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Abstract. We calculate the nucleon parameters in symmetric nuclear matter employing the QCD sum rules
approach. We focus on the average energy per nucleon and study the equilibrium states of the matter. We
treat the matter as a relativistic system of interacting nucleons. Assuming the dependence of the nucleon
mass on the light quark mass mq to be more important than that of nucleon interactions we find that the
contribution of the relativistic nucleons to the scalar quark condensate can be expressed as that caused
by the nucleon matrix element multiplied by the density dependent factor F (ρ) caused by the relativistic
motion of nucleons composing the matter. We demonstrate that there are no equilibrium states while we
include only the condensates with dimension d ≤ 3. There are equilibrium states if we include the lowest
order radiative corrections and the condensates with d ≤ 4. They manