σs(0)[v]
sym

)/

∂ρB = 0,
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the Lkin and Lpot will be reduced to their counterparts in
the RH approximation [194,197]

Lkin,dir =
1
3

k2
F

√

k2
F + M∗2

N

·
[

1 − k2
F

2(k2
F + M∗2

N )

(

1 +
2M∗

NkF

π2

∂M∗
N

∂ρB

)]

,

(45)

Lpot,dir =
3
2

g2
ρ

m2
ρ

ρB . (46)

One goal of the RHF or covariant energy density func-
tionals is to better describe the energy/momentum de-
pendence of single-nucleon optical potentials extracted
from analyzing nucleon-nucleus scattering data by Li et
al. [198, 199] and Hama [200] without introducing ex-
tra density dependence in the meson-nucleon coupling as
normally done in some RMF approaches [201]. However,
there are still serious difficulties to describe properly the
experimentally constrained nucleon SEP over large en-
ergy ranges. For example, Miyatsu et al. [194] used two
parameter sets by adjusting the exchange terms within
their extended RHF (ERHF) model. As shown in fig. 20,
the ERHF low (high) is made to well reproduce the
experimentally-constrained single-nucleon potential at ki-
netic energies below (above) about 300MeV. It is also
seen that neither the original RH nor RHF can describe
the high-energy parts of the experimentally-constrained
SEP. Nevertheless, comparisons of these calculations al-
lows one to investigate how the momentum dependence in
the nucleon self-energy due to the exchange contribution
affects the nuclear symmetry energy and its slope param-
eter. Shown in fig. 21 are the kinetic and potential parts
of Esym(ρ) and L in the four cases obtained by Miyatsu
et al. [194]. While quantitatively effects of the exchange
terms depend on how the model parameters are fixed, sev-
eral interesting qualitative observations were made [194].
In particular, the Fock contribution was found to suppress
the kinetic term of nuclear symmetry energy at densities
around and beyond ρ0. Moreover, not only the isovector-
vector (ρ) meson but also the isoscalar mesons (σ, ω) and
pion have significant influence on the potential symme-
try energy through the exchange diagrams. The exchange
terms were also found to prevent the slope parameter from
increasing monotonically at high densities.

Thus, the Fock exchange terms may influence signif-
icantly the density dependence of nuclear symmetry en-
ergy. However, there are still a lot of uncertainties. Besides
better describing the isoscalar SEP extracted from labo-
ratory experiments, it is also necessary to examine how
the RHF models can describe the energy/momentum de-
pendence of the isovector potential Usym,1(k, ρ), the corre-
sponding neutron-proton effective mass splitting and the
associated quartic symmetry energy Esym,4(ρ). These are
more closely related to the finite-range parts of the isovec-
tor interaction. In fact, some systematics of Usym,1(k, ρ0)
from analyzing large sets of experimental data has been
reported, see, e.g., refs. [27,198,199]. However, these data

Fig. 20. (Color online) The isoscalar singe-nucleon potential
USEP

N as a function of nucleon kinetic energy in symmetric nu-
clear matter at ρ0. The shaded band shows the result of the
nucleon-optical-model potential extracted from analyzing the
nucleon-nucleus scattering data by X.-H. Li et al. [198, 199].
The Schrödinger-equivalent potential (SEP) obtained by by
Hama et al. [200] using the Dirac phenomenology for elastic
proton-nucleus scattering data is shown with the open dia-
monds. Taken from ref. [194].

have not been used to constrain the RHF models yet.
Moreover, ongoing experiments with radioactive beams
will provide more data useful for constraining the isovec-
tor potential up to high energies. It is thus very hopeful
that effects of the Fock exchange terms on the Esym(ρ)
can be better understood.

In summary of this section, the density dependence of
nuclear symmetry energy especially at supra-saturation
densities is still very uncertain mainly because of our
poorly knowledge about the isospin dependence of strong
interactions and correlations at short distance in dense
neutron-rich matter. Among the most uncertain but very
interesting and new physics ingredients affecting strongly
the high-density behaviour of nuclear symmetry energy
are the isospin dependent tensor force and its resulting
isospin dependence of SRC, the spin-isospin dependence
of three-body forces as well as the finite-range interaction
induced momentum-dependence of the isovector single-
nucleon potential and the resulting neutron-proton effec-
tive mass splitting. Nuclear reactions induced by radioac-
tive beams and electron scatterings on heavy nuclei can
help constrain some of these ingredients.

4 Symmetry energy effects on the crust-core
transition density and pressure in neutron
stars

“The physics of neutron star crusts is vast, involving many
different research fields, from nuclear and condensed mat-
ter physics to general relativity” [206]. The extremely ac-
tive research on the very rich nuclear physics involved
in understanding properties of neutron star crusts and
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Fig. 21. (Color online) The nuclear symmetry energy (left) and its slope L (right) as functions of baryon density ρB from the
indicated four model calculations. Constraints on the Esym(ρ) from (1) analyzing the isospin diffusion data using the ImQMD
(Improved Quantum Molecular Dynamics) [202,203] for heavy-ion collisions (HIC), (2) analyzing the same isospin diffusion data
using the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU04) transport model using the MDI interaction [135,204] and
(3) the electric dipole polarizability (EDP) in 208Pb [205] are also shown. In the middle panel, the word “free” denotes Ekin

sym

when the interactions are switched off. In the lower-left window, the potential part of the Esym(ρ) used in the ImQMD within
2σ is also shown. Taken from ref. [194].

their astrophysical ramifications were summarized earlier
in several comprehensive reviews, see, e.g., refs. [206–209].
Key to many of the interesting questions is the core-
crust transition density and pressure. The latter affect
directly the thickness, fractional mass and moment of in-
ertia of the crusts and thus the interpretation of several
still puzzling astrophysical phenomena [144, 210–212]. In
this section, we focus on discussing the role of low-density
Esym(ρ) on determining the core-crust transition density
and pressure.

4.1 Some very useful lessions from earlier studies

Since the pioneering work of Baym et al. in 1971 [213,214],
essentially all available EOSs have been used to calculate
the crust-core transition density and pressure. The most
widely used approaches are based on examining whether
small density fluctuations will grow in uniform matter us-
ing the so-called dynamical method considering the sur-
face and Coulomb effects of clusters or its long-wavelength
limit (the so-called thermodynamical method), see, e.g.,
refs. [140, 141, 215–241], or the RPA [242–244]. The core-
crust transition has also been studied by comparing free
energies of clustered matter with the uniform matter
either using various mass models with the Compress-
ible Liquid Drop Mode of nuclei as the most popu-
lar one [144, 213–216, 219, 245, 246] or the 3D Hartree-

Fock [247, 248] for nuclei on the Coulomb lattice within
the Wigner-Seitz approximation.

As it has already been pointed out by Arpoen in
1972 [249] that the core-crust transition density and pres-
sure are very sensitive to the fine details of the isospin and
dense dependences of the nuclear EOS. This is because the
determination of the core-crust transition requires both
the first and second derivatives of energy with respect
to the densities of neutrons and protons, respectively. It
was first demonstrated by Arpoen that very small modi-
fications in the details of the nuclear matter energy may
lead to considerable differences in the resulting core-crust
phase boundary [249]. Similarly, it was concluded by Baym
et al. that because the nucleon chemical potentials depend
on derivatives of the EOS, therefore the rapidly varying
terms which contribute little to the EOS could conceivably
influence proton and neutron chemical potentials consid-
erably; derivatives of nucleon chemical potentials used in
determining the core-crust transition are even more sen-
sitive measures of such effects [213]. Indeed, many subse-
quent calculations have confirmed these earlier findings.
Given the diversity of predicted EOSs up to different or-
ders of the isospin asymmetry and the density expansions
of their coefficients from different theories, it is not surpris-
ing that the predicted core-crust transition density and
pressure are rather model dependent. Depending on the
approaches used, some predictions suffer from systematic
uncertainties. Nevertheless, it is very encouraging to see
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that efforts are being made to quantity the uncertainties
of the core-crust transition density and pressure [241,250].
Their correlations with the model ingredients are also be-
ing quantified, albeit only within the isospin-parabolic ap-
proximation for the EOS of neutron-rich matter. Interest-
ingly, some common features of the core-crust transition
have been firmly identified thanks to the great efforts of
many people in the community. In the following, we dis-
cuss some of these features that are closely related to the
Esym(ρ) and identify some remaining challenges.

4.2 Important nuclear physics inputs for determining
the crust-core transition density

It is useful to recall here the main physics ingredients de-
termining the core-crust transition by considering small
density fluctuations [213–216,226,227]

ρq = ρ0
q + δρq (47)

for the particle q ∈ {n, p, e}. It can be decoupled into
plane-waves

δρq = Aqe
ik·r + c.c., (48)

of wave vector k and amplitude Aq. The resulting varia-
tion of the free energy density can be written as [213,226,
227]

δf = Ã∗Cf Ã, (49)

where

Cf =

⎛

⎜
⎝

∂μn/∂ρn ∂μn/∂ρp 0

∂μp/∂ρn ∂μp/∂ρp 0

0 0 ∂μe/∂ρe

⎞

⎟
⎠

+k2

⎛

⎜
⎝

Dnn Dnp 0

Dpn Dpp 0

0 0 0

⎞

⎟
⎠ +

4πe2

k2

⎛

⎝

0 0 0
0 1 −1
0 −1 1

⎞

⎠ (50)

is the free-energy curvature matrix. The first term is the
bulk term from the uniform npe matter, the second term is
from the density-gradient part of the nuclear interactions
with strength Dnn, Dpp and Dnp, respectively, while the
last term is from the Coulomb interaction induced by the
plane-wave charge distribution. The Dnn, Dpp and Dnp

are often estimated using the Skyrme-Hartree-Fock (SHF)
model [116,117]. For small density fluctuations to remain
stable, the necessary convexity of the curvature matrix Cf

is guaranteed by a positive effective interaction between
protons [213,216,226,227]

Vdyn(k) ≈ V0 + βk2 +
4πe2

k2 + k2
TF

> 0, (51)

where

V0 =
∂μp

∂ρp
− (∂μn/∂ρp)2

∂μn/∂ρn
, (52)

β = Dpp + 2Dnpζ + Dnnζ2, (53)

ζ = − ∂μp/∂ρn

∂μn/∂ρn
(54)

and kTF = [ 4πe2

∂μe/ρe
]1/2 is the inverse screening length of

electrons. It was also shown that the condition of eq. (51)
ensures that the clustered matter has an energy higher
than the uniform npe matter [213]. Since the Vdyn(k) has
a minimal value at k = [(4πe2

β )1/2 − k2
TF ]1/2 [213], the

following condition is then used to determine the core-
crust transition density

Vdyn = V0 + 2(4πe2β)1/2 − βk2
TF = 0. (55)

The approach outlined above is the so-called dynam-
ical approach. At the long wavelength limit (k → 0) and
neglecting the Coulomb energy, the dynamical stability
condition of eq. (55) reduces to the thermodynamical sta-
bility condition of the npe matter against the growth of
small density fluctuations [140, 141, 226, 227]. This condi-
tion can be written as [207,217,218]

−
(

∂P

∂v

)

μ

> 0, −
(

∂μ

∂qc

)

v

> 0. (56)

The second inequality is usually valid. It has been shown
that the first condition is equivalent to requiring a positive
value of [207,217,218]

Vther = 2ρ
∂Eb(ρ, xp)

∂ρ
+ ρ2 ∂2Eb(ρ, xp)

∂ρ2

−
(

∂2Eb(ρ, xp)
∂ρ∂xp

ρ

)2
/

∂2Eb(ρ, xp)
∂x2

p

. (57)

The condition Vther = 0 has to be solved together with the
charge neutrality and β equilibrium condition. As found
in the earlier studies, since the above equation involves
both the first and second derivatives of energy E(ρ, δ) with
respect to density and proton fraction xp, the core-crust
transition density is very sensitive to the fine details of the
EOS. If one adopts the parabolic approximation (PA) for
the EOS, i.e., assuming E(ρ, δ) = E0(ρ) + Esym(ρ)δ2, the
condition of eq. (57) can be rewritten explicitly in terms
of the first and second derivatives of Esym(ρ) with respect
to density as

V PA
ther = ρ2 d2E0

dρ2
+ 2ρ

dE0

dρ
+ (1 − 2xp)2

·
[

ρ2 d2Esym

dρ2
+ 2ρ

dEsym

dρ
− 2E−1

sym

(

ρ
dEsym

dρ

)2
]

.

(58)

This expression is widely used in the literature. However,
as we shall discuss next it may lead to very different core-
crust transition densities and pressures compared to calcu-
lation retaining high-order terms in the isospin asymmetry
δ in expanding the E(ρ, δ). Nevertheless, it is interesting
to see by examining the terms in the bracket on the sec-
ond line that the minus sign between the last two terms
reduces effects of the slope L, leaving the first term related
to the curvature Ksym of the Esym(ρ) strongly influences
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Fig. 22. (Color online) The onset (core-crust transition) den-
sity of proton clustering in uniform nuclear matter and the
lower boundary for pasta nuclei formation as functions of the
L parameter of nuclear symmetry energy. Taken from ref. [245].

the core-crust transition. Of course, as shown on the first
line, the curvature of the SNM EOS also affects the core-
crust transition density. Fortunately, it is relatively well
determined already.

4.3 Symmetry energy effects on the core-crust
transition density and pressure based on the
compressible liquid drop model

Having outlined above the most widely used approaches
for finding the core-crust transition point, we now turn
to the main features of the results published by several
groups in the literature in recent years. We focus on un-
derstanding effects of using different approaches and ex-
panding the EOS to different powers of isospin asymmetry
and density as well as identifying the parameters most in-
fluential on the core-crust transition density and pressure.

To our best knowledge, effects of the L parameter on
the core-crust and pasta formation were first studied by
Kazuhiro Oyamatsu and Kei Iida using the Thomas-Fermi
model for nuclei on the BCC lattice within the Wigner-
Seitz approximation [211, 245]. They used the parabolic
approximation for the EOS and expanded the Esym(ρ)
only to the L term. In their studies, the upper end of
the pasta region is estimated by considering the proton
clustering instability of uniform matter, i.e., the core-crust
transition point. As shown in fig. 22, the transition density
was found to decrease with increasing L values. While
the lower end of the pasta region can be understood from
fission-like instability of spherical nuclei, they found that
the baryon density for this boundary is of order 0.06 fm−3

and is almost independent of the EOS models they used.
Similar to the work of ref. [245] but keeping more terms

in both δ and ρ in expending the EOS and considering the
isospin dependence of the surface and curvature energy
using the compressible liquid drop model, effects of all
uncertain model parameters on the core-crust and pasta-
spherical nuclei transitions were studied extensively by
Newton et al. [144] and also by Carreau et al. [250] very re-
cently. The EOS of PNM EPNM(ρ) ≈ E0(ρ)+Esym(ρ) can
be calibrated at low densities by the available predictions

from microscopic nuclear many-body theories [251–254].
In the work of Newton et al., the modified Skyrme-like
(MSL) EOS [255, 256] and the BD EOS originally devel-
oped by Bludman and Dover [257] and later modified by
Oyamatsu and Iida [258] were used. The MSL EOS con-
strained at low densities by the theoretical PNM EOS was
used as the default baseline model while the constrained
BD EOS was used for comparisons. For example, shown in
fig. 23 are the core-crust and spherical nuclei-pasta tran-
sition densities versus L for different parameterizations
of the surface energy and variations in the SNM EOS
compared to the two baseline models [144]. The surface
energy depends on the isospin asymmetry of the surface
region characterized by a parameter p. Another parame-
ter c was introduced to characterize how quickly the sur-
face symmetry energy increases with the bulk symmetry
energy Esym(ρ0). A lower c(p) corresponds to a higher
surface energy at high (low) proton fractions. As seen in
the left window, a stiff surface energy at low proton frac-
tions (p = 2) results in a notably lower core-crust transi-
tion density, highlighted by the thick, short dashed line.
It is thus very clear that the isospin-dependence of sur-
face energy of neutron-rich nuclei pays a very important
role, which unfortunately is very poorly known. The re-
cent study by Carreau et al. [250] further explored the
role of the parameter p and quantified its importance in
comparison with other model parameters. Their findings
are in good agreement with that found by Newton et al.

In the right window of fig. 23, by comparing calcu-
lations using different saturation densities of n0 = 0.14,
0.17 fm−3 and incompressibilities of K0 = 220, 260MeV, it
was found that decreasing (increasing) the incompressibil-
ity K0 and the saturation density n0 results in a decrease
(increase) in the core-crust transition density ncc. While
several details of the liquid drop model affect appreciably
the core-crust transition density and the corresponding
pressure, the negative correlation between the L parame-
ter and the core-crust transition density is a common fea-
ture shared by all models when the intrinsic correlation
between L and Ksym is used. We shall return to this point
when we examine how the core-crust transition density
depends individually on the L and Ksym without consid-
ering any correlation between them. Moreover, the week
dependence of the pasta-spherical nuclei transition on the
L parameter was found consistently in refs. [144, 245]. A
very recent study using a 3D Skyrme-Hartree-Fock ap-
proach found that a variety of nuclear pasta geometries are
present in the neutron star crust and the result strongly
depends on the symmetry energy especially in neutron-
rich systems [248].

4.4 Effects of high-order isospin and density
dependences of the EOS on the core-crust transition
density and pressure

Different results of using both the dynamical and ther-
modynamical approaches with the fully isospin-dependent
EOS and its parabolic approximation were demonstrated
systematically by Xu et al. [140,141]. For example, shown
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Fig. 23. (Color online) Crust-core and spherical nuclei-pasta transition densities versus L for different parameters of the surface
energy (left) and variations of parameters characterizing the EOS of symmetric nuclear matter (right) compared to the baseline
(MSL and BD) EOSs constrained by low-density pure neutron matter (PNM) EOS predicted by microscopic many-body theories
(thick solid lines). Taken from ref. [144].

Fig. 24. (Color online) The core-crust transition density as a
function of L (left) and Ksym (right) using both the dynam-
ical and thermodynamical approaches with the fully isospin-
dependent EOS and the parabolic approximation (PA), respec-
tively. The MDI interactions with varying x parameter (given
in sect. 3.3) and 51 Skyrme interactions are used in the upper
and lower windows, respectively. Taken from refs. [140,141].

in the left and right panels of fig. 24 are the core-crust
transition density ρt as a function of L and Ksym, using
both the MDI interaction with the varying x parameter
as discussed in sect. 3.3 and 51 Skyrme interactions, re-
spectively. Three important features can be identified: 1)
the dynamical approach predicts about 15% smaller tran-
sition density compared to the thermodynamical calcu-
lations irrespective of the interactions used. This is well
understood because due to the density gradients and the

Coulomb terms included in the dynamical approach, sys-
tem are more stable and thus lower the transition density.
2) The transition density decreases with increasing L and
Ksym consistent with other calculations. Again, as we shall
discuss in more detail that it is actually the Ksym that
determines directly the transition density. The perceived
dependence on the L is mostly due to the intrinsic corre-
lation between the L and Ksym in the EOS models used.
3) Most strikingly, there are big differences in the tran-
sition densities obtained from calculations using the fully
isospin-dependent EOS and its parabolic approximation.
This basically verifies the findings from the earlier work
of Baym et al. [213] and Arpoen [249]. It is useful to note
that the curvature matrix elements involve the following
first and second derivatives:

∂E/∂xp = −4Esym,2(ρ)(1 − 2xp)

−8Esym,4(ρ)(1 − 2xp)3

+O(1 − 2xp)5,

∂2E/∂x2
p = 8Esym,2(ρ) + 48Esym,4(ρ)(1 − 2xp)2

+O(1 − 2xp)4. (59)

The terms involving the Esym,4(ρ) are not necessarily
small at β-equilibrium in both derivatives compared to
the Esym(ρ) terms since the δ = 1 − 2xp is normally not
far from 1 and mathematically the higher-order derivative
gains a larger multiplication factor.

The core-crust transition pressure Pt(ρt, δt) can be
calculated easily once the transition density ρt and the
isospin asymmetry there δt are known. It relates directly
with the crustal fraction of the moment of inertia that
can be measurable indirectly from observations of pulsar
glitches [207]. To see transparently effects of the Esym(ρ)
on the core-crust transition pressure, it is very instructive
to recall the transition pressure estimated from using the
thermodynamical method with the PA by Lattimer and
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Fig. 25. (Color online) The transition pressure Pt as a function
of ρt (left) and L (right) within the thermodynamical method
with the fully isospin-dependent EOS and its parabolic approx-
imation (PA) using the MDI (upper) and Skyrme (lower) in-
teractions, respectively. Estimates using eq. (60) given by Lat-
timer and Prakash (LP) with the transition density from fig. 24
are also shown for comparisons. Taken from refs. [140,141].

Prakash (LP) [207]

Pt(ρt, δt) =
K0

9
ρ2

t

ρ0

(
ρt

ρ0
− 1

)

+ρtδt

[

1 − δt

2
Esym(ρt) +

(

ρ
dEsym(ρ)

dρ

)

ρt

δt

]

.

(60)

Obviously, the Pt depends on the symmetry energy not
only indirectly through the ρt and δt, but also explicitly
through the value and slope of the Esym(ρ) at ρt. The
transition pressures Pt using different interactions within
the Lattimer-Prakash (LP) approximation are compared
in fig. 25 with the full calculations of the core-crust tran-
sition pressure in the npe matter at β equilibrium. For
ease of comparisons, the same transition densities from the
thermodynamical calculations shown in fig. 24 are used.
It is seen that eq. (60) predicts qualitatively the same
trend but quantitatively slightly higher values compared
to the original (full) expressions for the pressure with or
without using the parabolic approximation (PA) for the
EOS. However, because the resulting core-crust transi-
tion densities change significantly when the PA is used,
the corresponding transition pressures also change signifi-
cantly. More specifically, the Pt essentially increases with
the increasing ρt in calculations using the fully isospin-
dependent EOS, while the use of PA may lead to a very
complex relation between the Pt and ρt. Thus, the high-
order isospin dependent terms of the EOS may influence

significantly both the density and pressure at the crust-
core transition boundary.

The main features discussed above are in general agree-
ment with those found in other recent studies, see, e.g.,
refs. [217–223,225–227,232–239,241], while quantitatively,
the predicted core-crust transition densities and pressures
are still model and interactions dependent for the rea-
sons we mentioned above. Among all the available stud-
ies in the literature, it is very instructive to mention the
rather systematic work in refs. [45, 237] using the same
sets of Gogny interactions used in calculating the sym-
metry potential and energy shown in fig. 1 and fig. 2.
Within the Gogny Hartree-Fock approach, all high-order
coefficients of expanding the energy density functional in
isospin asymmetry can be given analytically. Shown in
fig. 26 are the core-crust transition density ρt, asymme-
try δt and pressure Pt, as a function of the slope pa-
rameter L calculated using the exact expression of the
EOS (crosses), and the approximations up to second (solid
squares), fourth (solid diamonds) and sixth orders (solid
triangles) with the 11 Gogny interactions. For compari-
son, results of using the PA are shown with the empty
squares. While it is well known that most of the Gogny
interactions are too soft to support massive neutron stars
of M ≥ 2.01M� and may also predict L ≤ 30MeV in
obvious contradiction with the L systematics discussed
earlier in sect. 2.3.

The results shown in fig. 26 convey again the main mes-
sage of this section: the physics of core-crust transition is
unsettled. The numerical values of the transition density,
isospin-asymmetry and pressure depend on the fine details
of the interaction as well as the resulting isospin and den-
sity dependences of the EOS. Consequently, using these
different core-crust transition properties in astrophysical
models will lead to different predictions.

4.5 Individual roles of the slope L and curvature Ksym

of symmetry energy on the core-crust transition
density

As shown in essential all figures in the previous subsection,
it is customary to plot the core-crust transition density as
a function of L. In fact, the predicted transition densities
are often parameterized as decreasing functions of increas-
ing L, while the transition pressures are sometimes param-
eterized as functions of both L and Ksym in the literature
based on various calculations. A very comprehensive re-
view on these parameterizations was given by Providência
et al. [212]. Given the empirical correlation between L and
Ksym shown in several surveys of model predictions, plot-
ting the transition density either as a function of L or
Ksym is indeed useful for presenting the model predictions.
However, this general practice does not reveal the individ-
ual roles of the L and Ksym on equal footing. In fact, as
we shall show next, it actually overshadows the true role
played by the L and Ksym individually. The Ksym plays
a dominating role and its increase makes the transition
density ρt decrease, while the L plays a minor role and
its increases at a fixed Ksym often makes the ρt slightly



Eur. Phys. J. A (2019) 55: 117 Page 23 of 75
ρ

−3
)

δ2

δ4

δ6

δ

δ2

δ4

δ6

−3
)

δ2

δ4

δ6

Fig. 26. (Color online) Core-crust transition density ρt (up-
per window), asymmetry δt (middle window) and pressure Pt

(lower window), as a function of the slope parameter L calcu-
lated using the exact expression of the EoS (crosses), and the
approximations up to second (solid squares), fourth (solid dia-
monds) and sixth order (solid triangles) with 11 Gogny inter-
actions. The parabolic approximation is also included (empty
squares). Taken from ref. [237].

increase. Because of the empirical linear correlation be-
tween the L and Ksym widely used in the literature, when
the ρt is plotted as a function of L only (by marginaliz-
ing the Ksym), a false representation/impression that the
increasing L leads to the decreasing ρt is then made.

Correlations among coefficients in expanding the E0(ρ)
and Esym(ρ) have been found based on surveys of pre-
dictions mostly from energy density functionals, see, e.g.,
refs. [73, 119, 186, 197, 259, 260]. For example, shown in
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Fig. 27. (Color online) Correlation of Ksym and Kτ with L.
Taken from refs. [73,232].

fig. 27 are the L and Ksym correlations from typical mi-
croscopic many-body theories and phenomenological mod-
els [73,232]. More quantitatively, the results shown in the
upper window are from calculations using 240 Skyrme
forces [119] and 263 RMF forces [197] compiled by Du-
tra et al.. Excluding some of the unrealistic forces, Tews
et al. [73] found that Ksym = 3.501L − (305.67 ± 24.26)
with a correlation coefficient of r = 0.96 at 68% confidence
level. In the lower window, the results from the Brueckner-
Hartree-Fock (BHF) theory, Skyrme Hartree-Fock (SHF)
theory, Relativistic Mean-Field (RMF) theory, non-linear
Walecka model (NLWM) with constant couplings, density
dependent hadronic (DDH) model and the quark-meson
coupling (QMC) model can be fitted with a straight line
in general agreement with the results in the lower window.
The core-crust transition densities obtained using all these
modes are shown in fig. 28 as functions of L and Ksym,
respectively. Consistent with many other studies, the tran-
sition density decreases with both increasing L and Ksym.
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Fig. 28. (Color online) Core-crust transition density as a function of L (left) and Ksym (right). Taken from ref. [232].

Interestingly, a recent Bayesian analysis found that the ρt

is almost equally correlated with the L and Ksym [241].
However, these results alone do not tell whether the ap-
parent L dependence is real or if it is simply due to the
correlation between the L and Ksym. Of course, one may
also ask if the apparent Ksym dependence is real or not, or
both the L and Ksym make the transition density decrease.
These questions arise because the correlations among the
ρt, L and Ksym revealed in the surveys of multiple pre-
dictions are studied in an imaginary giant theory contain-
ing multiple models. The latter contain multiple parame-
ters that do not necessarily communicate with each other
across models. Namely, the macroscopic observables ρt, L
and Ksym depend differently on microscopic parameters
that are not necessarily present in all models considered
in the surveys. Even in the same kind of models, such as
the SHF, from one set of model parameters to another
both the L and Ksym changes. While there must be some
true physics behind the observed L-Ksym correlation, it is
not clear which one of them causes the apparent decreas-
ing ρt with increasing L and Ksym from the surveys of
multiple model predictions.

To answer the questions raised above, one has to
investigate independently the individual roles of L and
Ksym without using any correlation between them. Such
a study was carried out in ref. [261] by using simply a pa-
rameterized EOS independent of any model within the
thermodynamical approach. The parametric EOS used
in ref. [261] is the same in spirit as the so-called meta-
modelling formulation of the EoS by Margueron, Casali
and Gulminelli [262–264]. Relevant to the discussions in
this section on the crust-core transition properties, it is
very interesting to mention that they found that some
of the existing correlations among different empirical pa-
rameters of the nuclear EOS can be understood from ba-
sic physical constraints imposed on the Taylor expansions
of the SNM EOS and symmetry energy around the sat-
uration density [264]. In particular, a huge dispersion of
the correlations among low-order empirical parameters is

induced by the unknown higher-order empirical parame-
ters. For example, the correlation between Esym(ρ0) and
L depends strongly on the poorly known Ksym, while the
correlation between L and Ksym is strongly blurred by
the even more poorly known third-order parameters J0

and Jsym. Moreover, some of the perceived correlations
especially those involving the high-order parameters from
combining different models may be spurious. These find-
ings further call for cautions in using the correlations of
low-order parameters in determining the crust-core tran-
sition properties.

Using L and Ksym as two independent free parameters,
shown in fig. 29 are the ρt versus L with fixed values of
Ksym in the left window and versus Ksym with fixed val-
ues of L in the right window, respectively. The ρt changes
much more dramatically with Ksym than L in their respec-
tive uncertainty ranges. Most importantly, in most regions
on the L-Ksym parameter plane, the transition density
ρt actually increases with increasing L when the Ksym is
fixed while it decreases with increasing Ksym when the L
is fixed. Thus, one may easily get the impression that the
ρt decreases with increasing L when it is only plotted as a
function of L while both the L and Ksym are varied from
model to model.

All features shown in fig. 29 can be easily understood
qualitatively from inspecting the competitions of the three
terms in the bracket of line two in eq. (58), i.e.,

[

ρ2 d2Esym

dρ2
+ 2ρ

dEsym

dρ
− 2E−1

sym

(

ρ
dEsym

dρ

)2
]

. (61)

The three terms are proportional to Ksym, L and L2/Esym

at density ρ, respectively. The minus sign between the last
two terms significantly reduces effects of L, making the
Ksym dominate the variation of ρt which is a solution of
setting eq. (58) to zero. When the Ksym increases from
big negative to small positive values, the necessary ρt to
make the total value of the first two terms on the first line
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Fig. 29. (Color online) The core-crust transition density ρt as a function of L (left panel) with Ksym fixed at −400, −300, −200,
−100, 0, and 100MeV, and Ksym (right panel) with L fixed at 40, 50, 60, 70, and 80MeV, respectively. Taken from ref. [261].

Fig. 30. (Color online) Contours of the core-crust transition density ρt in fm−3 (left window) and the corresponding pressure
Pt in MeV fm−3 (right window) in the L-Ksym plane. Lines with fixed values of transition densities and pressures are labeled.
The red dashed lines are the results applying the Ksym-L correlation within 68% confidence from the systematics given in
ref. [73]. The white region in the right window is where the transition pressure vanishes. The Pt = 0 boundary along the line
Ksym = 3.64L − 163.96 (MeV) marks the mechanical stability boundary. The corresponding boundary of Pt = 0 is shown with
the while line in the left window. Taken from ref. [261].

of eq. (58), i.e., ρ2 d2E0
dρ2 + 2ρdE0

dρ , large enough decreases,
regardless of the L value. When the value of Ksym is fixed
at large negative values, the competition of the last two
terms in the bracket (61) with increasing L makes the
total value of the bracket even more negative, leading to
an increasing δt with increasing L. However, when the
Ksym is fixed at positive values, the ρt decreases with L.
We note that while the value of L is already relatively
well constrained as we discussed earlier, the Ksym is rather
poorly known. The discussions above clearly indicate the
critical needs to better constrain the Ksym.

Effects of Ksym and L on the transition density and
pressure are examined on equal footing in fig. 30 where
contours of constant transition densities ρt and pressures
Pt are shown. Obviously, the variation of Ksym has a
dominating effect. Depending on the Ksym and L val-
ues, both the transition density and pressure span large
ranges. The marginalized dependence on either Ksym or

L would strongly depend on the intrinsic Ksym-L cor-
relation in a given model. For instance, keeping a con-
stant L = 60MeV would lead the Pt to decrease quickly
with increasing Ksym, while keeping a constant Ksym =
−350MeV would lead the Pt to increase quickly with in-
creasing L, qualitatively consistent with the observations
in calculations using various SHF EOSs [144, 234]. Most
strikingly, if one applies the “universal” empirical Ksym-
L correlation discussed earlier, such as the red dashed
lines from applying the Ksym-L correlation within 68%
confidence interval from the systematics given by Tews
et al. in ref. [73], the ρt is found to be a constant of
about 0.08± 0.01 fm−3 essentially in the whole parameter
plane, while the transition pressure has a larger variation
around Pt = 0.40MeV fm−3. Ironically, the constant ρt

is very close to the fiducial value of 0.07 fm−3, see, e.g.,
refs. [3, 4], 0.08 fm−3, see, e.g., ref. [219], frequently used
in the literature.
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In the recent Bayesian analyses of the core-crust tran-
sition density and pressure [241, 250] also within the PA,
independent and flat priors (prior probability density dis-
tribution) for the Ksym and L were used. The importance
of both Ksym and L is clear revealed. However, their rela-
tive roles are inconclusive, depending on the model used.
Moreover, it was found that only if the surface tension
is fixed to a reasonable but somewhat arbitrary value,
strong correlations with the symmetry energy parame-
ters (L and Ksym) are recovered. More quantitatively, a
value of the surface isospin-dependence parameter p = 3
is needed to reproduce the estimated average value of
ρt = 0.072 ± 0.011 fm−3 and the transition pressure as
Pt = 0.339 ± 0.115MeV fm−3 obtained from many stud-
ies using the dynamical approach, while an even larger p
is required to reproduce the average results from many
studies using the thermodynamical approach [250].

In summary of this section, as indicated already in the
pioneering work in this field, the determination of core-
crust transition point involves many interesting isospin
physics. The core-crust transition point can be reached
from both sides and locating it may thus require different
techniques and nuclear physics inputs. The most widely
used approach is by investigating the dynamical instabil-
ities of uniform mater against the formation of clusters
taking into accounts their surface and Coulomb energy.
Because the curvature matrix of density fluctuations in-
volves both the first and second derivatives of energy with
respect to isospin asymmetry and density, the transition
density and pressure are very sensitive to the fine details
of nuclear EOS. The curvature Ksym of symmetry energy
is the most critical but poorly known physics quantity
determining the core-crust transition. The popular prac-
tice of plotting or parameterizing the transition density
as a function of L only hides the true dominating physics
agent Ksym at work. Surprisingly, if one applies the em-
pirical correlation between Ksym and L found in exten-
sive surveys of predictions by microscopic and phenomeno-
logical nuclear many-body theories to the transition den-
sity contours in the Ksym versus L plane obtained using
a parameterized EOS, the ρt is found to be a constant
of about 0.08 ± 0.01 fm−3. Another outstanding quantity
affecting significantly the core-crust transition point es-
pecially in models approaching the transition boundary
from the cluster side is the parameter p characterizing
the isospin-dependence of surface energy. Obviously, much
more work is still needed for the community to pin down
the core-crust transition density and pressure.

Once the core-crust transition density and pressure are
available, their astrophysical impacts can be examined.
Most direct impacts are related to the crustal fraction
of the moment of inertia affecting the glitch phenomena,
crust thickness affecting the radii of neutron stars, sheer
modulus, sheer viscosity and proton fraction in the crust
affecting the torsional oscillation frequencies and r-mode
damping rate. For earlier reviews of Esym(ρ) effects on
these phenomena we refer the reader to refs. [3, 4, 207],
while for the latest reviews it is very interesting to read
the discussions in ref. [210,239].

5 Symmetry energy effects on global
properties of non-rotating neutron stars

In this section, we discuss observables of neutron stars that
can be used to probe the density dependence of nuclear
symmetry energy. Radii of neutron stars have long been
considered as the most sensitive probe of nuclear symme-
try energy at least since the earlier work of Prakash et
al. in ref. [265]. More specifically, it was shown that the
radius of a neutron star is most sensitive to the symmetry
energy around 2ρ0 [266, 267]. While observational efforts
of determining precisely the radii of neutron stars using x-
ray data have been quite fruitful, no clear consensus was
reached. The neutron star merger event GW170817 has
triggered a welcomed flood of new studies extracting the
radii of neutron stars from the tidal deformability of neu-
tron stars involved in GW170817. Together with earlier re-
sults from analyzing the x-ray data, a narrow range for the
radii of canonical neutron stars has emerged recently. It is
then probably natural to ask now what we have learned
so far from all the available astrophysical data about the
Esym(ρ) especially its high density behavior. In this sec-
tion, we discuss this and several related issues.

5.1 Solving the inverse-structure problem of neutron
stars in a multi-dimensional high-density EOS
parameter space

For completeness and ease of the following discussions,
we first recall here the differential equation that has to
be solved simultaneously with the Tolman-Oppenheimer-
Volkov (TOV) equations to investigate the tidal deforma-
bility λ [268–281]. The λ is related to the tidal Love num-
ber k2 and radius R via [268,271–273]

λ =
2
3
k2R

5. (62)

The tidal Love number k2 depends on the stellar structure
and can be calculated using the following expression [269,
274]

k2 =
1
20
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, (63)

where Rs ≡ 2M is the Schwarzschild radius of the star,
and yR ≡ y(R) can be calculated by solving the following
first-order differential equation:

r
dy(r)
dr

+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (64)
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with

F (r) =
r − 4πr3(ε(r) − P (r))

r − 2M(r)
, (65)

Q(r) =
4πr(5ε(r) + 9P (r) + ε(r)+P (r)

∂P (r)/∂ε(r) −
6

4πr2 )

r − 2M(r)

−4
[
M(r) + 4πr3P (r)
r2(102M(r)/r)

]2

. (66)

As the above equations are related to M(r) and r, they
thus should be solved together with the TOV equa-
tions [282,283]

dP

dr
= −G(m(r) + 4πr3P/c2)(ε + P/c2)

r(r − 2Gm(r)/c2)
, (67)

dm(r)
dr

= 4πεr2 (68)

by adopting the following boundary conditions: y(0) = 2,
P (0) = Pc, and M(0) = 0.

The traditional way of investigating the relationships
between properties of neutron stars and the EOS is
straightforward: given a EOS, solve the TOV possibly
coupled with other equations to find the mass-radius and
possibly other observables, such as the tidal deformability
and binding energy. On the other hand, inferences from
the observational data information about the underlying
EOS parameters have also been very successful. In par-
ticular, the Bayesian statistical tools have been widely
used to infer the posterior probability density distribu-
tion functions of EOS parameters. For an earlier review
on the Bayesian inference, please see ref. [284] and for a
very recent one please see ref. [285]. Another way to infer
the EOS directly from observations is to solve the long-
standing inverse-structure problem of neutron stars: given
an observable or a set of observables, such as the radii of
several neutron stars with known masses, infer the neces-
sary EOSs from the observational data. This approach was
pioneered by Lindblom [286], for a recent review, please
see ref. [287]. Some of us have recently made significant
efforts in the latter approach [58, 261, 288]. By using an
explicitly isospin-dependent parameterization of the EOS
determined by eq. (1), eq. (12) and eq. (13) together, the
TOV and related equations can be solved within multi-
ple do-loops running through the multi-dimensional EOS
parameter space.

It is worth noting that the most popular way of param-
eterizing the high-density EOS is using pieceweise analyt-
ical functions in each of n density/pressure domains [286],
e.g., the piecewise polytropic EOSs. While they are suf-
ficient for solving the TOV equations, they have no ex-
plicit isospin-dependence and are thus unable to reveal
directly information about the nuclear symmetry energy.
Also, in many studies one assumes that neutron stars
are made of only PNM. Using parameterized PNM EOSs
one can also obtain some useful information about the
high-density symmetry energy from the polytropes ex-
tracted from analyzing astrophysical observations. How-

Fig. 31. (Color online) Examples to show how the inverse-
structure problem is solved. The green and magenta surface
correspond to Mmax = 2.01 M� and Λ1.4 = 580, respectively.

ever, as we shall discuss later, the latest analyses con-
sidering all available constraints indicate that the pro-
ton fraction in neutron stars can be as high as about
30% [58]. The isospin-dependent EOS parameterized by
eq. (1), eq. (12) and eq. (13) facilitates the inversion of
the TOV equations. Around the saturation density, the
EOS parameters naturally approach their empirical val-
ues, e.g., E0(ρ0) = −16MeV, Esym(ρ0) = 31.7MeV [7,75],
and K0 = 230MeV [71,72,289]. Below the core-crust tran-
sition density ρt, a crust EOS, such as the NV [290] and
BPS [213] EOSs may be used.

Depending on the specific purposes of solving the NS
inverse-structure problems, one can select different high-
density parameters as variables. Here we present two ex-
amples from ref. [58]. In the first example, shown in
fig. 31, by setting the L at its currently known most
probably value of L(ρ0) = 58.7MeV, the maximum
mass Mmax = 2.01M� and the dimensionless tidal de-
formability Λ1.4 = 580 were inverted as two indepen-
dent observables in the 3D high-density EOS parame-
ter space of Ksym − Jsym − J0 spanning the regions of
−800 ≤ J0 ≤ 400MeV, −400 ≤ Ksym ≤ 100MeV and
−200 ≤ Jsym ≤ 800MeV [74, 119, 197, 291, 292]. Within
these parameter ranges, the diverse high-density behav-
iors of Esym(ρ) can be sampled by the parameterization of
eq. (13) as shown in the upper panels of fig. 32. The lower
panels are the resulting isospin asymmetry profile δ(ρ)
calculated consistently for the npeμ matter at β equilib-
rium [58]. With the slope L fixed at 58.7MeV, the Ksym

and Jsym control the high-density symmetry energy. In
the left panels, Ksym = −400, −300, −200, −100, 0, and
100MeV, while in the right panels Jsym = −200, 0, 200,
400, 600, and 800MeV, with all other parameters fixed at
the values specified in the respective panels, respectively.
As the Esym(ρ) varies broadly at high-densities, the re-
sulting δ(ρ) at β equilibrium changes from values for very
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Fig. 32. (Color online) The symmetry energy Esym(ρ) and isospin asymmetry profile δ(ρ) in neutron star matter at β-equilibrium
as a function of the reduced density ρ/ρ0 for Ksym = −400, −300, −200, −100, 0, and 100MeV (left), and Jsym = −200, 0, 200,
400, 600, and 800 MeV (right), respectively, while all other parameters are fixed as the specified values. Taken from ref. [58].

neutron-poor matter obtained with very stiff Esym(ρ) to
pure neutron matter when the Esym(ρ) becomes super-
soft obtained when the Ksym and/or Jsym are very small
or negative.

We also notice that the parameterization eq. (13) for
Esym(ρ) may not approach zero as ρ → 0 when its parame-
ters are completely freely varied. This was controlled by in-
troducing additional parameters at nearly zero densities in
the meta-modeling of EOS in refs. [262,263]. While in the
approach of refs. [58,261], the additional low-density terms
are unnecessary as the core-crust transition point was cal-
culated from the uniform liquid-core side and the NV [290]
and BPS [213] EOSs are used for the crust of clustered
matter. Nevertheless, this obviously different approaches
of handling the low-density limit of nuclear EOS require
us to make a few comments about the limitation of the
EOS in eq. (1) and some issues regarding the symmetry
energy (if it can be defined properly) of clustered matter.
Firstly, eq. (1) and the associated Esym(ρ) are for uniform
isospin-asymmetric nucleonic matter. It is well known that
at low densities below the so-called Mott points, various
clusters start forming [293]. One thus has to consider cor-
relations/fluctuations and in-medium properties of clus-
ters in constructing the EOS of stellar matter for astro-
physical applications, see, e.g., refs. [201, 294–298]. Then
the EOS in eq. (1) is obviously no longer valid. More-
over, there seems to be no need to introduce a symmetry
energy of clustered matter for describing its EOS. As dis-
cussed in ref. [26], for the clustered matter, because of the
different binding energies of mirror nuclei, Coulomb in-
teractions, different locations of proton and neutron drip

lines in the atomic chart, the system no longer possesses
a proton-neutron exchange symmetry. Also, different clus-
ters have their own local internal isospin asymmetries and
average internal densities close to the saturation density
of uniform nuclear matter. In fact, in terms of the average
density ρav and the average isospin asymmetry δav of the
whole non-uniform system, the EOS of clustered matter
has been found to have odd terms in δav that are appre-
ciable compared to the δ2

av term [299–301]. Thus, in our
opinion, it is conceptually ambiguous to define a symme-
try energy for clustered matter. Nonetheless, in practice,
either the second-order derivative of energy per nucleon
ecluster(ρav, δav) in clustered matter with respect to δav,
i.e., Ecluster

sym (ρav) ≡ 1
2 [∂2ecluster/∂δ2

av]δav=0, or the quan-
tity Ecluster

sym (ρav) ≡ 1/2[ecluster(δav = 1) + ecluster(δav =
−1)− 2ecluster(δav = 0)] as if the EOS is parabolic in δav,
has been used in extracting the symmetry energy of clus-
tered matter in the literature. This quantity stays finite
at the limit of zero average density [201,297,298].

In the inversion process, the TOV equations and the
equations for the tidal deformability were solved inside
the three do-loops. Take M = 2.01M� as an example,
starting at the point Ksym = −400MeV and Jsym =
−200MeV, the do-loop in J0 = J0 + ΔJ0 checks if the
EOS with a specific value of J0 can be found to produce
the maximum mass of Mmax = 2.01M�. If the answer
is yes, then a point in the Ksym − Jsym − J0 3D space
is found. Then the do-loops in Ksym = Ksym + ΔKsym

and Jsym = Jsym + ΔJsym are performed subsequently.
After running through all possible loops and collecting
all points giving Mmax = 2.01M�, a constant surface of



Eur. Phys. J. A (2019) 55: 117 Page 29 of 75

Fig. 33. (Color online) Constant surfaces of radius R1.4 and tidal deformability Λ1.4 in the symmetry energy parameter
L − Ksym − Jsym space. Taken from ref. [288].

Mmax = 2.01M� is obtained in the Ksym − Jsym − J0 3D
parameter space, shown as the green surface in fig. 31. All
points on the constant surface corresponding to different
EOSs give the same maximum mass of Mmax = 2.01M�.
In the super-soft Esym(ρ) regions where the values of Ksym

and/or Jsym are small/negative, the required value of J0

is high to make the EOS stiff enough to support neutron
stars as massive as 2.01M�. Similarly, all points on the
magenta surface lead to different EOSs giving the same
Λ1.4 = 580. The surface is rather vertical as the value of
J0 has little effect on the radii and/or tidal deformabil-
ity. Since Λ1.4 = 580 is the maximum value of tidal de-
formability from the improved analysis by the LIGO and
Virgo Collaborations, the vertical surface of Λ1.4 = 580
sets an observational boundary from the left for the 3D
high-density EOS parameter space, while the constant sur-
face of Mmax = 2.01M� limit the parameter space from
below. Their cross line determines a correlation among
the three parameters along the south-west boundary of
the EOS parameter space.

Since the high-density SNM EOS parameter J0 has
little effect on the radii and tidal deformability, by fixing
it at a value large enough to support Mmax = 2.01M�,
one may explore constant surfaces of radius R1.4 and tidal
deformability Λ1.4 in the 3D symmetry energy parameter
space L − Ksym − Jsym as shown in fig. 33. These sur-
faces were obtained in the same way as in fig. 31 but with
a fixed J0 = −180MeV. Each point on a given surface
can generate a EOS satisfying the specified observational
constraint. As one expects, there are large degeneracies.
A given value of the observable R1.4 or Λ1.4 is not suf-
ficient to completely determine the three parameters but
can constrain their combinations to a surface. Indicated
by the largely vertical orientations of the constant sur-
faces of R1.4 or Λ1.4, the high-order Esym(ρ) parameter
Jsym plays little role in determining the radius and tidal
deformability of canonical neutron stars. Similar orienta-
tions of the constant surfaces of R1.4 and Λ1.4 in the same
region of 3D Esym(ρ) parameter space indicate that they
are strongly correlated as we shall discuss later.

Not only observables, physical requirements, such as
the causality condition, can also be inverted in the 3D EOS
parameter space. While some perturbative QCD theories
have predicted that the speed of sound (vs/vc)2 ≤ 1/3
at extremely high densities [302–307], the causality condi-
tion (vs/vc)2 ≤ 1 is widely used in constraining the EOS
of neutron star matter, see, e.g., ref. [308] as one of the
latest examples. As we shall discuss later, the inversion
technique also helps determine the absolutely maximum
mass of neutron stars by examining the maximum mass
obtained on the causality surface.

5.2 Predicted effects of nuclear symmetry energy on
properties of neutron stars in the dawn of gravitational
wave astronomy

It is useful to first review a few relevant earlier work on this
topic. In particular, using the traditional approach, i.e.,
given an EOS, one solves the TOV equations to predict
a sequence of mass-radius relation and tidal deformabil-
ity that can be compared to observations. While almost
every available interaction/EOS has been used in such a
way, some predictions using EOSs constrained by terres-
trial data are particularly useful. Moreover, by studying
correlations of the mass-radius relations with the EOS pa-
rameters used, some interesting predictions were made.

5.2.1 Predicted radii of canonical neutron stars using
Esym(ρ) constrained by isospin diffusion experiments in
terrestrial nuclear laboratories

Essentially all available EOSs have been used in one way
or another to predict the mass-radius correlation of neu-
tron stars. Most of the earlier studies have focused on
exploring effects of varying the saturation properties of
SNM EOS, new degrees/particles or phase transitions at
high densities. Effects of varying the Esym(ρ) have also
been studied extensively. As an example from 2006 [138],
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Fig. 34. (Color online) The mass-radius curves using the MDI
interactions with x = 0,−1, and −2 and the APR EOS. Anal-
yses of isospin diffusion in heavy-ion reactions and the size
of neutron skin in 208Pb available up to 2006 limits the x-
parameter to between x = 0 and x = −1. The inferred radius of
a 1.4 solar mass neutron star is between 11.5 and 13.6 km (the
corresponding radiation radius R∞ between 14.4 and 16.3 km).
Taken from ref. [138].

shown in fig. 34 are the mass vs. radius curves using the
MDI EOSs with x = 0,−1 and x = −2 having the same
compressibility (K0 = 211MeV) but different Esym(ρ)
shown in fig. 10. The APR EOS has a compressibility of
K0 = 269MeV but almost the same symmetry energy as
with x = 0 is also shown for comparisons. As shown in
fig. 21 and the associated discussions earlier, the isospin
diffusion data from NSCL/MSU together with the fiducial
value of Rskin ≡ Δrnp = 0.2 ± 0.04 fm for the neutron-
skin in 208Pb limit the x value to between x = 0 and
x = −1. This then restricts the radius for a 1.4M� neu-
tron star (and the corresponding radiation radius R∞) to
the range of 11.5 km and 13.6 km (or R∞ between 14.4 km
and 16.3 km).

The results shown in fig. 34 clearly indicate that the
observed maximum mass of neutron star constrain mostly
the SNM EOS while the radii of neutron star constrain
mostly the density dependence of nuclear symmetry en-
ergy. This finding was explained in ref. [309] by studying
the relative contributions from the SNM EOS and sym-
metry energy to the total pressure in neutron stars at β
equilibrium. The latter in npe matter before muons appear
in NSs can be written as

P (ρ, δ)=ρ2

[
dE0(ρ)

dρ
+

dEsym(ρ)
dρ

δ2

]

+
1
2
δ(1−δ)ρEsym(ρ)

(69)
where the density profile of isospin asymmetry δ(ρ) at β
equilibrium is uniquely determined by the density depen-
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Fig. 35. (Color online) The pressure p0 of symmetric nuclear
matter and symmetry energy contribution pasy to the total
pressure in neutron stars at β equilibrium using the MDI in-
teraction with the x-parameter x = 0 (black) and x = −1
(red), respectively. Taken from ref. [309].

dence of symmetry energy Esym(ρ) as we have discussed
earlier. The pressure P0 of SNM from the first term in
eq. (69) and the isospin-asymmetric pressure Pasy from
the last two terms as well as their sum P are shown
in fig. 35 for the MDI interaction with the x-parameter
x = 0 (black) and x = −1 (red), respectively. It is seen
that in the density region around ρ0 ∼ 2.5ρ0, the isospin-
dependent pressure Pasy dominates over the P0 from SNM
EOS, while the exact transition of dominance from Pasy to
P0 depends on the stiffnesses of both the SNM EOS and
the symmetry energy. The radii of neutron stars are known
to be determined by the pressure at densities around
ρ0 ∼ 2ρ0 [3, 4]. They are thus sensitive to the density
dependence of nuclear symmetry energy in this density
region. At higher densities, while the Pasy may still con-
tribute significantly, the total pressure is dominated by the
P0 from SNM EOS. The latter at densities reached in the
core determine the maximum mass of neutron stars that
can be supported. Thus, the observed maximum mass of
neutron stars constrain mostly the stiffness of SNM EOS.
Nevertheless, because the symmetry energy not only af-
fects directly the pressure but also the composition profile
δ(ρ) of neutron star matter, as we shall discuss in more
detail, the observed maximum mass of neutron stars can
also help constrain the high-density behavior of nuclear
symmetry energy.

The predicted “nuclear” limit on the radii in in fig. 34
is consistent with most of the results extracted from ana-
lyzing both X-ray and gravitational wave data since 2006.
The X-ray bursts from accreting neutron stars in low-mass
X-ray binary (LMXB) systems provide potential possibili-
ties to constrain the mass and radius simultaneously [310–
315]. Two methods have been used to infer the mass
and radius from X-ray bursts of LMXB: the touchdown
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Fig. 36. (Color online) The radii of canonical neutron stars
RNS extracted from analyses of LMXB [310, 316, 325–331] in
comparison with a prediction based on the MDI EOS con-
strained by terrestrial nuclear laboratory data [138].

method [316–319] and cooling tail method [320–323]. In
analyzing the observed spectral fluxes, there are several
well-known challenges. Consequently, there are still large
uncertainties associated with modeling the neutron star
atmosphere especially its composition, determining the
distance, the column density of X-ray absorbing materi-
als, and the surface gravitational redshift. They all con-
tribute to the uncertainties in determining the radii of neu-
tron stars. Nevertheless, as summarized in ref. [324] and
fig. 36, several constraints on the radii of neutron stars
have been put forward in recent years: 10.4 ≤ R1.4 ≤
12.9 km [326], 10.62 ≤ R1.4 ≤ 12.83 km [310], 10.1 ≤
R1.5 ≤ 11.1 km [316], 9.0 ≤ RNS ≤ 12.2 km [325,327,328],
9.9 ≤ R1.5 ≤ 11.2 km [329], 10.6 ≤ R1.4 ≤ 14.2 km [330],
10 ≤ R1.4 ≤ 14.4 km [331], and the radius of 4U 1702-429
R = 12.4 ± 0.4 km [315]. For comparisons, the prediction
of 11.5 ≤ R1.4 ≤ 13.6 km [138] using the EOS constrained
by the nuclear laboratory data is also shown in fig. 36. It
is seen that the predicted radius is larger than the results
of some early X-ray bursts analyses but consistent with
the two latest analyses. As we will see in the next sub-
section, the prediction is in very good agreement with the
majority of post-GW170817 analyses.

5.2.2 Predicted correlation strength between the radii of
neutron stars and the symmetry energy from low to high
densities

It is well known that the mass-radius relation may be af-
fected by several components of the EOS. A typical plot,
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Fig. 37. (Color online) Color-coded plot of 55 independent
correlation coefficients among 11 physical variables relevant to
the structure of neutron stars within the RMF model with the
FSUGold interaction. Taken from ref. [333].

such as the one in fig. 34, of mass versus radius with dif-
ferent EOSs does not tell accurately which part/property
of the EOS is at work. Interestingly, covariant analyses
with multi-parameters and multi-observables have been
advanced to identify the most important model parame-
ters and quantify the uncertainties of observables as well
as their correlations [332]. Whiile these analyses are not
completely model independent, they are very informative.
For example, shown in fig. 37 are color-coded 55 corre-
lation coefficients for 11 variables from a study by Fat-
toyev and Piekarewicz [333] using their RMF model with
the FSUGold interaction [334]. Among the 11 variables,
the following 7 characterizing the EOS are directly related
to their model parameters: the binding energy ε0, incom-
pressibility K0, nucleon Dirac effective mass M�

0 in SNM,
the magnitude J and slope L of symmetry energy at sat-
uration density ρ0 and the symmetry energy J̃ evaluated
at ρ ≈ 0.1 fm−3, while the following 4 are predicted ob-
servables: the neutron-skin Rskin in 208Pb, the maximum
neutron-star mass Mmax, radii R1.0 and R1.4 of neutron
stars with masses of 1.0M� and 1.4M�, respectively. In-
terestingly, the radii of neutron stars show the well-known
and strong correlation with the Rskin [242].

Among the 3 variables characterizing the Esym(ρ) be-
low and around the saturation density, the slope L has the
strongest correlation with both R1.0 and R1.4. While the
magnitude J of Esym(ρ) at ρ0 also has strong correlation
with R1.0 and R1.4, the low density symmetry energy J̃
at ρ ≈ 0.1 fm−3 has little influence on the radii. It is also
seen that the maximum mass Mmax has a very weak cor-
relation with the parameters characterizing the symmetry
energy near and below the saturation density. While these
findings are very useful, up to which points these corre-
lations are model independent remains an open question.
Generally speaking, the quantitative values of the corre-
lation matrix elements shown are likely model dependent,
while the general trends are likely model independent. As
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Fig. 38. (Color online) (Left) The EOS in SNM (a) and the symmetry energy (b) as functions of the reduced density ρ/ρ0

for SLy4 and NRAPR Skyrme energy density functionals. The APR EOS and Esym(ρ) are also shown as references. (Right)
Pearson’s correlation coefficients between L(ρ) and the radii of neutron stars with masses of 1.0-, 1.4-, and 1.8-solar mass as a
function of density calculated using the two EOSs shown in the left 2 windows. Taken from ref. [335].

shown in ref. [264], both the values and correlations of the
low-order parameters in expanding the EOS in Taylor se-
ries depend strongly on the very poorly known high-order
parameters. Since the later are largely unconstrained ex-
perimentally and are known to be model dependent, the
correlations among neutron star observables and the low-
order EOS parameters are therefore expected to be model
dependent quantitatively.

It is known qualitatively that the radii of neutron stars
are sensitive to the behavior of Esym(ρ) from around ρ0

to 2ρ0 [3, 4]. While very informative, the correlation co-
efficients shown in fig. 37 do not tell at what densities
the Esym(ρ) for neutron stars of different masses is most
important for determining their radii. Thus, extending
the study of ref. [333], Fattoyev et al. have later stud-
ied the Pearson’s correlation coefficient between the neu-
tron star radii and the slope L(ρ) of Esym(ρ) as a func-
tion of density ρ using the SLy4 and NRAPR Skyrme
energy density functionals [335]. As shown in the left 2
windows of fig. 38, the two interactions with the default
values of their parameters lead to almost identical EOS
for SNM and symmetry energy Esym(ρ) for densities up
to about 1.5ρ0. However, they have quite different behav-
iors at higher densities reachable in the cores of neutron
stars. The Pearson’s correlation coefficients between the
neutron star radii and the L(ρ) as a function of density
were calculated by allowing the isovector effective mass
m∗

v(ρ0) and the symmetry-gradient coefficient Gv to have
a 20% theoretical error-bars while fixing all isoscalar pa-
rameters at their default values [335]. In the case of SLy4,
it is seen that the radius of a 1.0M� neutron star has
a strong correlation with the L(ρ0). For heavier neutron
stars, the strongest correlation shifts to the L(ρ) at higher
densities, e.g. at 1.5ρ0 for a 1.4M� neutron star, and at
2.5ρ0 for a 1.8M� neutron star. Moreover, the correla-
tion coefficient remains almost flat for higher densities in

a 1.8M� neutron star [335]. Comparing the results from
using the SLy4 and NRAPR interactions, it is seen that
the different high density behaviors of Esym(ρ) affect the
correlation coefficient for more massive neutron stars. In
the case of NRAPR, the radius-L(ρ) correlation depends
weakly on the mass. There is no strongly pronounced peak
in the correlation coefficient. Instead, the Esym(ρ) in a
broad range above about 1.5ρ0 has approximately equally
important influence on the radii of all neutron stars [335].
It is also interesting to mention that the L(ρ) can be de-
composed into several components related to the funda-
mental properties of nuclear interaction according to the
HVH theorem as we discussed in sect. 2.2. Indeed, it was
found that the strongest contributions to the radius-L(ρ)
correlation come from the magnitude and momentum de-
pendence of the symmetry potential due to the finite-range
of isovector interactions [335].

In short, it is well known that the radii of neutron stars
are strongly correlated with the density dependence of nu-
clear symmetry energy. Covariance analyses have quanti-
fied the strength and identified relevant density range of
this correlation. Almost all EOSs of neutron-rich matter
available in the literature have been used to predict the
mass-radius correlations. Interestingly, some earlier pre-
dictions for the radius of canonical neutron stars using
constraints on the Esym(ρ) provided by terrestrial nuclear
laboratory data have found strong supports in analyses of
both X-ray and gravitational wave data as we shall discuss
in detail next.

5.2.3 Predicted effects of the symmetry energy on the tidal
deformability of neutron stars

Once the EOS is given, the tidal deformability can be cal-
culated. In turn, accurately measured tidal deformability
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Fig. 39. (Color online) Left: The EOS of SNM and PNM as well as the symmetry energy as a function of density obtained within
the IU-FSU RMF model and the SHF approach using the SkIU-FSU parameter set. Right: Tidal deformability λ of a single
neutron star as a function of mass with the EOSs and symmetry energy shown in the left window. The shaded light-grey area
and dark-grey area show a crude estimate of uncertainties in measuring λ for equal mass binaries at a distance of D = 100 Mpc
for the Advanced LIGO and the Einstein Telescope, respectively. Taken from ref. [280].

can constrain the EOS and related symmetry energy. For
example, Fattoyev et al. [280] studied in 2013 effects of dif-
ferent parts of Esym(ρ) on the tidal deformability. They
constructed two EOSs using the IU-FSU RMF model and
SkIU-FSU SHF model. As shown in the left window of
fig. 39, the two models have the same EOS for SNM and
PNM around and below ρ0, thus the same Esym(ρ) at
and below ρ0. However, they have very different behav-
iors above about 1.5ρ0 with the IU-FSU leading to a much
stiffer Esym(ρ) at high densities. More quantitatively, the
Esym(ρ) of IU-FSU is 40–60% higher in the density range
of ρ/ρ0 = 3–4. The right window shows the resulting tidal
deformability λ of a single neutron star as a function of
mass. The shaded light-grey area and dark-grey area show
a crude estimate of uncertainties in measuring λ for equal
mass binaries at a distance of D = 100Mpc for the Ad-
vanced LIGO and the Einstein Telescope, respectively. It
is interesting to see that the λ of canonical and more mas-
sive neutron stars is quite sensitive to the high-density
behavior of the symmetry energy. However, only the λ of
light neutron stars is sensitive to the variation of the L
parameter.

As we shall discuss next, after the GW170817 event,
much efforts have been devoted to constraining the EOS
or related model parameters by comparing various calcu-
lations first with the upper limit from the original anal-
ysis than later the range of tidal deformability from the
improved analyses reported by LIGO and Virgo Collabo-
rations. A number of these studies have examined effects
of symmetry energy. Some of them have extracted con-
straints on the parameter L. We emphasize here that the
L only describes the Esym(ρ) around saturation density.
While the L is often used to label the density dependence
of nuclear symmetry energy, the results shown in fig. 39
indicates that there is likely a large degeneracy between
the L and the tidal deformability of canonical neutron

stars. Indeed, as shown in fig. 33, many combinations of
L, Ksym and Jsym can give the same tidal deformability.
Thus, conclusions about L drawn from comparing calcu-
lated and observed tidal deformability are all conditional
depending on especially the Ksym used and thus should
be taken cautiously.

5.3 Post-GW170817 analyses of tidal deformability
and radii of neutron stars as well as constraints on the
nuclear EOS and symmetry energy

The GW170817 event [337, 338] opened the era of gravi-
tational wave astronomy. Stimulated by the observational
data of GW170817, many interesting studies have been
carried out to extract the radii of neutron stars and con-
straints on the EOS. Here we focus on a few aspects most
relevant to constraining the density dependence of nuclear
symmetry energy. For ease of the following discussions, we
recall here the notations used in the literature for the tidal
deformability. The dimensionless tidal deformability Λ is
related to the compactness parameter β ≡ R/M and the
Love number k2 through

Λ =
2
3

k2

β5
, (70)

and the mass-weighted (dimensionless) tidal deformability
in an inspiraling binary system is given by

Λ̃ =
16
13

(M1 + 12M2)M4
1 Λ1 + (M2 + 12M1)M4

2 Λ2

(M1 + M2)5
,

(71)
where Λ1 = Λ1(M1) and Λ2 = Λ2(M2) are the tidal de-
formabilities of the individual binary components.
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Fig. 40. (Color online) Constraints on the relationship be-
tween R1.4 and Λ1.4. The line labeled by Zhao and Lattimer
(2018) is the suggested relationship between R1.4 and Λ̃ [336].
The refined limits 70 ≤ Λ ≤ 580 from LIGO and Virgo Col-
laborations in ref. [337] are shown as dashed horizontal lines.

5.3.1 GW170817 implications on the radii of neutron stars

Special efforts and attention have been devoted to extract-
ing the radius R1.4 from the reported range of tidal de-
formability of canonical neutron stars based on the anal-
yses of GW170817 event [337, 339–352]. According to the
definition of tidal deformability, i.e., eq. (62) or eq. (70),
an underlying relationship exists between Λ and R when
the mass is fixed. However, the exact relationship is EOS
dependent. This is because the k2 also depends on the
radius. The constraints on the relationship between R1.4

and Λ1.4 from many studies in the literature are summa-
rized in fig. 40. The refined constraints 70 ≤ Λ ≤ 580 from
ref. [337] are shown as dashed horizontal lines. We notice
here that a very recent study in ref. [353] reevaluated the
lower boundary of the tidal deformability Λ̃ by using in-
formation from the kilonova, AT 2017gfo, and found that
Λ̃ ≤ 242 if the mass ejection from the remnant is 0.05M�.
Indeed, several other studies have also emphasized the im-
portance of better determining the lower boundary of the
tidal deformability.

Overall, the reported R1.4 versus Λ1.4 relations spread
within a narrow band. The upper (ΛUL

1.4) and lower (ΛLL
1.4)

boundaries of this band can be well approximated by

ΛUL
1.4 = 1.06 × 10−6 · R7.85

1.4 + 71.62 (72)

ΛLL
1.4 = 1.24 × 10−5 · R6.87

1.4 − 20.49. (73)

More quantitatively about the typical analyses, using a
large number of EOSs from RMF and SHF theories, stud-
ies in refs. [339, 340, 342–344, 352, 354] obtained the fol-
lowing relationship: Λ1.4 = 1.53 × 10−5R7.5

6.83, Λ1.4 =
5.87 × 10−6R7.19

1.4 , Λ1.4 = 7.76 × 10−4R5.28
1.4 , Λ1.4 = 9.11 ×

10−5R6.13
1.4 , Λ1.4 = 1.41 × 10−6R7.71

1.4 , Λ1.4 = 2.65 ×
10−5R6.58

1.4 , and Λ1.4 = 7.29 × 10−5R6.21
1.4 , respectively.

Similarly, studies in ref. [346] suggested the relation-
ship Λ1.4 = 2.88 × 10−6R7.5

1.4 based on the parameterized

Fig. 41. (Color online) Constraints on the radii of neutron
stars RNS based on studies of the GW170817 event [337, 339–
352]. The RNS represent the radii of neutron stars with 1.4 M�
(R1.4), 1.6 M� (R1.6), and maximum mass (Rmax) from differ-
ent studies. The “PH”, “MM”, and “CSM” on the left sides
are used to distinguish the results in the same paper and de-
note phase transition (PH), minimal model (MM), and speed
of sound model (CSM), respectively. See text for details.

EOSs that interpolate between theoretical results at low
and high baryon densities. In addition, the relationship
R1.4 = (13.4 ± 0.1)(Λ̃/800)1/6 was suggested in ref. [336].
However, a linear relationship between R1.4 and Λ1.4 ap-
pears when the parameters of Esym(ρ) are restricted to
their current uncertainty ranges in ref. [288]. Moreover, as
shown in fig. 6 of ref. [339], the R1.4 ∼ Λ1.4 relationship
also differs for EOSs with or without the hadron-quark
phase transition.

Comparisons of the upper limit or range of Λ1.4 from
GW170817 with the calculated relationships between R1.4

and Λ1.4 have allowed the extraction of neutron star radii.
Summarized in fig. 41 are the radii of neutron stars with
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Fig. 42. (Color online) Observational constraints of mass, ra-
dius, and causality in the Ksym − Jsym − J0 3D parameter
space. The green, magenta, yellow, and blue surfaces represent
Mmax = 2.01 M�, R1.4 = 12.83 km, R1.4 = 10.62 km, and the
causality surface, respectively. The arrows show the directions
satisfying corresponding observations. The physical constraint
that transition pressure Pt is larger than 0MeV fm−3 is de-
manded. Taken from ref. [58].

1.4M� (R1.4), 1.6M� (R1.6), and the maximum mass
(Rmax) based on different studies of the GW170817 event.
The “PH”, “MM”, and “CSM” on the left sides are used
to distinguish results in the same paper. They denote the
model with phase transition (PH), minimal model (MM),
and the speed of sound model (CSM), respectively. To in-
fer the radius from observations of GW170817, both the
crust and core EOSs may be crucial. However, as con-
cluded in refs. [355, 356], the mass or tidal deformability
are almost independent of the crust EOS, although the
y(r) and k2 strongly depend on it. Thus, the core EOS
dominates the determination of tidal deformability.

Based on the constraints on the dimensionless tidal
deformability Λ or the mass-weighted dimensionless tidal
deformability Λ̃ from the LIGO and Virgo Collabora-
tions [337,338], studies in refs. [339–344,352] deduced that
R1.4 ≤ 12.9 km, 10.12 ≤ R1.4 ≤ 12.11 km, R1.4 ≤ 13 km,
R1.4 ≤ 13.76, 11.82 ≤ R1.4 ≤ 13.72 km, 11.8 ≤ R1.4 ≤
13.1 km, and R1.4 ≤ 12.94 km, using EOSs from relativis-
tic mean field (RMF), Skyrme Hartree-Fock (SHF), or mi-
croscopic theories, respectively. By producing millions of
parameterized EOSs, studies in ref. [345] constrained the
R1.4 to 12.00 ≤ R1.4 ≤ 13.45 (8.53 ≤ R1.4 ≤ 13.74) km
for neutron stars without (with) phase transition (the
most likely value is R1.4 = 12.39 (13.06) km) using 400 ≤
Λ̃1.4 ≤ 800 and 2.01 ≤ Mmax ≤ 2.16M�. While studies in
ref. [346] obtained 9.9 ≤ R1.4 ≤ 13.3 km using Λ1.4 ≤ 800
and Mmax ≥ 2.01M�. Using Bayesian statistical analy-
sis, studies in refs. [347,348] inferred that 10.36 ≤ R1.4 ≤
12.87 km (the most likely value is R1.4 = 11.89 km) and

11.2 ≤ R1.4 ≤ 13.4 km. In turn, studies in ref. [349] con-
cluded that the Λ̃ of the two neutron stars in GW170817
are 80 ≤ Λ̃ ≤ 580 and 280 ≤ Λ̃ ≤ 480, while the R1.4

are 9.0 ≤ R1.4 ≤ 13.6 km and 11.3 ≤ R1.4 ≤ 13.6 km
using the speed of sound (CSM) and minimal models
(MM), respectively. Moreover, besides the constraints on
R1.4, studies in ref. [350] suggested that the common
areal radius of neutron stars satisfy 8.9 ≤ R̂ ≤ 13.2 km
with a mean value of 〈R̂〉 = 10.8 km. Assuming the rem-
nant was stable for at least 10ms to yield the observed
ejecta properties, studies in ref. [351] found that the R1.6

are larger than 10.68 km and the Rmax are larger than
9.60 km. While LIGO and Virgo Collaborations suggested
that 10.5 ≤ R1,2 ≤ 13.3 km for the two companions before
their merger [337]. Besides the above constraints summa-
rized in fig. 41, some other studies also suggested con-
straints with limited EOSs, see, e.g., ref. [357].

Given the diverse approaches used in analyzing albeit
the same data from GW170817, the extracted radii shown
in fig. 41 are remarkably consistent. Applying the demo-
cratic principle that is probably not so sound scientifically,
a fiducial value of R1.4 = 12.42 km with the lower and up-
per limits of 10.95 km and 13.21 km, respectively, can be
extracted from the radii shown in fig. 41. Interestingly,
these values are consistent with those from analyzing the
X-ray data shown in fig. 36. Ironically, these results from
analyzing astrophysical observations are in good agree-
ment with the prediction of 11.5 km ≤ R1.4 ≤ 13.6 km
using the EOS constrained by terrestrial nuclear labora-
tory data [138].

5.3.2 GW170817 implications on the EOS of neutron star
matter

The inversion technique demonstrated earlier in sect. 5.1
can be used simultaneously to multiple observables to
infer the underlying EOS. So far, the following observ-
ables and physical requirements have been used: 1) the
observed maximum mass around 2.0M� for the two pul-
sars J1614-2230 [358] and J0348+0432 [359]; 2) the ra-
dius inferred from the X-ray bursts of LMXB: 10.62 ≤
R1.4 ≤ 12.83 km [310]; 3) the tidal deformability 70 ≤
Λ1.4 ≤ 580 [337] extracted by the LIGO and Virgo Col-
laborations. Except the constant surfaces of Λ1.4 = 70
and Λ1.4 = 580, the upper and lower limits of the above
observables together with the causality surface are shown
in fig. 42 in the Ksym − Jsym − J0 3D parameter space.
All other parameters (around the saturation densities) are
taken as their currently known most probable values, e.g.,
L = 58.7MeV. The constant surfaces of tidal deformabil-
ity of GW170817 are left out to make an unbiased com-
parison of the EOS extracted from inverting the observ-
ables and requirements specified in the figure with the
EOS independently extracted earlier by the LIGO and
Virgo Collaborations. The surfaces of Mmax = 2.01M�
and causality constrain the J0 from the bottom and top
sides, respectively. The lower and upper limits of Ksym

are obtained by the intersecting line between the surfaces
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Fig. 43. (Color online) Left: comparing the constrained EOSs with result of ref. [346] (orange line) and result of LIGO and
Virgo Collaborations [337] (red line) using parameterized EOSs interpolating between state-of-the-art theoretical results at
different baryon densities and the analysis of GW170817 event, respectively. Right: application of the extracted EOSs on several
EOS models predicting maximum masses higher than 2.01 M�. The corresponding maximum masses are labeled after the model
names. The black symbols indicate the maximum pressure and energy density reached at the maximum mass for each model.
Modified from two figures in ref. [58].

of Mmax = 2.01M� and R1.4 = 12.83 km, as well as the
surfaces of Mmax = 2.01M� and causality surface, respec-
tively. The Jsym can not be narrowed down further than its
current uncertainty range by the observables considered.
The upper and lower boundaries of the pressure allowed
by these observables and physical requirement were ex-
tracted in ref. [58]. As shown in fig. 43, this pressure as
a function of baryon density (green band) is in very good
agreement with the one (red lines in the inset) from ana-
lyzing the tidal deformability of GW170817 [337]. More-
over, the study in ref. [346] constrained the energy density
as a function of pressure based on the finding Λ ≤ 800
first reported by LIGO and VIRGO Collaborations and
Mmax ≥ 2.01M�. Their result (orange lines) is compared
with the one from the inversion approach in the main
frame of fig. 43. It is seen that their constraints on the
pressure are consistent but spread to a larger uncertainty
region at high densities.

To check the impact of the constrained EOS from
the inversion of astrophysical observables and physical re-
quirements discussed above, several EOS models for neu-
tron star matter that all predict maximum masses higher
than 2.01M� are shown in the right panel of fig. 43.
They are the ALF2 for hybrid stars [360], APR3 and
APR4 [361], ENG [362], MPA1 [363], SLy [364], WWF1
and WWF2 [107], QMFL40, QMFL60 and QMFL80 [365].
The corresponding maximum masses are labeled after the
model names and shown as black symbols. It is seen that
several EOSs go out of the constrained pressure band be-
fore reaching the maximum mass and thus can be ex-
cluded.

5.3.3 GW170817 implications on the high-density symmetry
energy and proton fraction in neutron stars at β equilibrium

Besides the constraints on the EOS discussed above, con-
straints on the symmetry energy can be extracted from

fig. 42 in the same way. Shown in the left window of fig. 44
are the limiting Ksym and Jsym parameters on the con-
straining boundaries shown in fig. 42. While the Ksym is
limited from left and right by the astrophysical observa-
tions, the Jsym is still not limited, leading to still large
uncertainties at densities above about 2.5ρ0. The corre-
sponding Esym(ρ) are shown in fig. 44. The conditions
used to infer the boundaries are labeled correspondingly.
For comparisons, the Prakash, Ainsworth and Lattimer
(PAL) parameterizations for Esym(ρ) [265]

Estiff
sym(ρ) = 12.7(ρ/ρ0)2/3 + 38(ρ/ρ0)2/(1 + ρ/ρ0),

Esoft
sym(ρ) = 12.7(ρ/ρ0)2/3 + 19(ρ/ρ0)1/2 (74)

are also shown with the black and magenta dashed lines.
As we can see, the PAL stiff symmetry energy is out of
the constrained band while the soft one is in it. Thus, the
soft symmetry energy is favored.

Though large uncertainties still exist at high densities,
the Esym(ρ) at densities below 2.5ρ0 is well constrained.
More quantitatively, the value of Esym(ρ) at 2ρ0 is found
to be Esym(2ρ0) = 46.9 ± 10.1MeV with an uncertainty
of ∼ 21%. This uncertainty is about twice the uncertainty
of symmetry energy at ρ0 Esym(ρ0) = 31.7 ± 3.2MeV.
Compared to the constrained band of EOS in fig. 43,
the band of symmetry energy is much more uncertain.
For a comparison, we note that in ref. [366], a value of
Esym(2ρ0) = 40.2 ± 12.8MeV was suggested by extrapo-
lating the systematics at low densities found earlier from
studying terrestrial nuclear laboratory data and predic-
tions of nuclear energy density functionals. Interestingly,
the two constraints on Esym(2ρ0) from analyzing the as-
trophysical observations and terrestrial laboratory data
are in good agreement within their associated uncertain-
ties. It is also interesting to note that a very recent study
about the correlations among the neutron star tidal de-
formability, the neutron star radius, the root-mean-square
radii of neutron drops, and the symmetry energies of
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Fig. 44. (Color online) Left: boundaries in the Jsym versus Ksym plane extracted from the crosslines of the constant surfaces
of physical observables and conditions in fig. 42. Right: the constrained symmetry energy as a function of baryon density in
comparison with the Prakash, Ainsworth and Lattimer parameterizations. The conditions used to infer the boundaries are
labeled correspondingly. Taken from ref. [58].

Fig. 45. (Color online) Constrained protons fraction xp =
ρp/ρ as a function of baryon density in neutron stars at β
equilibrium based on the parameterized EOS. The upper and
lower boundaries correspond to those of the symmetry energy
shown in fig. 44. The horizontal shaded area corresponds to the
critical fraction (11.1% and 14.8% [367]) for the direct URCA
process to happen in the npeμ matter. Taken from ref. [58].

nuclear matter at supra-saturation densities within en-
ergy density functionals has extracted an upper limit of
Esym(2ρ0) ≤ 53.2MeV [352], consistent with the findings
discussed above.

While the constraints on the Esym(ρ) are not tight at
densities above about 2.5ρ0, some useful lessons can be
learned from the studies discussed here: 1) since the NS
radii are known to be most sensitive to the Esym(ρ) around
2ρ0, it is not surprising that the observables related to the
radii and physical conditions studied in fig. 42 are not so
restrictive on the Esym(ρ) at densities above about 2.5ρ0.
While more precise measurements of NS radii and the tidal
deformability in the inspiraling phase of NS mergers may
help further narrow down the Esym(ρ) around 2ρ0, new ob-
servables, such as neutrinos from the core of neutron stars,

signals from the merging phase of two colliding neutron
stars in space or two heavy-nuclei in terrestrial laborato-
ries are needed to probe the Esym(ρ) at higher densities;
2) both the upper and lower boundaries of the Esym(ρ)
depend on the location of the constant surface of the max-
imum mass Mmax = 2.01M� in the 3D EOS parameter
space, its more precise value will strongly influence the
accuracy of determining the Esym(ρ) above 2.5ρ0.

The constrained symmetry energy leads directly to
some useful information about the composition of neutron
stars at β equilibrium. For example, the proton fraction
xp = ρp/ρ at β equilibrium at a given density is uniquely
determined by the symmetry energy through the condi-
tion μe = 4δEsym(ρ) for chemical equilibrium. The proton
fraction calculated using the constrained Esym(ρ) is shown
as a function of baryon density in fig. 45. It is seen that
the stiffest symmetry energy can increase the proton frac-
tion up to 30% before ρ = 4ρ0. An important impact of
the proton fraction is on the cooling mechanism of pro-
toneutron stars [367]. In the npeμ matter, the threshold
proton fraction xDU

p for the fast cooling through the direct
URCA process (DU)

xDU
p = 1/

[

1 +
(

1 + x1/3
e

)3
]

(75)

is between 11.1% to 14.8% for the electron fraction xe ≡
ρe/ρp between 1 and 0.5 [368]. This range is indicated with
the horizontal shaded area in fig. 45. It is seen that the
minimum critical density enabling the direct URCA pro-
cess is about 2ρ0 with the stiffest symmetry energy. Softer
symmetry energies will require larger critical densities.

In the above discussions regarding the extraction of
nuclear symmetry energy using the parameterized EOS,
the low-order parameters are fixed at their most probable
values while the high-order parameters of both the E0(ρ)
and Esym(ρ) are varied. Among the low-order parame-
ters, the L parameter has the highest uncertainty of about
±28.1MeV. To see its effects without hindering effects of
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Fig. 46. (Color online) Left: examples of dimensionless tidal deformability as a function of radius. The squared pink region
of 70 ≤ Λ ≤ 580 and 10.5 ≤ R ≤ 13.3 km corresponds to the constraints of LIGO and Virgo Collaborations in ref. [337]. The
squared white region of 292 ≤ Λ ≤ 680 and 11.5 ≤ R ≤ 13.6 km corresponds to the constraints from heavy-ion collisions in
ref. [138] with the boundaries determined by the MDI EOS with x = 0 and x = −1. The small while circles indicate Λ1.4.
Right: dimensionless tidal deformability Λ as a function of stellar mass M . The error bar at 1.4 M� corresponds to the tighter
constraints on the tidal deformability Λ1.4 = [70–580] based on the refined analysis of GW170817 [338]. Results are displayed
for MDI EOS with values of x between 0.3 and −2 in steps of Δx = 0.1. Taken from ref. [133].

other variables will require the inversion of observables in a
four dimensional parameter space. Alternatively, one may
select observables that are not sensitive to the high-density
EOS of SNM, then one can fix the J0 and focus on the 3D
sub-space of Esym(ρ) parameters L−Ksym−Jsym. Alterna-
tive, one may conduct the multivariate Bayesian analyses
which have their own challenges related to the prior prob-
ability density distributions of some of the parameters.

5.3.4 GW170817 implications on the isospin-dependence of
three-body nuclear force in dense matter

A precise measurement of the tidal deformability of neu-
tron stars constrain not only the EOS of dense neutron-
rich nuclear matter but also the fundamental strong in-
teractions at either the hadronic or quark level underlying
the model EOSs. A number of studies have recently ex-
amined how the data from GW170817 may help constrain
various aspects and/or model parameters of strong inter-
action. Unfortunately, mostly because there is so far no
firmly determined lower limit of the tidal deformability,
the extracted limits on the strong interactions are not so
restrictive, indicating again the importance of firmly es-
tablishing the lower limit of Λ1.4. As we discussed in detail
earlier in sect. 3.3, the x parameter in the MDI EOS con-
trols the competition between the isotriplet and isosinglet
channels of the effective three-body nuclear force. It affects
significantly the high-density behavior of nuclear symme-
try energy. As an example of the impacts of GW170817
on properties of nuclear interactions, we discuss in the fol-
lowing how the x parameter may be constrained by the
reported value of Λ1.4.

Shown in the left window of fig. 46 are the Λ1.4 val-
ues as functions of radius calculated using several interac-

tions indicated. The squared pink region of 70 ≤ Λ ≤ 580
and 10.5 ≤ R ≤ 13.3 km corresponds to the constraints
reported by the LIGO and Virgo Collaborations [337],
while the squared white region of 292 ≤ Λ ≤ 680 and
11.5 ≤ R ≤ 13.6 km corresponds to the constraints from
heavy-ion collisions [138] with the boundaries determined
by the MDI EOSs with x = 0 and x = −1. The small white
circles indicate the results for NSs with M = 1.4M�. It
is seen that the constrained region from heavy-ion colli-
sions overlaps with but is more restrictive than the one
from studying the GW170817 event. Nevertheless, it is
interesting to study how the Λ1.4 itself from GW170817
may help constrain the x parameter of the MDI interac-
tion. The right window of fig. 46 displays the Λ1.4 versus
stellar mass for the MDI EOS with values of x between
−2 and 0.3 in steps of Δx = 0.1. The vertical bar at
1.4M� indicates the range of Λ1.4 derived in ref. [337]. It
is seen that the upper limit of Λ1.4 = 580 is consistent
with ∼ xup

gw = −0.75, which is slightly larger than the up-
per limit of x = −1 derived from nuclear laboratory data.
The derived value xup

gw translates directly into an upper
limit of the symmetry energy curvature parameter L, i.e.,
Lup

gw ≈ 96MeV (see fig. 9). As mentioned earlier, there
is currently no firmly established lower limit of Λ1.4. Sev-
eral derived lower limits have been reported but are rather
controversial (see, e.g., ref. [353] and references therein).
Therefore, at present only an upper limit on x can be
derived from the GW170817 results.

5.4 The absolutely maximum mass of neutron stars in
light of GW170817

Determining the mass boundary between neutron stars
and black holes is a longstanding and fundamental
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question. The absolutely maximum mass of neutron stars
were first predicted by Oppenheimer and Volkoff [283].
Nowadays, all kinds of improved theories and models have
been used to calculate the EOS of dense neutron-rich
nuclear matter and predict the corresponding maximum
masses of neutron stars, see, i.e., refs. [119, 197, 291, 292].
The calculated maximum mass is approximately between
1.5 to 3.0M� based on different EOSs [369–371]. In the
following we discuss the latest observations of the NS
maximum mass and its implications on the EOS, the
theoretically predicted absolutely maximum mass of NSs
from causality considerations and the extracted NS maxi-
mum mass from analyzing the GW170817-GRB170817A-
AT2017gfo events by various groups.

5.4.1 The observed maximum mass of neutron stars and its
implications on the EOS

Great efforts have been used to measure the mass of
neutron stars. In 2012, ref. [56] summarized 64 neutron
stars with their masses measured in X-ray/optical bina-
ries, double-neutron star binaries, white dwarf-neutron
star binaries, and main sequence-neutron star binaries.
Though several neutron stars with masses larger than
2.0M� have been measured, the large systematic errors
have hindered the applications of these observations. For
the latest list of NS masses, we refer the reader to ref. [372].
The well accepted maximum observed mass is about
2.0M� [358,359], which puts tight constraints on the EOS
especially its isospin-symmetric part. In 2018, the mass of
PSRJ2215+5135 was reported to be 2.27+0.17

−0.15 M� [373]. If
this result can be confirmed and its uncertainty narrowed
significantly, stricter astrophysical constraints can be put
on the EOSs of dense neutron-rich matter.

More recently, in April 2019, the millisecond pulsar
J0740+6620 was reported to have a mass of 2.17+0.11

−0.10 M�
(68.3% credibility interval) [374] based on combined anal-
yses of the relativistic Shapiro delay data taken over 12.5-
years at the North American Nanohertz Observatory for
Gravitational Waves and the recent orbital-phase-specific
observations using the Green Bank Telescope. While the
error bars of this mass value are still quite large and several
previous instances of revising down the earlier reported
Shapiro delay mass measurements may justify some neces-
sary cautions, if this mass stays approximately unchanged,
it will certainly help further constrain the EOS of super-
dense neutron-rich nuclear matter.

While the mass of the observed most massive neu-
tron star is likely to keep changing as more accurate mea-
surements and analyses are being carried out, what parts
of the EOS are expected to be constrained by the mea-
sured maximum mass? Compared to the existing con-
straints from using Mmax = 2.01M�, how much better
can the new maximum mass of Mmax = 2.17M� help fur-
ther constrain the EOS of NS matter? These questions
were recently studied in ref. [375]. It was found that the
reported mass M = 2.17+0.11

−0.10 M� of PSR J0740+6620,
if confirmed, not only helps improve quantitatively our
knowledge about the EOS of super-dense neutron-rich nu-

Fig. 47. (Color online) Constant surfaces of NS maximum
mass of Mmax = 2.01 M� and Mmax = 2.17 M� as well as
the maximum tidal deformability Λ1.4 = 580 (90% confidence
level) for canonical NSs and the causality condition, respec-
tively, in the J0−Ksym−Jsym parameter space for high-density
neutron-rich nuclear matter. Taken from ref. [375].

clear matter but also presents some new challenges for
nuclear theories. For example, shown in fig. 47 are the
constant surfaces of maximum mass Mmax = 2.01M�
and Mmax = 2.17M� in the J0 − Ksym − Jsym param-
eter space for high-density neutron-rich nuclear matter. It
is seen that the two surfaces are approximately parallel in
the whole space. In the front region where the symmetry
energy is stiff/high, the lower limit of the skewness J0 in-
creases by approximately 47% from about −220MeV to
−150MeV when the maximum mass increases by about
8% from 2.01M� to 2.17M�. Thus, the reported mass of
J0740+6620 raises the lower limit of the skewness param-
eter J0 of SNM significantly. Moreover, the crosslines of
the two constant mass surfaces with the constant surfaces
of the tidal deformability and causality set the boundaries
of the high-density symmetry energy as we discussed ear-
lier. The increase of the maximum mass from 2.01M� to
2.17M� will thus also modify the boundaries of the high-
density symmetry energy extracted from studying proper-
ties of neutron stars. This is illustrated in fig. 48. Clearly,
the lower boundary of the high-density symmetry energy
and the corresponding proton fraction at β-equilibrium
are increased appreciably. More quantitatively, the mini-
mum proton fraction increases from about 0 to 5% around
3ρ0 when the maximum mass of NSs is increased from
2.01 to 2.17M�. However, the upper boundaries from the
crosslines of the maximum mass and the tidal deformabil-
ity are only slightly changed.

5.4.2 The predicted absolute maximum mass of neutron
stars from causality considerations

The causality condition should be satisfied by all theo-
retical models for compact objects, which means that it
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Fig. 48. (Color online) The nuclear symmetry energy in the supra-saturation density region (left) and the corresponding proton
fraction in NSs at β-equilibrium (right). The horizontal band between 11.1% to 14.8% is the direct URCA limit for fast cooling
of proto-NSs. Taken from ref. [375].

can set the upper limit on the absolutely maximum mass.
Excellent reviews on this topic by Lattimer and Parakash
can be found in refs. [207,376]. For example, in Lindblom’s
work and several subsequent studies confirming his results
(for a complete list see refs. [207, 376]), they constructed
EOSs with a fiducial transition-density ρf above which
the speed of sound vs is equal to the speed of light vc.
The EOS is normally written as P (ε) = ε − εf + Pf (εf )
for ε > εf (ρf ). Some empirical or “realistic” nuclear
EOSs were adopted for ε < εf . Be design, this kind of
EOS satisfies v2

s = v2
c when ρ > ρf . It was found that

the redshift only weakly depends on the value of ρf .
For ρf ≥ 3 × 1014 g cm−3, the redshift was found to be
z = (

√

1 − 2GM/Rc2)−1 ≤ 0.863. The latter constant of
z can be rewritten as M/M� = R/4.16 km. According to
ref. [376], the above causality condition is implicitly in the
formulation by Rhoades and Ruffini in 1974 [377]. While
the study in ref. [378] got the same results using a differ-
ent method. Moreover, the results of ref. [377] are shown
explicitly with the methodology in ref. [379]. We also note
that a boundary M/M� = R/4.51 km independent of ρf

is suggested implicitly in ref. [380] using a similarly pa-
rameterized EOS.

The causality and the allowed maximum mass was
studied in an alternative approach in ref. [58] without in-
volving the pre-assumed fiducial density ρf . In this ap-
proach, the condition: v2

s = v2
c happens only at the cen-

tral density of the most massive neutron star calculated:
Mmax = M(v2

s = v2
c ). This condition defines the causal-

ity surface in the 3D EOS parameter space discussed ear-
lier. As shown already with the blue surface in fig. 42,
the causality surface constrains the EOS parameter space
from the top. Thus, the absolutely maximum mass of neu-
tron stars should be obtained from the causality surface.

Shown in fig. 49 is the maximum mass of NSs on the
causality surface as a function of Jsym and Ksym. As shown
earlier, at each point on the causality surface there is a
maximum value of J0 and a corresponding maximum mass

Fig. 49. (Color online) The mass of the most massive neutron
stars on the causality surface as functions of Jsym and Ksym,
respectively. Taken from ref. [58].

of NSs that can be supported. Figure 49 shows clearly that
the causality surface sets an absolutely upper limit (the
maximum of the maximum masses) for the mass of NSs
at Mmax = 2.4M�. However, the actual maximum mass
of NSs might be smaller than 2.4M� depending on the
high-density behavior of nuclear symmetry energy as we
discussed earlier in sect. 5.2.2. It is seen that the max-
imum mass decrease quickly when the combinations of
the Jsym and Ksym make the Esym(ρ) super-soft, reducing
the asymmetric pressure significantly. Thus, the observed
maximum mass of NSs not only sets a lower limit for the
stiffness of SNM EOS but also a lower boundary for the
high-density symmetry energy as we discussed in the pre-
vious subsection. This point is further illustrated by the
plane with the confirmed mass Mmax = 2.01M� of PSR



Eur. Phys. J. A (2019) 55: 117 Page 41 of 75

J0348+0432. Since all acceptable EOSs have to be able to
support NSs at least as massive as PSR J0348+0432, the
space below the 2.01M� plane is excluded. The crossline
of this plane with the causality surface sets a boundary
in the Jsym versus Ksym plane, thus a limit on the high-
density behavior of nuclear symmetry energy. As shown
in fig. 48, when the observed maximum mass increases,
the corresponding lower boundary for the high-density
Esym(ρ) also moves up accordingly.

The maximum mass and the corresponding radius of
NSs on the causality surface are shown in fig. 50 in com-
parison with the causality constraints derived in ref. [381]
(red dashed line) and ref. [380] (black solid line). The max-
imum observed mass of 2.01M� is shown as a reference.
While the relation between the mass and radius of the
most massive neutron stars varies with the EOS parame-
ters, the maximum mass reaches a limit of about 2.4M�
independent of the EOS used. While the radius of the
most massive neutron stars is unlikely to be measured
anytime soon, it is about 11.5 km. The absolutely maxi-
mum mass of 2.4M� is lower than the maximum masses
from the two suggested scalings from refs. [380,381]. This
is because the causality limit v2

s = v2
c is allowed to be

reached in the study of ref. [58] only at the central density
of the most massive neutron stars instead of at all densi-
ties above the assumed fiducial densities in refs. [380,381].
Very interestingly, the latest and improved version of the
zero temperature quark-hadron crossover EOS, QHC19,
of Baym et al. [382], gives an absolutely maximum mass
of 2.35M� at the casual limit consistent with that found
in ref. [58].

5.4.3 The extracted maximum mass of neutron stars from
analyzing the GW170817-GRB170817A-AT2017gfo events

While the fate of the remanent formed in the aftermath
of GW170817 is still unclear, many interesting studies
have been carried out to estimate the maximum mass
of neutron stars using signals from GW170817. Besides
emitting gravitational waves, GW170817 also emitted two
strong electromagnetic signals: a short gamma-ray burst
GRB170817A with a time delay of ∼ 1.7 s and a kilo-
nova AT2017gfo powered by the radioactive decay of r-
process nuclei synthesized in the ejecta a few days after
the merger [338,383]. By analyzing these observations, the
maximum mass of neutron stars has been suggested to
be: 2.17M� at 90% confidence [384], 2.16+0.17

−0.15 M� at 90%
confidence [385], 2.16–2.28M� when the ratio of the maxi-
mum mass of a uniformly rotating neutron star (the supra-
massive limit) over the maximum mass of a nonrotating
star is within 1.2 ≤ β ≤ 1.27 [386], 2.15–2.25M� after
reducing effects of gravitational-wave emission, long-term
neutrino emission, ejected mass, and rotation from the
total mass of GW170817 2.73 ∼ 2.78M� [387], 2.18M�
(2.32M� when pairing is considered) using the upper limit
of Λ1.4 = 800 (90% confidence) [388] and 2.3M� consid-
ering the conservation laws of energy and angular mo-
mentum self-consistently [389]. Applications of these con-
strained Mmax have been discussed in many recent stud-

Fig. 50. (Color online) The maximum mass and corresponding
radius on the causality surface in fig. 42 in comparison with
causality constraints on the maximum mass and corresponding
radius suggested in ref. [381] (red dashed line) and ref. [380]
(black solid line). The maximum observed mass of 2.01 M� is
shown as a reference. Taken from ref. [58].

Fig. 51. (Color online) Constraints on the maximum mass
of non-rotating neutron stars Mmax after the detection of
GW170817 [58,382,384–389].

ies [341, 346, 347, 351, 390–393]. The constraints on the
maximum mass of neutron stars Mmax [58, 348, 382, 384–
389] are summarized in fig. 51. While the collection might
be incomplete, it is seen that all constrained maximum
masses reported so far are less than the predicted abso-
lutely maximum mass of 2.4M�.

In summary of this section, the study of Esym(ρ) effects
on properties of non-rotating neutron stars has a long and
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fruitful history. This study received a strong boost from
the first detection of a binary neutron star merger event.
Pre-GW170817, it was known that the radii of neutron
stars are sensitive to the Esym(ρ) around 2ρ0. In fact,
using the Esym(ρ) constrained by terrestrial nuclear ex-
periments, the radii of canonical neutron stars were pre-
dicted to be in the range of 11.5 km ≤ R1.4 ≤ 13.6 km.
The majority of analyses of both the X-ray and gravi-
tational wave data found values of R1.4 consistent with
the earlier prediction within about 1km. In particular, the
post-GW170817 analyses of the tidal deformability using
many different approaches found a fiducial value of R1.4 =
12.42 km with the lower and upper limit of 10.95 km and
13.23 km, respectively. The extracted radii and tidal de-
formability as well as the observed maximum mass of
neutron stars have been used together with the causal-
ity condition to constrain the Esym(ρ) at supra-saturation
densities by numerically solving the NS inverse-structure
problem in a multi-dimensional EOS parameter space.

While the Esym(ρ) around twice the saturation density
has been constrained to Esym(2ρ0) = 46.9 ± 10.1MeV, it
remains very uncertain at higher densities. While more
precise measurements of neutron star radii and the tidal
deformability in the inspiraling phase of neutron star
mergers are expected to help further narrow down the
Esym(2ρ0) around twice the saturation density, new ob-
servables are needed to probe the Esym(ρ) at higher
densities. These new observables should carry informa-
tion about the merging phase of two colliding neutron
stars in space or two heavy-nuclei in terrestrial labo-
ratories where super-dense neutron-rich matter are ex-
pected to be formed. Moreover, an absolutely maximum
mass of 2.4M� independent of the EOS was predicted.
Other post-GW170817 analyses using various approaches
extracted a fiducial maximum masses between about
2.17M� to 2.30M� for the remanent of GW170817. It re-
mains an interesting question and outstanding challenge
to pin down the mass boundary between massive neutron
stars and black holes. Future observational determination
of the fate of NS merger remanent will be very useful.

6 Symmetry energy effects on properties and
gravitational wave emissions of rotating
neutron stars

All neutron stars were born rotating. Compared to mod-
eling non-rotating neutron stars and understanding their
properties, rotating neutron stars are more complex to
study but provide more observables and thus new physics
opportunities. In this section, we examine effects of nu-
clear symmetry energy on several properties of both slowly
and fast rotating neutron stars.

6.1 Symmetry energy effects on the moment of inertia
of slowly rotating neutron stars

For rotational frequencies much lower than the Kepler
frequency (the highest possible rotational frequency sup-

ported by a given EOS), i.e. ν/νk � 1 (ν = Ω/(2π)), the
deviations from spherical symmetry are very small and
the moment of inertia can be approximated from spheri-
cal stellar models. Below we first recall briefly this slow-
rotation approximation, see e.g. ref. [394]. In the slow-
rotation limit the metric can be written in spherical polar
coordinates as

ds2 = −e2Φ(r)dt2 +
(

1 − 2m

r

)−1

dr2

−2ωr2 sin2 θ dtdφ + r2(dθ2 + sin2 θ dφ2). (76)

The neutron star moment of inertia is calculated in this
case by solving the conventional TOV equations together
with an equation for the rotational frequency. For a slowly-
rotating neutron star the moment of inertia can be written
as

I =
8π

3

∫ R

0

(ε + p)e−Φ

(

1 − 2m

r

)−1
ω̄

Ω
r4dr, (77)

where the metric potential Φ(r) in the stellar interior is
defined by

dΦ

dr
= (m + 4πr3p)

(

1 − 2m

r

)−1

(r < Rstar), (78)

Ω is the angular velocity of a uniformly rotating neutron
star, and ω̄ ≡ Ω − ω is the dragging rotational velocity
(the angular velocity of the star relative to a local in-
ertial frame rotating at ω), with ω(r) ≡ (dφ/dt)ZAMO

the Lense-Thirring angular velocity of a zero–angular-
momentum observer (ZAMO). Inside the star ω̄ satisfies
the equation

1
r3

d
dr

(

r4j
dω̄

dr

)

+ 4
dj

dr
ω̄ = 0 (r < Rstar), (79)

where

j ≡
(

1 − 2m

r

)1/2

e−Φ. (80)

The second-order differential equation (79) can be trans-
formed into a first-order differential equation by introduc-
ing ξ ≡ d ln ω̄/d ln r. Then

dξ

dr
=

4πr2(ε + p)(ξ + 4)
r − 2m

− ξ(ξ − 3)
r

(r < Rstar), (81)

with the boundary condition ξ(r = 0) = 0. The total
moment of inertia of a slowly rotating neutron star is then
given by

I =
R3ξR

6 + 2ξR
, (82)

where ξR = ξ(r = R).
With a given EOS the TOV equations and eq. (81)

are integrated simultaneously from the center of the star,
where the central density ρc = ρ(0) must be specified, to
its surface. By sampling ρc values up to ρc,max, the central
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Fig. 52. (Color online) Total moment of inertia I (left panel) and dimensionless moment of inertia Ī = I/M3 (middle panel) as
a function of neutron-star mass M , and mass-radius relation (right panel). The solid curves in the left window denote the exact
calculation of I and the dotted curves represent I as estimated with the approximate relation given by eq. (83). Results with the
MDI EOS are shown for several representative values of the parameter x: −2, −1, 0 and 0.3. In addition, results with a number
of other EOSs frequently used in astrophysical applications are also displayed: APR [395], DBHF+Bonn B [396,397], FPS [398]
and SLY4 [364]. The dashed vertical lines at M = 1.338 M� represent the precisely measured mass of PSR J0737-3039A. In the
left window the error bar between the x = −1 and x = 0 curves indicates the constraint on I of pulsar A based on terrestrial
nuclear laboratory data from heavy-ion collisions. In the middle window the error bar denotes the constraints on I deduced
by Landry and Kumar [399] based the refined analysis of GW170817 [338]. The upper bound from the minimal-assumption
analysis of GW170817 [338] is also shown with a “diamond” [399].

density for which the neutron star mass reaches a maxi-
mum Mmax, one generates a sequence of stable neutron-
star configurations. Beyond ρmax, the stars become unsta-
ble to radial perturbations [400]. For neutron stars with
masses greater than 1 M� Lattimer and Schutz [401] found
that the moment of inertia computed through the above
formalism can be very well approximated by the following
empirical relation:

I�(0.237±0.008)MR2

[

1+4.2
Mkm

M�R
+90

(
Mkm

M�R

)4
]

.

(83)
The above equation is shown [401] to hold for a wide class
of EOSs except for ones with appreciable degree of soft-
ening, usually indicated by achieving a maximum mass of
∼ 1.6M� or less.

For rotational frequencies much smaller than the Ke-
pler frequency the deviations from spherical symmetry are
negligible and the moment of inertia can be computed ap-
plying the slow-rotation approximation discussed briefly
above. In the left window of fig. 52 moment of inertia is
shown as a function of stellar mass. The solid curves repre-
sent the exact calculation and the dotted curves denote I
as computed with the empirical relation eq. (83). As seen
in the right window of fig. 52, above ∼ 1.0M� the neu-
tron star radius remains approximately constant before
reaching the maximum mass supported by a given EOS.
Accordingly, the moment of inertia (I ∼ MR2) increases
almost linearly with stellar mass for all models. Right be-
fore reaching the maximum mass, the neutron star radius
starts decreasing, which causes the sharp drop in the mo-
ment of inertia. Because I is proportional to M and the
square of R, it is more sensitive to the density depen-
dence of the nuclear symmetry energy, which determines
the neutron star radius. Here we recall that EOSs with

x = −2 and x = −1 have stiffer symmetry energy, with
respect to the rest of the MDI EOSs employed here (see
fig. 8), which result in neutron star models with larger
R and, in turn, I. In fig. 52 it is seen that for fixed M
the moment of inertia exhibits a considerable variation as
x changes from 0.3 to −2, together with a correspond-
ing variation in R (right window of fig. 52), which clearly
signifies the dependence on Esym.

The results in the left window of fig. 52 also illustrate
that eq. (83) is a very good approximation for the moment
of inertia of slowly-rotating neutron stars. This approxi-
mate relation is also frequently written in terms of the
compactness β = M/R as, see e.g., ref. [402]

I � (0.237 ± 0.008)MR2[1 + 2.844β + 18.91β4]. (84)

An improved relation, limited to β ≥ 0.1 and based on a
set of piecewise polytropic EOSs supporting neutron-star
models with Mmax ≥ 1.97M� is derived in ref. [284]

I � MR2[0.247 ± 0.002 + (0.642 ± 0.012)β
+(0.466 ± 0.096)β2]. (85)

The discovery of the extremely relativistic binary pul-
sar PSR J0737-3039A,B provides an unprecedented op-
portunity to test General Relativity and the physics of
pulsars [403]. Lattimer and Schutz [401] suggested that a
measurement of the moment of inertia of component A
of the system accurate to 10% is sufficient to place a firm
constraint on the neutron-star EOS. Although such a mea-
surement is perhaps several years away [402], given that
the masses of both stars are already accurately determined
by observations, a measurement of the moment of inertia
of even one neutron star could have enormous importance
for the neutron star physics and the EOS of dense neutron-
rich matter [401]. A 10% error in the measurement of I will
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Table 1. Numerical results for PSR J0737-3039A (MA =
1.338 M�, νA = 44.05 Hz). The first column identifies the
equation of state. The remaining columns exhibit the following
quantities: compactness M/R (dimensionless), radius (km), to-
tal moment of inertia I� (×1045 g cm2), total moment of inertia
ILS (×1045 g cm2) as computed with eq. (83).

EOS β R I� ILS

MDI (x = −2) 0.13 15.03 1.91 1.97

MDI (x = −1) 0.14 13.70 1.62 1.68

MDI (x = 0) 0.17 11.94 1.29 1.33

MDI (x = 0.3) 0.18 10.86 1.10 1.14

APR 0.17 11.58 1.24 1.27

DBHF+Bonn B 0.16 12.63 1.50 1.46

FPS 0.18 10.91 1.14 1.15

SLY4 0.17 11.76 1.29 1.30

dominate the uncertainty (∼ 6–7%) of a radius measure-
ment [402]. This would in turn place a strong constraint
on R, complimentary to the gravitational wave observa-
tions [338] and X-ray pulsar timing measurements of R [5].
Independent neutron-star radius constraints have been re-
cently established by various research groups [338–351]
based on the gravitational-wave measurement of neutron-
star tidal deformability Λ in GW170817, using both the
original [338] and refined event analyses [338]. On the
other hand, it has already been pointed out in the lit-
erature and discussed in detail in sect. 5.3.1 that trans-
lating Λ measurements directly into R constraints has to
be taken with caution [404], and that both Λ and R must
be measured independently [133,288] to extract meaning-
ful constraints on the EOS of dense neutron-rich matter.
Thus, theoretical predictions of the neutron-star moment
of inertia are very timely and important in the ongoing
efforts to determine the exact details of the EOS.

Previously, calculations of the moment of inertia of
PSR J0737-3039A (MA = 1.338M�, νA = 44.05Hz)
have been reported by Morrison et al. [405] and Bejger et
al. [406]. More recently, Landry and Kumar [399] derived
constraints on I of pulsar A based on the Λ measurement
in GW170817 and universal relations among neutron-star
observables. They quote I� = 1.15+0.38

−0.24 × 1045 g cm2 for
component A of the system. In ref. [407] the authors ap-
plied Bayesian posterior probability distributions of the
nuclear EOS that incorporates information from micro-
scopic many-body theory and empirical data of finite nu-
clei to compute the moment of inertia of PSR J0737-3039A
with a most probable value of I� = 1.35 × 1045 g cm2 and
a range of I� = [0.98–1.48] × 1045 g cm2. Table 1 shows
the moment of inertia (and other selected quantities) of
PSR J0737-3039A. The results with the APR EOS are
in very good agreement with those by [405] (IAPR =
1.24 × 1045 g cm2) and [406] (IAPR = 1.23 × 1045 g cm2).
The last column of table 1 also includes results computed
with the empirical relation (eq. (83)). From a comparison
with the results from the exact numerical calculation it is
seen that eq. (83) is an excellent approximation for the

Fig. 53. (Color online) Radii and moments of inertia pre-
dicted for a neutron star of mass MA = 1.338 M� (PSR J0737-
3039A). The light-grey shaded region indicates the empirical
relation eq. (83). It is seen that it is an excellent approxima-
tion for the neutron star models considered in this work. The
larger rectangular region (dashed magenta lines) represents the
tighter constraints from the GW170817 observation [338] de-
duced by ref. [399]. The rectangular region (solid black lines)
of I� = [1.29–1.62] × 1045 g cm2 and R = [11.5–13.6] km rep-
resents the constraints on I and R from heavy ion collision
data.

moment of inertia of slowly-rotating neutron stars. (The
average uncertainty of eq. (83) is ∼ 2%.) Our results for
the MDI EOS with x = 0 and x = −1 allowed us to con-
strain the moment of inertia of PSR J0737-3039A to be in
the range I� = [1.29–1.62] × 1045 g cm2. These limits are
indicated by the error bar in the left window of fig. 52,
and overlap considerably with the very recent constraints
by Landry and Kumar [399], I� = [0.91–1.53]×1045 g cm2,
based on the GW170817 observation. In the middle win-
dow of fig. 52 we take another view of I, where we dis-
play the dimensionless moment of inertia Ī = I/M3 as
a function of the neutron-star mass M . The error bar
in the figure denotes the constraints on I of pulsar A
obtained in ref. [399] from the refined analysis of the
gravitational wave data [338]. The upper bound from the
minimal-assumption analysis of GW170817 [338] is also
shown with a “diamond” [399]. It is seen that predictions
with the MDI EOS with x = −1 and x = 0 are within
the gravitational-wave based (including the upper bound)
constraints.

This is best illustrated in fig. 53 where the moment
of inertia of PSR J0737-3039A is shown as a function
of stellar radius R. This allows for a direct compari-
son with the gravitational-wave constraints based on the
GW170817 event. The larger rectangular region (dashed
magenta lines) represents the tighter constraints from the
GW170817 observation [338] deduced by ref. [399]. The
rectangular region (solid black lines) of I� = [1.29–1.62]×
1045 g cm2 and R = [11.5–13.6] km represents the con-
straints on I and R from analyzing heavy ion collision
data [135–138]. As explained in ref. [138] the minimum



Eur. Phys. J. A (2019) 55: 117 Page 45 of 75

radius is extended to 11.5 km (from 11.9 km as obtained
with the MDI (x = 0) EOS) to account for the remaining
uncertainty in the symmetric part of the EOS. While both
regions, based on the GW170817 analysis and heavy-ion
collision data, reasonably overlap, the constraints from nu-
clear laboratory data appear to be more restrictive. The
light-grey shaded region in fig. 53 denotes the empirical
relation eq. (83). It is seen that all neutron-star models
considered here are within this empirical band.

6.2 Symmetry energy effects on the ellipticity and GW
emissions of slowly rotating deformed pulsars

In the following we review the effects of Esym on the grav-
itational wave emission to be expected from slowly rotat-
ing deformed pulsars. The discussion is based mainly on
refs. [408,409]. (Rapidly) rotating neutron stars are among
the major candidates for sources of continuous GWs po-
tentially detectable by the LIGO [410, 411] and VIRGO
(e.g. ref. [412]) observatories. In order to generate GWs
over an extended time period, a neutron star must have
some kind of a long-living axial asymmetry, e.g., a “moun-
tain” on its surface [413]. Various mechanisms that cause
such asymmetries have been discussed in the literature:

i) Anisotropic stress built up during the crystallization
period of the neutron star crust may be able to support
long term asymmetries, such as static “mountains” on
the neutron star surface [414].

ii) Additionally, because of its violent formation in su-
pernova the rotational axis of a neutron star may not
necessarily be aligned with its principal moment of
inertia axis, which results in a neutron star preces-
sion [415]. Even if the pulsar remains symmetric with
respect to its rotational axis, because of this it gener-
ates GWs [415,416].

iii) Also, neutron stars have extremely strong magnetic
fields, which could create magnetic pressure and, in
turn, deform the pulsar, if the magnetic and rotational
axes do not coincide [417].

The listed mechanisms generally lead to a triaxial pulsar
configuration. GWs are characterized by a very small di-
mensionless strain amplitude, h0. The magnitude of h0

depends on how much the pulsar is distorted from axial
symmetry which depends on details of the EOS of dense
neutron-rich matter. In refs. [408,409] it was demonstrated
that h0 depends on Esym(ρ), and calculations with the
MDI EOS with x = 0 and x = −1 set the first nuclear
constraints on the GW strength to be expected from se-
lected slowly rotating pulsars.

To facilitate the following discussions, the formalism
used to compute the GW strain amplitude is briefly re-
called here following closely the discussion of ref. [408]. A
rotating neutron star generates GWs if it has some long-
living axial asymmetry. As already discussed above, there
are several mechanisms that could cause stellar deforma-
tions, and in turn GW emission. Generally, such processes
result in triaxial neutron star configuration, which in the
quadrupole approximation, would generate GWs at twice

the rotational frequency of the star, f = 2ν [410, 411].
These waves are characterized by a strain amplitude at
the Earth’s vicinity given by [418]

h0 =
16π2G

c4

εIzzν
2

r
. (86)

In the above equation G is Newton’s constant, c is
the speed of light, ν is the neutron star rotational fre-
quency, Izz is the stellar principal moment of inertia,
ε = (Ixx − Iyy)/Izz is its equatorial ellipticity, and r is the
distance to Earth. The ellipticity is related to the maxi-
mum quadrupole moment of the star via [419]

ε =

√

8π

15
Φ22

Izz
, (87)

where for slowly rotating (and static) neutron stars Φ22

can be written as [419]

Φ22,max = 2.4 × 1038 g cm2
(σmax

10−2

)

×
(

R

10 km

)6.26 (1.4M�
M

)1.2

. (88)

In this expression σmax is the breaking strain of the neu-
tron star crust which is rather uncertain at present time.
Although earlier studies estimated the value of the break-
ing strain to be in the range of σmax = [10−5–10−2] [418],
more recent investigations using molecular dynamics sug-
gested that the breaking strain could be as large as σmax =
0.1 [420,421]. This could support significant “mountains”
with large asymmetries and ellipticity ε as large as 10−6 to
10−5 [421]. More recently, Baiko and Chugunov [422] ar-
gued that the maximum strain for the stretch deformation
sustainable elastically is 0.04. As already mentioned ear-
lier in this review, the physics of the neutron-star crust
is a very active area of research and the exact value of
σmax is still to be determined. In a previous work [408]
a rather conservative value of σmax = 0.01 was used to
compute h0 and to set the first nuclear constraint on the
GW signals to be expected from several pulsars close to
Earth. In this review, to estimate the maximum value of
h0, σmax is taken as 0.1 (as done in ref. [409]) to revisit
some key questions. In particular, observations of contin-
uous GWs and/or theoretical upper limits on h0 can be
used to establish observational limits on ε [421]. Exten-
sive searches of continuous GWs have already been per-
formed [423,424], and new ones are under way. No source
of continuous GWs has been reported so far, but tighter
upper limits on ε were established, with ε < 10−8 ob-
tained in the most sensitive case. According to ref. [421],
neutron star crust could support large mountains leading
to ellipticity larger than 10−8. However current observa-
tions suggest that, at least for the target pulsars included
in these searches, such large asymmetries did not form.
Processes that are responsible for creating mountains on
neutron stars are currently largely unknown. One possibil-
ity that could cause mountains is matter accretion where
material may aggregate asymmetrically due to tempera-
ture gradients or strong magnetic fields [421].
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Fig. 54. (Color online) Neutron star quadrupole moment (left panel) and ellipticity (right panel). Adapted from refs. [408,409].

Equations (86) and (87) show that h0 does not depend
on Izz and the total dependence upon the underlying EOS
is carried by Φ22. Equation (86) can be therefore rewritten
as

h0 = χ
Φ22,maxν

2

r
, (89)

with χ = (136.53π5)1/2Gc−4.
For the purpose of this review, for slowly rotating neu-

tron stars the moment of inertia is computed via the em-
pirical relation, eq. (83). The quadrupole moment and el-
lipticity are calculated through eqs. (88) and (87) respec-
tively. For rotational frequencies up to ∼ 300Hz, global
properties of rotating neutron stars remain approximately
constant [139]. Therefore for slowly rotating stars, if one
knows the pulsar’s rotational frequency and its distance
from the Earth, the above formalism can be readily ap-
plied to estimate the GW strain amplitude.

The focus is specifically on the effect of Esym on
the neutron-star quadrupole moment and ellipticity, and
strain amplitude of GWS from slowly rotating deformed
pulsars. The neutron star quadrupole moment Φ22 and el-
lipticity ε are shown in the left and right windows of fig. 54
respectively. The quadrupole moment decreases with in-
creasing M for all EOSs. As noted previously in ref. [408],
this decrease is dependent upon the EOS and is most pro-
nounced for the MDI EOS with x = −1. This trend is
explained in terms of increasing the central density with
the neutron star mass. Heavier pulsars have higher cen-
tral density and because Φ22 measures the pulsar’s degree
of distortion (fig. 54, left panel), they also exhibit smaller
deformations compared to stars with lower central densi-
ties. These findings are consistent with previous investi-
gations suggesting that more centrally condensed stellar
configurations are less deformed by rapid rotation [425].
As concluded in ref. [408], such neutron star models are
also to be expected to be more “resistant” to any kind of
distortion.

Since ε is proportional to Φ22, it also decreases with the
increase of the neutron star mass (see the right window
of fig. 54). It is observed that models with stiffer Esym,

Fig. 55. (Color online) Gravitational-wave strain amplitude h0

as a function of the neutron-star mass M . Results are shown
for PSR J0437-4715. Adapted from ref. [409].

such as the MDI EOS with x = −1, favor larger crust
“mountains”. These results are consistent with recent in-
vestigations [426, 427], involving one of us, where it was
demonstrated that gravitational wave signals could pro-
vide critical information about the high-density behavior
of nuclear symmetry energy.

The general behavior of the GW strain amplitude is
shown in fig. 55, where the specific case is for PSR J0437-
4715 and illustrates the main features of h0 as a function
of M . Since h0 is proportional to Φ22 it follows closely
the trend of Φ22. Figure 55 demonstrates that h0 depends
on the details of the EOS and Esym(ρ). This dependence
is stronger for EOSs with stiffer symmetry energy, e.g.,
the MDI EOS with x = −1. The dependence on Esym

is also stronger for lighter neutron star models. As al-
ready discussed, such pulsars have lower central densities
and are therefore less bound by gravity. This makes them
more easily distorted by various mechanisms, and as a re-
sult, greater prospects for stronger continuous GWs. The
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GW strain amplitude computed with the MDI EOS with
x = 0 and x = −1 serves as a limit on the maximum
h0. These estimates ignore the distance measurement un-
certainties, and they also should be considered as upper
limits of h0 because Φ22 has been evaluated with σ = 0.1,
and it may go as low as 10−5 as mentioned previously.
ref. [408] used a conservative value of σmax = 0.01 to set
the first direct nuclear constraint on h0 of GWs to be ex-
pected for several pulsars close to Earth. Depending on
the derails of the EOS, the maximal h0 was found to be in
the range of ∼ [0.5–1.5] × 10−24. More recently, ref. [409]
used σmax = 0.1 to revisit this result and estimate h0 for
a larger sample of selected pulsars deducing a wider limit
on h0 of ∼ [0.2–31.1] × 10−24.

The values of ε shown in fig. 54 (right panel) are larger
than the current upper limits (ε < 10−8) deduced by the
recent searches of GWs from known pulsars [424]. Because
no sources were detected, as pointed out in ref. [421], this
may signify that large mountains do not form on the neu-
tron star surface. On the other hand, neutron stars are
small and it is difficult to measure precisely their radii,
and extensive all sky GW searches are very computation-
ally demanding [421, 428]. Observational limits on ε and
h0 are expected to be improved in the next few years as
the GW detectors continue to improve their sensitivity.
Together with advanced computational techniques, this
will bring us closer to detection of GWs from deformed
pulsars.

6.3 Symmetry energy effects on the mass-radius
relation, moment of inertia and GW emissions of
rapidly rotating neutron stars

Equations of stellar structure of rapidly rotating neutron
stars are considerably more complex than those of spheri-
cally symmetric stars [429]. These complications arise due
to the rotational deformations in rotating stars (i.e., flat-
tening at the poles and bulging at the equator), which
lead to a dependence of the star’s metric on the polar co-
ordinate θ. In addition, rotation stabilizes the star against
gravitational collapse and therefore rotating neuron stars
are more massive than static ones. A larger mass, however,
causes greater curvature of space-time. This renders the
metric functions frequency-dependent. Finally, the general
relativistic effect of dragging the local inertial frames im-
plies the occurrence of an additional non-diagonal term,
gtφ, in the metric tensor gμν . This term imposes a self-
consistency condition on the stellar structure equations,
since the degree at which the local inertial frames are
dragged along by the star, is determined by the initially
unknown stellar properties, such as the mass and rota-
tional frequency [429].

Rapidly rotating neutron stars have been studied ex-
tensively in the literature and the interest in these ex-
otic objects have been greatly renewed after the direct
detection of GWs [430], as such stars are among the ma-
jor candidates for sources of continuous gravitational ra-
diation, e.g., see ref. [431] for a recent review and refer-
ences therein. Several open-source computer codes, such as

Fig. 56. (Color online) Mass as a function of equatorial ra-
dius. Both static (solid curves) and Keplerian (dashed curves)
sequences are shown. Adapted from refs. [142,143].

RNS [432, 433] and LORENE [434], solving the structure
equations of rapidly rotating neutron stars, exist as public
domains and have been widely used in various studies.

References [142, 143] used the RNS code to construct
one-parameter 2-D stationary configurations of rapidly ro-
tating neutron stars to investigate the effects of Esym on
various neutron star properties. These studies employed
the APR, DBHF+Bonn B and the MDI with x = 0 and
x = −1 EOSs. As explained earlier in this review, the
two values of x were chosen as they are consistent with
the isospin diffusion data of heavy-ion collisions. The Ke-
plerian (and static) sequences computed with RNS and
these EOSs are shown in fig. 56. The sequences terminate
at the “maximum mass” point for each EOS. It is clearly
seen that rapid rotation at ν = νk increases considerably
the mass that can be supported against collapse while
also increasing the equatorial radius Req. It was found
in refs. [142, 143] that rotation at the Kepler frequency
increases the NS mass up to ∼ 17% with respect to static
configurations, depending on the EOS. The equatorial ra-
dius increases by several kilometers while the polar radius
decreases by several kilometers leading to an overall oblate
shape of the star [142,143]. For each EOS the upper mass-
limit is obtained for a configuration at the mass-shedding
limit where ν = νk, with central density ∼ 15% below
that of the static model with the largest mass. It was also
found that the MDI (x = 0) EOS permits larger rotational
frequency than that of the MDI (x = −1) EOS [142,143].
This is because the MDI EOS with x = 0 has softer Esym

and results in more centrally condensed stellar models.
Such configurations can withstand larger rotational fre-
quencies as they are bounded by stronger gravity [435].

The effects of the symmetry energy are further illus-
trated in fig. 57, which shows neutron-star models ro-
tating at various fixed frequencies. Namely, sequences
spinning at 642Hz (solid lines), 716Hz (dashed lines)
and 1000Hz (dotted lines) are displayed. (Rotational fre-
quencies 642Hz and 716Hz are the spinning rates of
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Fig. 57. (Color online) Gravitational mass versus circumfer-
ential radius for neutron stars rotating at 642Hz (solid curves),
716 Hz (dashed curves) and 1000 Hz (dotted curves). Data
taken from refs. [142,143]. See text for details.

the two fastest pulsars PSR1937+214 [436] and J1748-
2446ad [437].) It is clearly seen in the figure that the range
of the allowed masses by a given EOS for rapidly rotat-
ing neutron stars becomes narrower than that of static
models. This effect becomes stronger with increasing ro-
tational frequency and is EOS dependent. In particular, it
depends on the nuclear symmetry energy —configurations
with stiffer Esym, such as those with the MDI EOS with
x = −1, exhibit greater reduction of the allowed gravita-
tional masses with increasing ν. For instance, for models
rotating at 1000Hz for the MDI (x = −1) EOS the al-
lowed mass range is ∼ 0.2M�. As already discussed in the
literature [435], this observation could explain why such
rapidly rotating neutron stars are so rare— their allowed
masses fall within a very narrow range. This restriction
follows from the stability with respect to mass-shedding
from the star’s equator requirement, which implies that at
a given gravitational mass the equatorial radius Req must
be smaller than the Rmax

eq corresponding to the Keplerian
limit. As reported by Bejger et al. [435] Rmax

eq is very well
approximated by the expression for the orbital frequency
for a test particle at r = Req in the Schwarzschild space-
time created by a spherical mass. The equation satisfying
νSchw.
orb , represented by the dotted contours separating the

shaded regions in fig. 57 is given by

Rmax = χ

(
M

1.4M�

)1/3

km, (90)

with χ = 22.52 for rotational frequency ν = 642 Hz, χ =
20.94 for ν = 716Hz and χ = 16.76 for ν = 1000 Hz,
respectively.

Rapid rotation also affects significantly the neutron
star moment of inertia where the magnitude of the effect
depends on the details of the EOS, and in particular on the
density dependence of Esym. In ref. [139] the moment of
inertia was calculated numerically with the RNS code, and
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Fig. 58. (Color online) Total moment of inertia for Keplerian
models. The neutron star sequences are computed with the
RNS code. Taken from ref. [139].
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Fig. 59. (Color online) Total moment of inertia as a function of
rotational frequency for stellar models with mass M = 1.4 M�.
Taken from ref. [139].

the imprints of the nuclear symmetry energy were exam-
ined employing the MDI EOS. The interested reader is re-
ferred to the original publications by Nikolaos Stergioulas,
e.g., refs. [432,433,438], for details on the structure equa-
tions of rapidly rotating neutron stars and implemented
numerical scheme. The moment of inertia versus stellar
mass is shown in fig. 58 for neutron star models rotating
at the mass-shedding (Kepler) frequency. It is seen that
the moments of inertia of rapidly rotating neutron stars
are significantly larger than those of slowly rotating mod-
els (for a fixed mass). This is easily understood in terms of
the increased (equatorial) radius (fig. 56). In addition, I
increases with rotational frequency ν at a rate dependent
upon the details of the EOS. This effects is best seen in
fig. 59 where the moment of inertia is displayed as a func-
tion of rotational frequency for stellar models with a fixed
mass M = 1.4M�. The neutron star sequences shown in
fig. 59 terminate at the Kepler frequency. It is seen that at
the lowest frequencies I remains approximately constant
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for all EOSs (which justifies the use of the slow-rotation
approximation eq. (83)). As the stellar models approach
the Kepler frequency, I exhibits increases sharply. This
is because of the large increase of the circumferential ra-
dius as the star approaches the “mass-shedding point”. As
pointed out previously by Friedman et al. [425], proper-
ties of rapidly rotating neutron stars display greater devia-
tions from those of spherically symmetric (static) stars for
configurations computed with stiffer EOSs. This explains
why the momenta of inertia of rapidly rotating neuron
star configurations with the MDI (x = −1) EOS show the
greatest deviation from those of static models. As already
discussed in this review, since the “stiffness” of the MDI
EOS is mainly controlled by the density dependence of
Esym, the degree of deviation of I of rapidly rotating neu-
tron stars from those of static models is an effect clearly
due to the nuclear symmetry energy.

Rapidly rotating neutron stars are among the major
candidates for sources of continuous gravitational waves
and the LIGO and Virgo Collaboration reported their lat-
est results from searching GWs from known pulsars [439].
Given a measure of the pulsar rotational frequency ν, mag-
nitude of its time derivative |ν̇| and distance r, the GW
signal can be constrained assuming that all of the star’s
rotational energy is lost via gravitational radiation [439].
This theoretical value, called spin-down limit, is given by

hsd
0 = 8.06 × 10−19I

1/2
38

[
1 kpc

r

] [
ν̇

Hz/s

]1/2 [Hz
ν

]1/2

,

(91)
where I38 is the neutron star moment of inertia in units of
1038 kg m2. Usually in these searches the canonical value
of I ≈ 1038 kg m2 (or 1039 g cm2) is assumed [439]. Then,
the corresponding spin-down limit on the pulsar’s fiducial
ellipticity can be obtained from eq. (86)

εsd = 0.237I−1
38

[
hsd

0

10−24

] [
Hz
ν

]2 [
r

1 kpc

]

, (92)

which does not depend on the star’s distance [439].
PSR B1937+21 is a particularly interesting example of

a rapidly rotating neutron star rotating at 642Hz [436].
Since its first observation in 1982, this pulsar has been
studied extensively and an observed spin-down rate has
been measured. Using the spin-down rate, an upper limit
on the gravitational wave strain amplitude was obtained.
The spin-down rate corresponds to a loss in kinetic en-
ergy at a rate of Ė = 4π2Izzν|ν̇| ∼ [0.6–3.1] × 1036 erg/s,
depending on the EOS. Assuming that the energy loss is
completely due to the gravitational radiation, the gravi-
tational wave strain amplitude can be calculated through
eq. (91). Similar calculations for this pulsar and others
with an observed spin-down rate have been performed in
the past [410, 411, 440]. These calculations have provided
estimates for the GW strain amplitude of selected pul-
sars for which the spin-down rates are available, and also
upper bounds for their ellipticities using the quadrupole
model [410, 411]. However, such calculations simply as-
sumed the “fiducial” value of 1045 g cm2 for the moment

of inertia Izz in all estimates. On the other hand, the neu-
tron star moment of inertia is sensitive to the details of the
EOS of stellar matter, and especially to the density depen-
dence of the nuclear symmetry energy [139]. Moreover, Izz

increases with increasing rotational frequency (see fig. 59)
and the differences with the static values of the moment
of inertia could be significant, particularly for rapidly ro-
tating neutron stars.

The GW strain amplitude of PSR B1937+21 was cal-
culated in ref. [441] and is shown in fig. 60 (left panel).
Because the MDI EOS is constrained by available nu-
clear laboratory data, the results with the x = 0 and
x = −1 EOSs place a rather conservative upper limit on
the gravitational waves to be expected from this pulsar,
provided the only mechanism accounting for its spin-down
rate is gravitational radiation. Under these circumstances,
the upper limit of the strain amplitude, hsd

0 , for neutron
star models of 1.4M� was found to be in the range of
hsd

0 = [2.24–2.61]× 10−27 [441]. Similarly, the upper limit
of the ellipticity of PSR B1937+21 was found to be in the
range of εsd = [2.68–3.12] × 10−9 [441], and is shown in
fig. 60 (right panel). So far the searches for GWs from iso-
lated pulsars have found no evidence for a continuous GW
signal but derived very restrictive upper spin-down limits
for several pulsars (see ref. [439] and discussions therein).
Further improvements to the sensitivity of the GW detec-
tors are expected to surpass the current spin-down limits
for a much wider class of pulsars and bring us closer to
detecting continuous GWs.

In summary of this section, while the effect of rota-
tion on the maximum mass is only about 20% even at
the Kepler frequency, its effect on the radius can be sev-
eral kilometers depending on the rotation frequency. Most
of the properties of rotating neutron stars, such as their
moments of inertia, quadrupole deformations/ellipticities
and equatorial radii depend on the symmetry energy to
various degrees. Effects of the Esym(ρ) on these properties
are clearly reflected in the strain amplitudes of gravita-
tional waves emitted from isolated pulsars mostly through
the moment of inertia. One major uncertain is the break-
ing strain of neutron star crust. Very rich and interesting
physics regrading nuclear symmetry energy may be ex-
tracted from future measurements of either the moment
of inertia directly and/or indirectly from the continuous
gravitational waves emitted by isolated pulsars.

7 Symmetry energy effects on oscillations of
neutron stars

It has long been known that oscillations of neutron stars
carry important information about their internal struc-
tures and the underlying EOS [442–445], see, e.g., ref. [446]
for an earlier review. Based on the pioneering work on
the quasi-normal oscillations (QNO) of static and spher-
ical celestial bodies [442–445], the operable-numerical-
calculation formalism for the QNO of neutron stars was
well established [447–450]. In this formalism, by expanding
the perturbed metric tensor for the QNO in spherical har-
monic functions, the oscillation modes were divided into
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Fig. 60. (Color online) Gravitational wave strain amplitude hsd
0 (left panel) and ellipticity εsd (right panel), deduced from the

spin-down rate of PSR B1937+21. Taken from ref. [441].

two categories [451]. They are the axial and polar modes
in which the spherical harmonics transform under a parity
operation as (−1)l+1 and (−1)l, respectively.

Many pulsation modes of neutron stars can be ex-
cited. For example, the following modes may be excited
for non-rotating neutron stars [449–453]: 1) The high fre-
quency pressure p-modes, where the fundamental p-mode
is called f-mode. The latter is one of the most impor-
tant and widely studied modes. Its frequency is in the
range of about 2–4 kHz while the first overtone of p-mode
is over 4 kHz. 2) The low frequency gravity g-modes are
associated with the fluid buoyancy. They are related to
the gradients of internal composition and temperature of
neutron stars. Their typically frequencies are about a few
hundred Hz. 3) The w-modes are purely due to general
relativistic effects. They are thus only associated with the
space-time curvature. They have relatively higher frequen-
cies (above 7 kHz) and shorter damp times (tens of mil-
liseconds). Many interesting researches have been done on
this topic in recent years, see, e.g. refs. [449–457]. One out-
standing feature is the scaling (i.e., relations independent
of the EOSs) of some combinations of the frequency, mass
and radius of the f, p and w modes. Various proposals
have been made to make good use of these scalings.

For rotating neutron stars, the low-frequency r-mode
has received much attention, see, e.g., ref. [453] for an
earlier review. It belongs to a class of purely axial inertial
modes with the Coriolis force as the restoring force. Be-
cause of the Chandrasekhar-Friedmann-Schutz (CFS) in-
stability [458–460], detectable gravitational waves can be
generated by the r-mode. Meanwhile, it can also be used to
explain why the young pulsars have relatively slower spin
periods [453,461,462]. In addition, crustal oscillations, i.e.,
the torsional modes may also be excited [463–466]. The
restoring force for the torsional oscillations are believed
to come from the shear modulus of the solid crust.

Gravitational radiations from oscillating neutron stars
are expected to carry invaluable information about stel-
lar properties and the EOSs of dense neutron-rich matter.
This longstanding hope has received a strong boost re-
cently from the GW170817 event. In fact, some interest-

ing observations and predictions have been made about
the various oscillation modes and their relations with the
EOS. In this section, we discuss a few effects of nuclear
symmetry energy on some features of these oscillation
modes. Hopefully, some of the effects will be detected us-
ing advanced gravitational wave detectors [467,468], such
as the Einstein Telescope [469,470].

7.1 Symmetry energy effects on the Brunt-Väisälä
frequency and the core g-modes

For ease of the following discussions, let us first recall here
the definition of the Brunt-Väisälä frequency [471]. Con-
sidering a fluid element at mass density ρe in a fluid with
density stratification in the vertical direction z, if it is dis-
placed by Δz from its original position it then experiences
a vertical force proportional to −g∂ρ(z)/∂z where g = |g|
is the local gravitational acceleration. The Δz then sat-
isfies a second-order differential equation after applying
Newton’s second law to the motion of the fluid element.
Its solution has the form Δz = Δz0 · e

√
−N2t where

N =

√

− g

ρe

∂ρ(z)
∂z

(93)

is the so-called Brunt-Väisälä frequency. If the force is
back towards the initial position (restoring), the stratifi-
cation is said to be stable and the fluid parcel oscillates
vertically. In this case, N2 > 0 and N is the angular fre-
quency of oscillation. While N2 < 0 indicates that the
stratification is unstable, leading to overturning or con-
vection.

Detailed discussions of the Brunt-Väisälä frequency
and its effects on the g and f modes of neutron star os-
cillations can be found in sects. 17.2 and 17.8 of Cox’
book [446]. Various kinds of g-modes may be triggered,
such as those associated with the thermally induced buoy-
ancy in warm neutron stars [472, 473], crustal g-modes
due to the composition discontinuities in the outer en-
velope of cold neutron stars [474], and the g-modes due
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to the buoyancy induced by proton-neutron composition
gradient in the cores of neutron stars [475, 476]. While
all of these oscillations strongly depend on the EOS, it
is particularly interesting to note that the core g-mode is
directly related to the density dependence of nuclear sym-
metry energy [475,476]. In cold neutron stars, it is known
that [446,475,476]

N2 = g2

(
1
c2
e

− 1
c2
s

)

(94)

where cs is the adiabatic sound speed given by c2
s = (∂P

∂ρ )x

taken at a constant proton fraction x and ce is given
by c2

e = dP
dρ taken at β equilibrium. As discussed in

refs. [475, 476], the fluid element considered is always in
pressure equilibrium with the surroundings, but its com-
position stays a constant during the adiabatic process be-
cause the timescale for the weak interaction leading to β
equilibrium is much longer than the dynamical timescale.
Thus, the “adiabatic” condition implies a constant com-
position characterized by a fixed proton fraction x. There-
fore, the convective stability or condition for stable g-mode
N2 > 0 is equivalent to requiring c2

s−c2
e > 0. Dong Lai has

further expressed the Brunt-Väisälä frequency in terms of
the density dependence of nuclear symmetry energy and
investigated its effects on the g-mode frequency [476]. As-
suming neutron stars are made of npe matter with an elec-
tron fraction xe and using Dong Lai’s notations with n as
the baryon number density, μn, μp and μe as the chemical
potentials of neutrons, protons and electrons, respectively,
the difference between c2

s and c2
e can be written as [476]

c2
s − c2

e =
n

ρ + P/c2

(
∂P

∂n
− dP

dn

)

=− n

ρ + P/c2

(
∂P

∂x

)
dx

dn

=− n3

ρ + P/c2

[
∂

∂n
(μe + μp − μn)

]
dx

dn
, (95)

where the partial derivative is taken with respect to n or
x. At β equilibrium, the relation x(n) is determined by
μn − μp = μe and the charge neutrality condition xe = x.
The dx

dn can then be written as [476]

dx

dn
= −

[
∂

∂n
(μe + μp − μn)

]

·
[

∂

∂x
(μe + μp − μn)

]−1

.

(96)
Equation (95) then becomes

c2
s − c2

e =
n3

ρ + P/c2

[
∂

∂n
(μe + μp − μn)

]2

·
[

∂

∂x
(μe + μp − μn)

]−1

. (97)

The convective stability c2
s − c2

e > 0 thus requires

∂

∂x
(μe + μp − μn) > 0 (98)

where the electron chemical potential μe = �c(3π2n)1/3

x1/3 while the μn − μp can be obtained from

μn − μp = −∂En

∂x
. (99)

As discussed early, often one uses the parabolic approxi-
mation of the EOS, i.e., E(n, x) = E0(n) + Esym(n)(1 −
2x)2. Within this approximation, eq. (99) is reduced to

μn − μp = 4Esym(n)(1 − 2x). (100)

Moreover, since ∂μe/∂x = μe/3x and ∂(μn − μp)/∂x =
−8Esym(n), the convective stability condition eq. (98) can
be further reduced to

μe

3x
+ 8Esym(n) > 0. (101)

Clearly, the density dependence of nuclear symmetry en-
ergy Esym(n) plays a key role in determining the den-
sity range where the g-mode is stable. Sometimes, one
parameterizes the EOS by explicitly separating out the
kinetic and potential contributions, namely, En(n, x) =
Tn(n, x) + V0(n) + V2(n)(1 − 2x)2 where

Tn(n, x) =
3
5

�
2

2mn
(3π2n)2/3

[

x5/3 + (1 − x)5/3
]

(102)

is the kinetic energy of a free Fermi gas of neutrons and
protons, V0(n) and V2(n) are the isospin-independent and
isospin-dependent parts of nucleon potential energy, re-
spectively. In this case,

μn − μp =4(1 − 2x)V2 +
�

2

2mn
(3π2n)2/3

[

(1 − x)2/3−x2/3
]

(103)
and the convective stability condition eq. (98) can be writ-
ten as [476]

1
3x

μe+8V2 +
2
3

�
2

2mn
(3π2n)2/3

[

(1 − x)−1/3 + x−1/3
]

>0.

(104)
Now, the individual roles of the kinetic and potential parts
of the symmetry energy are clearly revealed. As it was
pointed out by Dong Lai [476], unless the potential sym-
metry energy V2 is extremely negative, the core g-modes
always exist.

Using the EOSs and related Esym(ρ) predicted by the
Variational Many-Body (VMB) theory of Wiringa, Fiks
and Fabrocini (WFF) [107], Dong Lai [476] investigated
effects of Esym(ρ) on the Brunt-Väisälä frequency and the
core g-modes. The three typical density dependences of
nuclear symmetry energy predicted by WFF are shown
in fig. 3. The results obtained using the nuclear poten-
tial UV14+UVII are labeled as WFF1 (in fig. 3 or UU
(in ref. [476]), those obtained by using the AV14+UVII
interaction as WFF2 or AU, while those from using the
interaction UV14+TNI as WFF3 or UT. For comparisons,
Dong Lai also constructed a fourth model labeled as UU2
having the same P (n), ρ(n), and ce(n) as UU. However,
the proton fraction x and the adiabatic speed of sound cs

in UU2 were obtained by using the Esym(ρ) of a free nu-
cleon gas. Thus a comparison of results using the UU and
UU2 can reveal effects of the symmetry energy. Shown in
fig. 61 are the pressure P , adiabatic sound speed cs, the
proton fractions x and the fractional difference between
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Fig. 61. (a) pressure P ; (b) adiabatic sound speed cs; (c) the
proton fractions x corresponding to the symmetry energy func-
tions labeled as WFF1 (UU), WFF2 (AU) and WFF3 (UT) in
fig. 3 as well as with only the kinetic symmetry energy for
the npe gas model (UU2, long dashed line); (d) the fractional
difference between c2

s and c2
e used in calculating the Brunt-

Väisälä frequency by Dong Lai [476] using four EOSs based
on the Variational Many-Body (VMB) theory of Wiringa, Fiks
and Fabrocini (WFF) [107]. Taken from ref. [476].

c2
s and c2

e using the four EOSs. While the pressure P (n)
and adiabatic sound speed cs are not so different as one
expects, the proton fraction x and the fractional difference
(c2

s−c2
e)/c2

s are rather different, indicating strong effects of
nuclear symmetry energy. Moreover, the UU and UU2 lead
to dramatically different values of x and (c2

s − c2
e)/c2

s as
functions of density. The resulting core g-mode frequen-
cies obtained within Newtonian dynamics are shown in
fig. 62. Interestingly, the frequency of core g-mode oscil-
lations of neutron stars was found to depend not only on
the pressure-density relation, but also sensitively on the
density dependence of nuclear symmetry energy.

In short, the Brunt-Väisälä and the core g-mode fre-
quencies are sensitive to the density dependence of nu-
clear symmetry energy. Earlier explorations cited above
have used predictions by the well-known WFF EOSs and
some approximations. As discussed earlier, significant con-
straints on the Esym(ρ) especially around and below the
saturation densities of nuclear matter have been obtained
over the last few years. Since resonant excitations of the
g-modes play an important role in tidal heating of bi-
nary neutron stars [476], in light of the GW170817 event
timely new investigations of the Brunt-Väisälä as well as

Fig. 62. The frequencies of the first ten quadrupole (l = 2)
g-modes based on four WFF EOS models. Here n specifies
the radial order of the g-mode. The solid line and squares
for model WFF1 (UU), the dotted line and round circles are
for model WFF2 (AU), the short-dashed line and triangles for
model WFF3 (UT), and the long-dashed line labeled as UU2
is with the Esym(ρ) for free nucleon gas. Taken from ref. [476].

the crustal and core g-mode frequencies using the latest
knowledge about the Esym(ρ) would be particularly inter-
esting [477].

7.2 Symmetry energy effects on frequencies of
w-modes

The w-modes can be divided into several categories [451]:
1) The first standard axial w-mode wI ; 2) The additional
axial w-mode wII ; 3) The second axial w-mode wI2 and
the third axial w-mode wI3, etc. The salient feature of the
w-mode is its high frequency and rapid damping. Chan-
drasekhar and Ferrari [449, 450] showed that the axial w-
mode can be described by the following second-order dif-
ferential equation for a function z(r) constructed from the
radial part of the perturbed axial metric functions:

d2z

dr2
∗

+ [ω2 − V (r)]z = 0, (105)

where ω(= ω0 + iωi) is defined as the complex eigen-
frequency of the axial w-mode. The tortoise coordinate
r∗ and a potential function V are defined inside neutron
stars as

r∗ =
∫ r

0

eλ−νdr

(

or
d

dr∗
= eλ−ν d

dr

)

(106)

and

V =
e2ν

r3
[l(l + 1)r + 4πr3(ρ − p) − 6m], (107)

where l is the spherical harmonics index (often only the
case l = 2 is considered), ρ and p are the density and
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ν
ν

Fig. 63. (Color online) The frequency ν of wI -mode (panel
a) and wII -mode vs the stellar mass M (panel b). Taken from
ref. [454].

pressure, and m is the mass inside radius r, respectively.
The metric functions eν and eλ are obtained from the line
element

−ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2 θ dφ2). (108)

While outside the star, eqs. (106) and (107) are reduced
to

r∗ = 2M ln(r − 2M)
(

or
d

dr∗
=

r − 2M

r

d
dr

)

(109)

and

V =
r − 2M

r4
[l(l + 1)r − 6M ] (110)

with M being the total gravitational mass of the neutron
star. Boundary conditions and technical details of solving
these equations can be found in refs. [451,454].

Effects of nuclear symmetry energy Esym(ρ) on the w
mode were studied in ref. [454] using the APR and the
MDI EOSs with x = −1 and 0. The MDI symmetry en-
ergy functions with x = −1 and 0 are shown in fig. 10
while the corresponding mass-radius relations of neutron
stars are shown in fig. 34. Again, these two x-parameters
were selected by fitting the isospin diffusion data of heavy-
ion reactions [135, 204] as we discussed earlier in detail
in sect. 5.2.2. The predicted frequencies of wI -mode and

ω
ω

Fig. 64. (Color online) The universal relation between the
scaled Eigen-frequency, ω, of the wI -mode and the compactness
M/R. The FIT is a universal relation found by Tsui et al. [478].
Taken from ref. [454].

wII -mode are shown in fig. 63. Obviously, the symmetry
energy has a clear imprint on the w-mode frequencies.

It has been well known that a universal scaling ex-
ists between the scaled eigen-frequencies of w-modes and
some global properties of neutron stars [451,478–480]. For
example, shown in fig. 64 are the mass scaled real and
imaginary frequencies versus the compactness M/R. They
show very nice universality independent of the EOS. The
curves (Fit) best fit the scaling relations found earlier by
Tsui et al. [478]. It was hoped that if the masses and radii
of neutron stars are determined accurately, the universal
scaling behaviors provide a way to infer the frequency and
damping time of gravitational waves from the w-mode. Of
course, if both the frequency and damping time of the
w-modes are observed precisely, they will enable the ex-
traction of the masses and radii of neutron stars, leading
to further constraints on the EOS of dense neutron-rich
nuclear matter [456,481].

In short, the density dependence of nuclear symmetry
energy Esym(ρ) has a clear imprint on both the frequency
and the damping time of the axial w-modes. However,
compared to the core g-mode where the frequency is di-
rectly related to the gradient of the composition uniquely
determined by the symmetry energy, the Esym(ρ) affects
the w-mode’s real and imaginary frequencies through the
pressure in the same way as the EOS of symmetric nuclear
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Fig. 65. The f-mode frequency (left) and damping time (right) as functions of the tidal deformability of canonical neutron stars.
The correlation between the f-mode frequency and the tidal deformability of canonical neutron stars using 23000 phenomeno-
logical EOSs (solid black line), 11 microscopic EOSs (red dots) and 2 EOSs for quark stars within the MIT bag model (blue
stars). The cross at (165,2.18) corresponds to the lower limit of the tidal deformability predicted using the parameterized EOS
satisfying all known constraints from terrestrial nuclear experiments, while the cross at (580, 1.67) corresponds to the upper
limit of the tidal deformability of neutron stars extracted from the GW170817 event by LIGO and VIRGO Collaborations.
Figures adapted from ref. [457].

matter (SNM). Namely, effects of the Esym(ρ) may be
mimicked by readjusting the stiffness of the SNM EOS.

7.3 Symmetry energy effects and GW170817
implications on the frequency and damping time of
the f-mode

Since the f-mode has a relatively lower frequency (1 ∼
3 kHz), it is easier to be excited compared to the p-mode
and w-mode [482, 483]. To our best knowledge, similar to
the w-mode, all features of the f-mode are determined by
the total pressure as a function of energy density. The
Esym(ρ) affects the f-mode through its contribution to the
total pressure. However, unlike the g-mode, the f-mode
has no unique and explicit dependence on the symmetry
energy.

The formalism for calculating the frequency and damp-
ing time of the f-mode can be found in refs. [447, 448].
The f-mode has been studied extensively in the litera-
ture. The frequency and damping time of f-mode were
found to scale universally with the compactness or its
variations [454,468,480,482,484–489]. Interestingly, Sham
et al. further investigated the universal scalings in the
Eddington-inspired Born-Infeld (EiBI) gravity, the uni-
versal relations obtained in general relativity were found
valid also in the EiBI gravity [490]. Thus, much interest
has been focused on verifying and using the scalings to
infer the mass and radius of neutron stars and hopefully
further infer the underlying EOS.

To our best knowledge, so far there is still no obser-
vational evidence of the f-mode. It is thus very interest-
ing that it was found very recently that the f-mode fre-
quency and damping time scale with the tidal deforma-
bility with all EOSs except those involving phase transi-

tions to quark stars [457]. Shown in fig. 65 are the f-mode
frequency and damping time as functions of the tidal de-
formability for canonical neutron stars. These results were
obtained from using 40000 hadronic EOSs randomly gen-
erated using eqs. (12) and (13) with parameters within
the currently known constraints (labeled as parameter-
ized EOSs) [261], 11 EOSs from microscopic nuclear many-
body theories for normal neutron stars (marked as 11 mi-
croscopic EOSs) and 2 EOSs from the MIT bag model
for quark stars [56,107,261,360–365,457,491,492]. Except
for quark stars, all of the widely different hadronic EOSs
predict approximately the same correlations between the
f-mode frequency (damping time) and the tidal deforma-
bility. Constraints on the latter from the GW170817 event
thus limit the f-mode frequency and damping time. More
quantitatively, it was found that the range of tidal de-
formability Λ1.4 = 190+390

−120 from GW170817 [337] implies
that the f-mode frequency and damping time of a canon-
ical neutron star are in the range of 1.67 kHz ≤ f ≤
2.18 kHz and 0.155 s ≤ τ ≤ 0.255 s, respectively [457]. Of
course, this prediction awaits observational confirmations.
Nevertheless, the GW170817 implications on the f-mode
frequency and damping time are useful for designing de-
tectors to search for signatures of the f-mode oscillations
of neutron stars.

In discussing potential applications of the various scal-
ings of the f-mode frequency and damping time, one of-
ten optimistically assumes that both the frequency and
damping time can be measured so precisely such that the
scalings can be used to infer subsequently both the masses
and radii of neutron stars. However, it was already pointed
out that while the f-mode frequency could be detected
very precisely, it is very difficult to extract accurately the
damping time from observations [483]. Thus, the observed
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Fig. 66. Effects of the symmetry energy slope parameter L on the frequency (left) and damping time (right) of f-mode
oscillations of neutron stars.

correlations of the f and τ with the tidal deformability Λ
are very useful for accurately determining properties of
the f-mode oscillations. As the accuracy of measuring the
tidal deformability further improves with more neutron
star mergers events, more knowledge about the f-mode
properties may be indirectly inferred.

Effects of nuclear symmetry energy slope L on the f-
mode frequency and damping time as functions of mass
are shown in figs. 66. For this demonstration, the para-
metric EOS of eqs. (12) and (13) is used. Three values of
the slope parameter L = 40MeV, 60MeV and 80MeV are
used while the parameters Ksym, Jsym and J0 are fixed at
0MeV, 200MeV and −180MeV, respectively. It is seen
that the L parameter of the symmetry energy has appre-
ciable effects in the range of 7–13% on both the f-mode fre-
quency and damping time. Similarly, effects of the Ksym,
Jsym can be studied. Overall, however, effects of the sym-
metry energy on the f-mode properties are small.

In short, the f-mode frequency (and damping time)
scales with the tidal deformability of canonical neutron
stars with hadronic nuclear EOSs. Quark stars show clear
deviations from the scaling. When examined as functions
of neutron star masses, both the f-mode frequency and
damping time show appreciable dependence on the sym-
metry energy. More precise measurements of the tidal de-
formability with more NS merger events will allow us to
better understand properties of the f-mode oscillations
which by themselves are hard to be detected. On the other
hand, it has been shown very recently that the study of
accumulated imprints of f-mode dynamic tides in gravi-
tational waveforms from compact binaries will enable the
measurement of f-mode frequencies to within tens of Hz
by using networks of future GW detectors [493, 494]. If
realized successfully, the f-mode frequency will facilitate
independently measuring additional fundamental prop-
erties of NS matter beyond the tidal deformability as
well as performing novel tests of GR at the strong-field
limit [493,494].

7.4 Symmetry energy effects on the r-mode instability
boundary

The r-mode of oscillating neutron stars triggered by the
Chandrasekhar-Friedmann-Schutz (CFS) instability [458–
460] has long been recognized as a potentially useful probe
of the inner structure and EOS of neutron stars [453,461,
462, 495, 496]. As a purely axial inertial mode with the
Coriolis force as its restoring agent, the r-mode is one way
of generating gravitational waves. The r-mode instability
boundary has been used to explain the limited spin-up
of accreting millisecond pulsars in the low mass X-ray bi-
naries (LMXBs) [497,498]. The r-mode instability window
often shown in the plane of frequency versus temperature,
defined as the frequency above which the CFS instability
of r-mode will be triggered, is expected to be below the
Kepler frequency but higher than the highest frequency
of 716Hz observed so far [437]. Much efforts have been
devoted to understanding the physics of r-mode and lo-
cating its instability window [453, 461, 462, 499–501]. The
nuclear symmetry energy Esym(ρ) has been found to play a
significant role in determining the r-mode instability win-
dow [455,502]. An extensive review about Esym(ρ) effects
on the oscillation modes by Newton et al. can be found
in ref. [210]. For completeness of the present review, we
summarize in the following the most important findings
about Esym(ρ) effects on the r-mode instability window.

The Esym(ρ) comes into the physics of r-mode in-
stability mostly through its effects on the core radius,
crust thickness as well as the core-crust transition den-
sity and pressure [503–506]. The solid crust of neutron
stars plays a key role in determine the r-mode instability
window [507–512]. Earlier studies have shown that the dis-
sipation in the viscous boundary layer (between the crust
and core) is sensitive to the crust thickness, and thus will
influence the instability window [509, 513]. While a real
crust is probably elastic, enabling the core oscillation to
penetrate into the crust [495, 511, 512], the crust is often
assumed to be perfectly rigid [507–509], thus providing
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Fig. 67. (Color online) (a) The time scales for the gravitational radiation driven r-mode instability for a neutron star with

rigid crust as a function of the stellar masses, where Ω = Ωo =
p

3GM/(4R3) and T = 108 K. (b) The corresponding viscous
dissipation time scales due to the electron-electron scattering at the core-crust boundary layer. Taken from ref. [455].

an upper limit on the instability window. Lindblom and
Owen et al. have shown that the growth timescale of the
r-mode instability in a neutron star with rigid crust can
be written as [461,462,509]

1
τGR

=
32πGΩ2l+2

c2l+3

(l − 1)2l

[(2l + 1)!!]2

×
(

l + 2
l + 1

)2l+2 ∫ Rc

0

ρr2l+2dr, (111)

where Ω is the angular frequency and Rc is the radius of
the core. The timescale for the viscous damping of the r-
mode at the boundary layer with the rigid crust and fluid
core can be written as [509]

τv =
1

2Ω

2l+3/2(l + 1)!
l(2l + 1)!!Il

×
√

2ΩR2
cρc

ηc

∫ Rc

0

ρ

ρc

(
r

Rc

)2l+2
dr

Rc
,

(112)
where ρc and ηc are the density and fluid viscosity at
the core-crust interface, respectively. Often, only the case
l = 2, I2 = 0.80411 [509, 510] are considered. The shear
viscosity of neutron stars are temperature dependent. It is
dominated by neutron-neutron and electron-electron scat-
terings above and below 109 K, respectively. For example,
the shear viscosity due to electron-electron scattering de-
pends on the density and temperature [514, 515] accord-
ing to ηee = 6.0 × 106ρ2T−2 (g · cm−1 · s−1). As we have
discussed earlier in this review, the Esym(ρ) affects signif-
icantly the core radius as well as the core-crust transition
properties. Indeed, as shown in fig. 67 the L parameter
of Esym(ρ) affect both the r-mode growth timescale and
its damping time scale. In this example, the neutron star
is modeled with a rigid crust for the five adopted EOSs
with L = 25–105MeV (labeled as L25, L45 etc.). Interest-
ingly, both time scales show obvious mass dependences.
While the time scales of the gravitational radiation de-
creases for more massive neutron stars, the time scales of

Fig. 68. (Color online) The lower boundary of r-mode insta-
bility window for canonical (1.4 M�) neutron stars with the
slope of the symmetry energy L between 25 and 105MeV. Ke-
pler frequencies with two typical L values are indicated by
the dotted lines. Locations of several observed LMXBs with
short recurrence times [516, 517] are also shown. Taken from
ref. [455].

the shear viscosity have the opposite trend. The obvious
L dependences of both time scales were understood from
its opposite effects on the core radius and the core-crust
transition density [455].

For a given temperature, the critical frequency above
which stars become unstable is determined by equating
the gravitational radiation and viscosity timescales. Nat-
urally, the r-mode instability boundary in the plane of
frequency versus temperature is L dependent. For exam-
ple, shown in fig. 68 are the r-mode instability windows
for canonical neutron stars with L in the range of 25 to
105MeV. Effects of the L parameter are obvious. If both
the internal temperatures and masses of the observed fast
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pulsars are known, they can limit the r-mode instability
and subsequently the L parameter. Several such candi-
dates, such as the 4U 1608-522 at 620Hz, EXO 0748-
676 at 552Hz, 4U 1636-536 at 581Hz, Apl X-1 at 549Hz
and MXB 1658-298 at 567Hz [516, 517] were considered
in ref. [455]. Unfortunately, their masses are not known.
It is seen from fig. 68 that they fall below the instabil-
ity boundary for canonical neutron stars. However, some
of them do enter into the uncertainty range of the insta-
bility boundary between the L = 25 and L = 105MeV
curves [455]. It is worth noting that the range of L consid-
ered in ref. [455] is significantly broader than the currently
known range. In fact, none of the NSs mentioned above
enters into the narrowed uncertain region of the r-mode
instability window.

In short, the slope of the symmetry energy L affects
the time scales of both the r-mode gravitational radia-
tion and its viscous damping. Consequently, the r-mode
instability window in the plane of frequency and tempera-
ture depend appreciably on the nuclear symmetry energy.
Constraining the symmetry energy from studying the r-
mode instability window, however, has the prerequisite of
knowing mechanical properties of the crust as well as the
thermal and transport properties of the core-crust transi-
tion region.

7.5 Symmetry energy effects on the crust torsional
modes

Boosted by the observations of quasiperiodic oscillations
(QPOs) following giant flares in soft gamma-ray repeaters
(SGRs) [312, 464, 518–520], extensive studies on the tor-
sional crust oscillations have been carried out, see, e.g.,
refs. [463, 464, 521–527]. The shear modulus of the crust
are thought to be the restoring force of torsional modes,
see, e.g., discussions in refs. [463–466]. To our best knowl-
edge, effects of nuclear symmetry energy on the fre-
quency of torsional oscillation was first studied by Steiner
and Watts [466]. Later, systematic studies have been
carried out by Newton et al. [210, 539] and Sotani et
al. [76, 465, 528–535]. For reviews of the work by these
two groups, we refer the readers to refs. [77, 210].

In the literature, various approximations have been
used within both Newtonian gravity and general relativity
to estimate the frequencies of torsional modes. While often
quantitatively different, they share the common features
that the torsional crust oscillation frequency is closely re-
lated to the radius of the core and the thickness of the
crust as well as the shear waves speed vs. For example,
using the relativistic Cowling approximation Samuelsson
and Andersson [464] derived the following approximate
formulae for the fundamental modes 0tl, ω0, and of the
overtones n�=0tl, ωn

ω2
0 ≈ e2νv2

s(l − 1)(l + 2)
2RRc

,

ω2
n ≈ eν−λ nπvs

Δ

[

1 + e2λ (l − 1)(l + 2)
2π2

Δ2

RRc

1
n2

]

(113)

Fig. 69. (Color online) The fundamental frequencies 0t2 of
the  = 2 torsional oscillations globally excited in the phases
of spherical (solid line) and cylindrical (dashed line) nuclei
calculated for various stellar EOS models with M = 1.4 M�,
R = 12 km and the ratio of superfluid neutrons to the dripped
neutrons Ns/Nd = 1. Taken from ref. [77].

where n, l are the number of radial and angular nodes the
mode has respectively. The M , R, Rc and Δ are the stellar
mass and radius, the radius out to the core-crust boundary
and the thickness of the crust, respectively. These formu-
lae have been used in several studies incorporating differ-
ent microscopic physics for the crust and sometimes us-
ing different models for the core. Often the core and the
crust are not calculated self-consistent within the same
model framework. Nevertheless, some interesting informa-
tion about the Esym(ρ) has been extracted, albeit some-
times quantitatively different.

As an interesting example, Sotani et al. investigated
effects of the crust and the pasta phase by fixing the core
radius and mass. Thus, effects of the Esym(ρ) on the stel-
lar bulk properties are not fully taken into account in ex-
amining the dependence of the torsional crust oscillation
frequencies on the symmetry energy. As shown in fig. 69,
they found that the fundamental frequencies are almost
independent of the incompressibility K0 of symmetric nu-
clear matter, but strongly depend on the slope parameter
L. This is true in both cases considering only spherical
nuclei and including also cylindrical nuclei in the pasta.
The latter was found to play an appreciable role when the
L is low. The strong L dependence shown in fig. 69 indi-
cates that one may use it to further constrain the value of
L by identifying the observed QPOs as manifestations of
various crustal torsional oscillations. Indeed, this has been
tested in several studies. However, the conclusions depend
on the detailed microphysics considered for the crust. For
example, in one scenario considering only spherical nu-
clei in the crust, they can explain all the observed low
frequency QPOs in terms of the crustal torsional oscilla-
tions if they use L in the range of 100 and 130MeV in
tension with most of the available terrestrial laboratory
constraints shown in fig. 5. Interestingly, they have shown
more recently that considering the pasta phase containing
cylindrical nuclei and constraints on K0, frequencies of the
observed QPOs can now be explained satisfactorily with
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Fig. 70. (Color online) The frequency of the fundamental
mode of torsional oscillation (top) and its first overtone (bot-
tom) for a 1.4 M� neutron star vs the slope parameter L. For
comparison with observations, the possible candidate frequen-
cies: 18, 26, 28, 30 Hz for the fundamental modes and 84, 92,
150, 155, 625 Hz for the first overtone are marked by the dashed
lines. Taken from ref. [539].

L in the range of 58 and 73MeV in good agreement with
the constraints from other analyses of the QPOs and the
terrestrial laboratory data [77].

The speed of shear waves vs in the expressions of ntl
is related to the shear modulus μ and the mass density ρ
at the base of the crust by v2

s = μ/ρ. Based on molecular
dynamics simulations in refs. [536–538] and assuming the
crust is made of nuclei on the Coulomb lattice, the value
of μ has been parameterized as

μs = 0.1106
(

4π

3

)1/3

A−4/3n
4/3
b (1 − Xn)4/3(Ze)2

(114)
where A and Z are the mass and charge numbers of the
nuclei at the base of the crust. The nb is the baryon num-
ber density and Xn is the density fraction of free neutrons
at the base of the crust. Therefore, the torsional mode fre-
quency spectrum also depends on the microscopic struc-
ture and composition of the crust through the shear modu-
lus [144,539]. Gearheart et al. [539] mimicked the limiting
effects of the pasta by setting its μ either at zero as in
the liquid core or μs as in the solid crust with the cor-
responding transition densities properly evaluated using

the compressible liquid drop model discussed in sect. 4.
They also examined effects of entrainment due to scat-
terings of superfluid neutrons off the crustal lattice by
multiplying the frequencies by a mesoscopic effective mass
term ε� = (1 − Xn)/[1 − Xn(mn/m∗

n)] where m∗
n is the

mesoscopic effective neutron mass. The maximum effect
of entrainment using m∗

n/mn = 1 (no entrainment) and
m∗

n/mn = 15 (maximum entrainment) were compared
with that of the pasta phase using μ = 0 or μ = μs in
fig. 70. Several interesting observations can be made by
examining their results: 1) the frequency decreases as L
increases mostly because the radius R, in the denomina-
tor of eq. (113), increases with L; 2) The shear modulus
of the pasta plays a very significant role. The frequencies
may be reduced up to a factor of ≈ 2; 3) The entrainment
plays a relatively smaller effects by reducing the frequen-
cies by about 20–30% at most. The observed level of de-
pendences on the very uncertain properties of the pasta
makes drawing conclusions from comparing the calculated
and observed frequencies rather conditional. In fig. 70, the
horizontally dashed lines indicate the measured QPO fre-
quencies from SGRs. Requiring only the calculated fun-
damental frequencies to fall somewhere in the range of
18–30Hz limits the value of L to be approximately less
than 60MeV. As discussed in detail in refs. [539], if ad-
ditionally the observed 625Hz mode is to be matched to
the 1st overtone, then one may conclude that L � 60MeV
and the pasta phases should have mechanical properties
approaching that of an elastic solid.

In short, the frequencies of the torsional crust oscil-
lations are very sensitive to the Esym(ρ) through several
stellar bulk properties, the core-crust transition density as
well as the microphysics about the crust and the possible
pasta at its base. They are one of the only few quantities
that can be actually compared with observations assum-
ing the QPOs from SGRs are indeed due to the torsional
oscillations. While several analyses of the torsional oscilla-
tions have generally indicated consistently that L should
be around 60MeV, many interesting but poorly known mi-
crophysics and related quantities need to be further stud-
ied before a firm conclusion about the Esym(ρ) can be
drown from comparing the calculated frequencies for the
torsional crust oscillations with the observed frequencies
of the QPOs.

8 Symmetry energy effects on the
EOS-gravity degeneracy of massive neutron
stars

While gravity is the first force discovered in nature,
the quest to unify it with other fundamental forces re-
mains elusive because of its apparent weakness at short-
distance [540–548]. In fact, the nature of gravity has
been identified as one of the eleven greatest unanswered
questions of physics [30]. Since Einstein’s general relativ-
ity (GR) theory for gravity has passed successfully all
tests in the solar system but not fully tested yet in the
strong-field domain [549], searches for evidence of possi-
ble deviation from GR is at the forefront of natural sci-
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ences [30,540–544,550–558]. It is fundamentally important
to test whether the GR will break down at the strongest
possible gravitational field reachable using various probes
by human beings. Moreover, to overcome known problems
associated with GR’s predictions of singularities in the Big
Bang and inside black holes has also been stimulating ac-
tive searches for alternative theories of gravity.

To our best knowledge, the strongest gravity presents
in events involving black holes and so far all observations
are in good agreement with GR predictions. Excitingly
and fortunately, we have all witnessed very recently great
breakthroughs in exploring gravity in its most extreme
limit and on a mass scale that was not accessible before.
Perhaps well known to everybody at least in the physics
community, the two historically most defining events di-
rectly verifying GR predictions are so far 1) the first de-
tection of gravitational waves from the inward spiral and
merger of a pair of black holes of around 36M� and
29M� and the subsequent “ringdown” of the single result-
ing black hole by LIGO and VIRGO Collaborations [559]
and 2) the event-horizon-scale images of the supermassive
black hole of mass M = (6.5±0.7)×109 M� in the center
of the giant galaxy M87 by the Event Horizon Collabo-
ration [560]. The observed image of this black hole was
found consistent with expectations for the shadow of a
Kerr black hole as predicted by GR [560].

While neutron stars are not as massive as black holes,
they are still among the densest objects with the strongest
gravity in the Universe. They thus are also ideal places
to test gravity theories. However, it is well known that
there is a degeneracy between the EOS of dense neutron-
rich matter and the gravity theory in determining prop-
erties of neutron stars. Basically, this is because in ap-
plying the variational principle to the total action to de-
scribe properties of neutron stars one can modify the grav-
ity, matter content and/or their couplings. It has been
pointed out that this degeneracy is tied to the fundamen-
tal Strong Equivalence Principle [561]. For a very recent
review on alternative gravity theories for strong fields and
their applications to neutron stars, we refer the reader to
ref. [562].

Interestingly, some alternative gravity theories that
have all passed low-field tests but are different from
GR in the strong-field regime do sometimes predict neu-
tron stars to have significantly different properties com-
pared to their GR counterparts [563]. To break the EOS-
gravity degeneracy requires simultaneously measuring at
least two independent observables. Due to the strong
diversity of alternative gravity theories, results of on-
going studies are strongly model dependent, see, e.g.,
refs. [112,552,564–566]. Since the Esym(ρ) is the most un-
certain part of the EOS of dense neutron-rich nucleonic
matter, better knowledge about the Esym(ρ) may thus
play significant roles in breaking the EOS-gravity degen-
eracy. Using a few examples from the literature, we il-
lustrate in the following some effects of the Esym(ρ) in
determining the strength of gravity and/or properties of
neutron stars within GR and several alternative gravity
theories.

8.1 Example-1: Esym(ρ) effects on the binding energy,
surface curvature and red shift of massive neutron
stars in Einstein’s General Relativity (GR) theory of
gravity

How strong is the gravity of neutron stars? Several quan-
tities including the binding energy and space-time cur-
vature have been used to measure the strength of grav-
ity. The gravitational binding energy is defined as B ≡
MG − MB [567] where MG is the gravitational mass and
MB ≡ NmB is the baryon mass. The total number N
of baryons can be found by a volume integration of the
baryon density ρB(r) via

N =
∫ R

0

4πr2ρB(r)
[

1 − 2GM(r)
c2r

]−1/2

dr. (115)

The binding energy of a neutron star relative to its grav-
itational mass MG is often used to measure the strength
of gravity. Another frequently used measure of gravity is
the Kretschmann invariant [571]

K2 = κ2

[

3
(

E(r) + P (r)
)2 − 4E(r)P (r)

]

−κE(r)
16GM(r)

c2r3
+

48G2M2(r)
c4r6

(116)

with κ ≡ 8πG/c4. Of course, the strength of gravity de-
pends on the position. Often, for comparisons one may
use the surface gravity. The latter can also be measured
by using the surface gravitational redshift

z =
1

√

1 − 2GM/c2R
− 1. (117)

In a recent study [568], He et al. studied effects of the
Esym(ρ) on the above three measures of gravity within
Einstein’s GR. To reveal effects of the Esym(ρ) at different
densities, they constructed several EOSs for neutron-rich
nucleonic matter using the IU-FSU RMF model and the
SkIU-FSU SHF approach. For example, shown in fig. 71
are the resulting nuclear symmetry energy as a function of
density. By construction, the corresponding EOSs all have
the same incompressibility K0 = 231.3MeV and almost
the same Esym(ρ) at sub-saturation densities while some
of them have the same L but different behaviors at high
densities. In particular, the SkIU-FSU and IU-FSU models
both have the magnitude Esym(ρ0) = 31.3MeV and the
slope L = 47.2MeV for the symmetry energy. For com-
parisons, by properly adjusting all parameters of the RMF
model, they also created two additional RMF models with
differing incompressibility coefficients of K0 = 220MeV
and K0 = 260MeV but the same L = 47.2MeV. Results
of their studies on the strength of gravity on the surface of
neutron stars are shown in fig. 72. Several interesting ob-
servations were made: 1) all three measures are sensitive
to the Esym(ρ) but are almost independent of the com-
pressibility of symmetric nuclear matter, 2) more massive
neutron stars are more sensitive to the variation of sym-
metry energy especially at supra-saturation densities as
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Fig. 71. Examples of nuclear symmetry energy as a function of
density within the relativistic mean-field (RMF) model and the
Skyrme-Hartree-Fork (SHF). By construction, the correspond-
ing EOSs all have the same incompressibility K0 = 231.3MeV
and almost the same Esym(ρ) at sub-saturation densities while
some of them have the same L but different high density sym-
metry energies. Taken from ref. [568].

they are probing more denser matter than the light ones,
3) all three measures reveal rather consistent information
about effects of the EOSs on the strength of gravity. More-
over, the surface curvature appears to be most sensitive
to the variation of symmetry energy.

In the context of this subsection, it is interesting to
note here that the test of strong-field gravity using the
binding energy of the most massive neutron star observed
so far, the PSR J0348+0432 of mass 2.01±0.04M�, found
no evidence of any deviation from the GR prediction [359].
The analysis used a very stiff EOS with an incompress-
ibility of K0 = 546MeV at normal nuclear matter den-
sity [572, 573]. While such a super-stiff incompressibility
is more than twice the value of K0 = 240 ± 20MeV ex-
tracted from analyzing various experiments in terrestrial
nuclear laboratories during the last 30 years, the finding
by Newton et al. [574] and later by He et al. [568] that the
binding energy is approximately independent of the K0

makes the conclusion of ref. [359] more reliable despite of
the unreasonably stiff incompressibility used.

8.2 Example-2: Esym(ρ) effects on the mass-radius
relation of massive neutron stars in the Damour and
Esposito-Farèse (DEF) scalar-tensor theory of gravity

To illustrate EOS effects on properties of neutron stars in
the non-perturbative strong-gravity regime, here we cite
two comparisons of the mass-radius relations calculated
within the Damour and Esposito-Farèse (DEF) model of
the scalar-tensor gravity theory [575, 576] and the GR,
respectively. In the DEF theory, the action has the form

S =
c4

16πG

∫

d4x
√
−g∗ [R∗ − 2g∗μν∂μϕ∂νϕ − V (ϕ)]

+Smatter

(

ψmatter;A2(ϕ)g∗μν

)

, (118)
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Fig. 72. (Color online) Gravitational binding energy (upper
window), surface curvature (middle window) and surface red-
shift (lower window) as functions of neutron star mass within
GR using EOSs with different symmetry energies shown in
fig. 71. Taken from ref. [568].

where R∗ is the Ricci scalar curvature with respect to the
so-called Einstein frame metric g∗μν and V (ϕ) is the scalar
field potential. The GR is automatically recovered in the
absence of the scalar field. The stellar structure is deter-
mined by a set of first-order differential equations that
can be solved once the EOS and boundary conditions are
specified [575, 576]. The gravity-matter coupling function
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Fig. 73. (Color online) The mass versus radius relation within GR, and the Damour and Esposito-Farèse (DEF) theory of
gravity. Left: using the same four EOSs shown in fig. 71 and the gravity parameters of {α0, β0} = {

√
2.0 × 10−5,−5.0}, taken

from ref. [568]. The left branch is from GR calculations while the right one is from the DEF theory. Right: predictions from
the GR (dotted lines) and DEF theory with |α0| = 10−5 and β0 = −4.5 (solid lines) using nine popular EOSs for neutron star
matter, taken from ref. [562].

has the form

A(ϕ) = exp
(

α0ϕ +
1
2
β0ϕ

2

)

. (119)

Various studies using different α0 and β0 parame-
ters have been reported in the literature. For example,
shown in the left window of fig. 73 are predictions by
He et al. [568] within the DEF theory using the same
four EOSs shown in fig. 71 and the gravity parameters
of {α0, β0} = {

√
2.0 × 10−5,−5.0}. It is seen that pre-

dictions using the two theories split above about 1.5M�.
For each EOS, the left branch is from GR calculations
while the right one is from the DEF theory. The right
window shows predictions by Shao using nine popular
EOSs for neutron star matter within the DEF theory with
|α0| = 10−5 and β0 = −4.5 (solid lines) and the GR theory
(dashed lines) [562]. Despite of the different parameters
used, two major features are shared by both predictions.
Firstly, regardless of the EOSs used, the GR and DEF
theories predict almost the same mass-radius relations for
neutron stars lighter than about 1.5M�. Secondly, the
DEF predicts “bumps”, namely, some more massive neu-
tron stars having significantly larger radii compared to
the GR predictions. While one can numerically show that
the sizes of the bumps depend on the value of β0 in the
matter-gravity coupling function, astrophysical observa-
tions [569] indicate that β0 ≥ −5. Moreover, as shown in
the right panel of fig. 73, the bumps are almost invisible
with β0 = −4.5. Thus, within the small parameter range
of −4.5 ≤ β0 ≥ −5, the differences between GR and DEF
predictions are small. Going beyond this limit or changing
the sign of β0, one can show purely numerically that the
DEF may give a maximum mass less than that predicted
by GR [570].

It is interesting to note that the bumps can not be
mimicked by varying the EOS in GR. Shao pointed out
that this bumpy structure is a very distinct feature for

spontaneously scalarized neutron stars [562]. However,
given the current and expect precisions of measuring the
radii of neutron stars in the near future, observational
signatures of the bumps are hard to be obtained. On the
other hand, comparing the predicted mass-radius relations
with the EOSs used by He et al., it is seen that in both
gravity theories, the major source of uncertainties for the
radii is still the density dependence of nuclear symmetry
energy.

8.3 Example-3: Esym(ρ) effects on the mass-radius
relation in the Eddington-inspired Born-Infeld (EiBI)
theory of gravity

The Eddington-inspired Born-Infeld (EiBI) gravity the-
ory proposed in ref. [577] has the appealing feature that
it reduces to GR in vacuum and can avoid the Big Bang
singularity. While it has some pathologies, such as surface
singularities and anomalies associated with phase transi-
tions in compact stars, applications of the EiBI gravity
in studying properties of neutron stars have been found
useful, see, e.g., refs. [490, 578]. The EiBI theory is based
on the action [577]

S =
1

16π

2
κ

∫

d4x

(√

|gμν + κRμν | − λ
√
−g

)

+SM [g, ΨM ] , (120)

where Rμν is the symmetric part of the Ricci tensor
and SM [g, ΨM ] is the matter action. The dimensionless
constant λ is related to the cosmological constant by
Λ = (λ − 1)/κ. The κ and λ are two model parameters.
Different values are often taken in various studies. For ex-
ample, in the studies of both ref. [490] and ref. [578], λ
was set to 1 while the κ is varied under the condition
8πκε0 < 0.1, where ε0 = 1015 g cm−3. Interestingly, effects
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Fig. 74. (Color online) Left: gravitational mass M plotted against the central density εc for the APR EOS. The values of the
coupling parameter 8πκε0 (with ε0 = 1015 g cm−3) are shown in parentheses. Note that κ = 0 corresponds to the GR limit
(solid). Taken from ref. [490]. Right: neutron star mass-radius relations in the EiBI gravity theory constructed from FPS EOS.
The labels on lines denote the values of 8πε0κ while the solid line is from using the GR for gravity corresponding to κ = 0.
Taken from ref. [578].

on the structure of neutron stars by varying the κ param-
eter were found to depend strongly on the EOS especially
its Esym(ρ) term. As examples of neutron star models in
the EiBI theory, shown in fig. 74 are the mass-central den-
sity (left) and mass-radius (right) relations constructed
from using different EOSs and κ parameters. Shown in the
left window are the gravitational mass M plotted against
the central density εc for the APR EOS [579]. The values
of the coupling parameter 8πκε0 (with ε0 = 1015 g cm−3)
are shown in parentheses. Note that the GR limit (solid)
corresponds to κ = 0. Clearly, the value of κ parameter
affects significantly the maximum mass reached. Similarly,
shown in the right window are the mass-radius correlation
with the FPS EOS [580] by varying the κ parameter. Com-
paring the results of the two windows, the EOS-gravity
degeneracy within one class of gravity theory is clearly
demonstrated. The same mass-radius correlation can be
obtained by varying either the gravity coupling constant
κ in the EiBI theory or the EOS of neutron star matter.
Thus, without the precise knowledge about the EOS, it
is impossible to distinguish the EiBI from the GR the-
ory for gravity. Comparing to the mass-radius correlation
from the DEF scalar-tensor theory discussed in the pre-
vious subsection, it is interesting to note that the EiBI
and GR predictions are different in the whole range of
mass while the predictions from DEF and GR are differ-
ent only for massive neutron stars. This feature may allow
one to distinguish the EiBI from DEF if one can measure
accurately the radii of very light neutron stars as we shall
discuss next.

Efforts have been made to break the EOS-gravity de-
generacy, see, e.g., ref. [554] for a review. As an example
relevant to this review, we discuss next a proposal made by
Sotani [578]. Earlier, it was first proposed by Carriere et
al. [581] that a precise measurement of neutron skin ΔR
in 208Pb may help constrain the radii R05 of low mass
(� 0.5M�) neutron stars. It is based on their findings

within the RMF model for nuclear EOS and the GR for
gravity that there is a strong correlation between R05 and
ΔR depending on the EOSs used only weakly as similar
densities are reached in both objects, as shown in the left
window of fig. 75. On the other hand, as shown in the right
window of fig. 75, the R05-ΔR correlation depends signif-
icantly on the κ parameter in the EiBI theory. The EOSs
used in this study have even less effects on the R05-ΔR
correlation compared to the findings of ref. [581]. How-
ever, it is worth noting the outstanding role of the Esym(ρ)
in this correlation. Calculations using a phenomenological
EOS proposed by Oyamatsu and Iida [258], labeled by
the OI(K0, L) in the right window, show clearly that the
L makes both the R05 and ΔR increase independent of
the gravity theory used. While the R05 depends also on
the gravity theory and its strength as one expects.

Since it is observationally extremely hard to measure
the radii of light neutron stars as they are hard to be
formed in the first place, if the ΔR can indeed be mea-
sured precisely in terrestrial laboratories, its strong corre-
lation with R05 may help constrain the κ parameter in the
EiBI gravity theory. A nonzero value of κ will be a clear
indication of deviations from the GR. Most of other grav-
ity theories, such as the DFE scalar-tensor theory, do not
expect GR to be broken in the low-gravity field reached in
such low-mass neutron stars. The proposed study about
the radii of light neutron stars hopefully can be done in
the near future to help distinguish the EiBI theory from
other theories for gravity.

8.4 Example-4: Esym(ρ) effects on the mass-radius
relation in a non-Newtonian theory of gravity with
Yukawa correction

In the weak-field limit, some modified gravity theories,
e.g., f(R) [582,583], the nonsymmetric gravitational theory
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Fig. 75. (Color online) Radii of neutron stars with 0.5 M�, R05 as a function of neutron skin thickness ΔR of 208Pb using
the indicated nuclear EOSs. Left: calculations within GR using several EOSs from relativistic mean-field models, taken from
ref. [581]. Right: calculations for neutron star radii in both GR (solid line) and EiBI (broken and dotted lines) gravity theory with
8πε0κ = −0.02, 0, and 0.02, respectively. The sizes of neutron-skin in 208Pb are calculated by using (1) the extended Thomas-
Fermi theory using the EOSs indicated by OI(K0, L), (2) several RMF and (3) several SHF EOSs. Taken from ref. [578].

(NGT) [584] and Modified Gravity (MOG) [585], an extra
Yukawa term besides the Newtonian potential naturally
arise, see ref. [586] for a review. To our best knowledge,
such form of non-Newtonian gravity was first proposed
by Fujii [550, 587, 588]. The non-Newtonian gravitational
potential between two objects of mass m1 and m2 can be
written as

V (r) = −Gm1m2

r
(1 + αe−r/λ) (121)

where α is a dimensionless strength parameter, λ is the
length scale, and G is the gravitational constant. In fact,
it has long been proposed that Newtonian gravity has to
be modified due to either the geometrical effect of the
extra space-time dimensions predicted by string theories
and/or the exchange of weakly interacting bosons [589]
in the super-symmetric extension of the Standard Model.
We refer the reader to refs. [590–594] for reviews on this
topic. While still under debate, the Yukawa-type potential
has been used successfully in explaining the flat galaxy
rotation curves [584, 595] and the Bullet Cluster 1E0657-
558 observations [596] without invoking dark matter.

In the boson exchange picture, the strength of the
Yukawa potential is

α = ±g2/(4πGm2
b) (122)

where the ± sign is for scalar/vector bosons, mb is the
baryon mass and g is the boson-baryon coupling con-
stant. While its range is λ = 1/μ (in natural units)
where μ is the boson mass. Much efforts have been de-
voted to setting upper limits on the strength α and
range λ from femtometer range in nuclei to the visi-
ble universe using different experiments and observations.
Shown in the left window of fig. 76 are several recent con-
straints [555,556,597–599] in the range of λ ≈ 10−15–10−8

m where one has very roughly g2/μ2 ≈ 40–50GeV−2 [600].
Extensive reviews on the constraints at larger ranges can
be found in refs. [590, 591]. The extra energy density due

to the Yukawa term is [544,566]

εUB =
1

2V

∫

ρ(x1)
g2

4π

e−μr

r
ρ(x2)dx1dx2 =

1
2

g2

μ2
ρ2,

(123)
where V is the normalization volume. Assuming a con-
stant boson mass independent of the density, one obtains
an additional pressure of

PUB =
1
2

g2

μ2
ρ2 . (124)

In the EiBI gravity, the resulting differential equations
can be casted into the same TOV equations but with an
apparent EOS including effects from both the nuclear EOS
and modified gravity, reflecting the EOS-gravity degen-
eracy [490]. The same is true for the Yukawa-type non-
Newtonian gravity. Namely, a negative Yukawa term can
be considered effectively either as an anti-gravity [595] or
a stiffening of the nuclear EOS [566], while Fujii [587]
indicated that the Yukawa term is simply a part of the
matter system in GR. Thus, one can study effects of the
non-Newtonian gravity by solving the TOV equation us-
ing the total pressure P = PNU +PUB where PNU denotes
the nuclear pressure inside neutron stars. Using this ap-
proach, Lin et al. [600] constructed several typical EOSs
with or without a quark core described by the MIT bag
model. While the EOS for the npeμ matter is modeled
by using the MDI interaction. The Gibbs construction
was adopted for modeling the hadron-quark phase tran-
sition. Shown in the right panel of fig. 76 are the typi-
cal EOSs. Here the MDI parameter x = 0 is used, lead-
ing to an Esym(ρ) increase approximately linearly with
density. By construction, the following two sets of pa-
rameters, B1/4 = 170MeV and g2/μ2 = 50GeV−2 or
B1/4 = 180MeV and g2/μ2 = 40GeV−2, lead to ap-
proximately the same total pressure. For comparisons, the
soft and stiff EOSs for npe matter constructed by Hebeler
et al. [601] are also shown. Should one use a super-soft
Esym(ρ) that is decreasing with increasing density above
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Fig. 76. (Color online) Left: constraints on the strength and range of the Yukawa term from terrestrial nuclear experiments
in comparison with a fit with g2/μ2 ≈ 40–50GeV−2; Right: model EOSs for hybrid stars with and without using the Yukawa
term with a MIT bag constant B1/4 = 170 MeV and B1/4 = 180 MeV, respectively. The soft and stiff EOSs for npe matter are
taken from ref. [601]. Taken from ref. [600].

Fig. 77. Left: the mass-radius relation of static neutron stars with B1/4 = 170MeV and several values of g2/μ2 in units of
GeV−2. Right: the maximum mass of neutron stars as a function of g2/μ2 with B1/4 = 170 and 180 MeV, respectively. Taken
from ref. [600].

certain high-densities, larger values of g2/μ2 would be re-
quired to obtain the same maximum mass [112].

As examples, shown in the left window of fig. 77 is the
mass-radius relation of hybrid stars with the bag constant
B1/4 = 170MeV and several values of g2/μ2, while shown
in the right window are the maximum masses as a func-
tion of g2/μ2 with B1/4 = 170MeV and B1/4 = 180MeV,
respectively. As one expects, increasing the strength of the
Yukawa term effectively stiffens the nuclear EOS, leading
to higher neutron star masses. These results reinforce the
suggestion that the maximum mass of neutron stars can
not rule out any EOS of dense stellar matter before grav-
ity is well understood [602]. Multiple observables may help
break the EOS-gravity degeneracy. Interestingly, as shown
in fig. 78 the f-mode frequency depends sensitively on both
the stiffness of the nuclear EOS and the strength g2/μ2 of
the Yukawa-type non-Newtonian gravity. The upper two
curves in the left panel of fig. 78 are obtained without us-
ing the Yukawa potential while the lower two are obtained

with g2/μ2 = 40 and 50GeV−2, respectively. Shown in the
right panel are the f -mode frequency versus the strength
g2/μ2 for a fixed mass 1.4M� and 1.2M�, respectively.
Obviously, if both the mass and the f -mode frequency are
measured, the EOS-gravity degeneracy is readily broken.
Moreover, similar EOS-gravity degeneracies were found in
studying the frequencies of the p1, p2, and wI -modes [600].
Thus, it is very hopeful that the multi-messengers ap-
proach will eventually lead to the breaking of the EOS-
gravity degeneracy.

In summary of this section, both the EOS of dense
neutron-rich nuclear matter especially its symmetry en-
ergy term and the strong-field gravity are poorly known.
While the GR has been successfully tested in the solar
system, it has not been fully tested yet in the strong-
field regime. There are reputable alternative theories for
strong-field gravity. Neutron stars are among the dens-
est objects with strong gravity. It provides a natural test-
ing bed for both dense matter EOS and the strong-field
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Fig. 78. (Color online) Left: the f -mode frequency versus the NS mass. The upper two curves are results without including
the Yukawa potential while the lower two are obtained with g2/μ2 = 40 and 50GeV−2 (for hybrid stars with B1/4 = 170 MeV).
Right: the f -mode frequency versus g2/μ2 for neutron stars of mass 1.4 M� and 1.2 M�, respectively. Taken from ref. [600].

gravity. However, through several examples, we have seen
that most of the known observables suffer from the EOS-
gravity degeneracy. Realistically, to make a decisive con-
clusion about either one of them will require the precise
knowledge of the other. Fortunately, in the era of multi-
messengers astronomy, several neutron stars observables
are expected to be measured accurately. It is thus very
hopeful that the EOS-gravity degeneracy of the dense
neutron-rich nuclear matter in the strong-gravity field will
be broken in the near future.

9 Concluding remarks and outlook

The density dependence of nuclear symmetry energy is
the most uncertain part of the EOS of dense neutron-
rich nucleonic matter. It is still poorly known especially
at supra-saturation densities mostly because of our poor
knowledge about the isovector nuclear interactions and
correlations in dense medium besides the longstanding
challenges in treating nuclear many-body problems. For
realizing the shared goal of determining the Esym(ρ) more
precisely, in parallel with the continuous efforts of pre-
dicting the Esym(ρ) more accurately using various state-
of-the-art theories and probing it using new experiments
in terrestrial nuclear laboratories, significant efforts have
also be devoted to predicting astrophysical effects of the
Esym(ρ) and extracting information about it from observa-
tions of neutron stars using both X-rays and gravitational
waves. In this review, we focused on understanding astro-
physical effects of nuclear symmetry energy. We presented
our observations and comments on some of the studies by
many people in the community besides some of our own
work in this area. Limited by our knowledge in this rather
multi-disciplinary field, our selection of research issues and
discussions made might be biased and incomplete. With-
out repeating too much the summaries we have given at

the end of each section, we emphasize the following among
the many interesting physics we have learned:

– The spin-isospin dependence of the three-body force,
the tensor force induced isospin dependence of short-
range nucleon-nucleon correlations as well as the finite-
range part of the two-body interaction and the asso-
ciated momentum-dependence of the isovector single-
nucleon potential remain as the key but poorly known
physics ingredients determining the high-density be-
haviour of nuclear symmetry energy.

– The long-waited and well-welcomed flood of interesting
papers triggered by GW170817 about the radii from
analyzing the tidal deformability of neutron stars have
led to a fiducial value of R1.4 = 12.42 km with the lower
and upper limit of 10.95 km and 13.23 km, respectively.
This value is consistent with the pre-GW170817 pre-
diction of 11.5 km ≤ R1.4 ≤ 13.6 km using the Esym(ρ)
from analyzing terrestrial laboratory data. It is also
consistent with the finding of 10.62 ≤ R1.4 ≤ 12.83 km
from analyzing the X-ray data taken mostly by Chan-
dra and/or XMM-Newton observatories.

– The radii of canonical neutron stars are known to be
sensitive to the Esym(ρ) around 2ρ0. Using a new nu-
merical technique of solving the inverse-structure prob-
lem of neutron stars in a multidimensional EOS pa-
rameter space, the extracted fiducial value of radii,
observed tidal deformability from GW170817 and the
earlier observed maximum mass of 2.01M� together
with the causality condition, the Esym(2ρ0) has been
constrained to 46.9 ± 10.1MeV. The Esym(ρ) remains
very uncertain at higher densities. While more pre-
cise measurements of neutron star radii and the tidal
deformability in the inspiraling phase of neutron star
mergers are expected to help further narrow down the
nuclear symmetry energy around 2ρ0, new observables,
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such as neutrinos from the core of neutron stars, sig-
nals from the merging phase of two colliding neutron
stars in space or two colliding heavy-nuclei in terres-
trial laboratories are needed to probe the Esym(ρ) at
higher densities.

– An absolutely maximum mass of 2.4M� independent
of the EOS was predicted. Several post-GW170817
analyses using various approaches extracted a fiducial
maximum mass of about 2.24M� for the remanent
of GW170817. It remains an interesting question and
outstanding challenge to pin down the mass boundary
between massive neutron stars and black holes.

– The Esym(ρ) has been predicted to have significant ef-
fects on the moment of inertia, ellipticity and the as-
sociated strain amplitude of continuous gravitational
waves from isolated pulsars.

– The frequencies and damping times of various oscilla-
tions, especially the g-modes of the core and the tor-
sional modes of the crust, carry important information
about nuclear symmetry energy. The frequency and
damping time of the f-mode were found to scale with
the tidal deformability. The reported tidal deformabil-
ity of neutron stars involved in GW170817 has pro-
vided useful limits for the f-mode frequency and its
damping time.

– The Esym(ρ) also plays important roles in reaching
the goal of breaking the EOS-gravity degeneracy. Be-
sides Einstein’s well-known GR theory of gravity, there
are some reputable alternatives under debate. A better
knowledge about the Esym(ρ) at supra-saturation den-
sities will help understand the nature of strong-field
gravity and further test Einstein’s GR using massive
neutron stars or their collisions in space.

Thanks to the great efforts of many people in the
community, much progresses have been made while great
challenges and new opportunities are ahead of us. While
advanced X-ray observatories and gravitational wave de-
tectors are being launched and built, new experiments
in terrestrial laboratories especially those proving high-
energy radioactive beams are underway. Combining multi-
messengers from multiple experiments and observations in
both nuclear physics and astrophysics will certainly en-
able us to determine much more precisely the symmetry
energy of dense neutron-rich nucleonic matter hopefully
in the near future.
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94. S.O. Bäckman, G.E. Brown, J.A. Niskanen, Phys. Rep.
124, 1 (1985).

95. G.E. Brown, R. Machleidt, Phys. Rev. C 50, 1731 (1994).
96. G.E. Brown, M. Rho, Phys. Lett. B 237, 3 (1990).
97. G.E. Brown, M. Rho, Phys. Rev. Lett. 66, 2720 (1991).
98. G.E. Brown, M. Rho, Phys. Rep. 396, 1 (2004).
99. H.K. Lee, B.Y. Park, M. Rho, Phys. Rev. C 83, 025206

(2011).
100. C. Xu, A. Li, B.A. Li, J. Phys. Conf. Ser. 420, 012190

(2013).
101. T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi,

Phys. Rev. Lett. 95, 232502 (2005).
102. T. Otsuka, T. Matsuo, D. Abe, Phys. Rev. Lett. 97,

162501 (2006).
103. G. Bertsch, J. Borysowicz, H. McManus, W.G. Love,

Nucl. Phys. A 284, 399 (1977).
104. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C

51, 38 (1995).
105. A. Li, B.A. Li, arXiv:1107.0496.
106. V.R. Pandharipande, V.K. Garde, Phys. Lett. B 39, 608

(1972).
107. R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38,

1010 (1988).
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186. G. Colò, U. Garg, H. Sagawa, Eur. Phys. J. A 50, 26

(2014).
187. B.A. Li, W.J. Guo, Z.Z. Shi, Phys. Rev. C 91, 044601

(2015).
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A. Vuorinen, JHEP 11, 031 (2017).
307. I. Tews, J. Carlson, S. Gandolfi, S. Reddy, Astrophys. J.

860, 149 (2018).
308. L. McLerran, S. Reddy, Phys. Rev. Lett. 122, 122701

(2019).
309. B.A. Li, L.W. Chen, C.M. Ko, A.W. Steiner, Rev. Mex.

Fis. S52, 56 (2006).
310. J.M. Lattimer, A.W. Steiner, Eur. Phys. J. A 50, 40

(2014).
311. W.H.G. Lewin, J. van Paradijs, R.E. Taam, Space Sci.

Rev. 62, 223 (1993).
312. T.E. Strohmayer, A.L. Watts, Astrophys. J. 653, 593

(2006).
313. M.C. Miller, F.K. Lamb, Eur. Phys. J. A 52, 63 (2016).
314. V.F. Suleimanov, J. Poutanen, D. Klochkov, K. Werner,

Eur. Phys. J. A 52, 20 (2016).
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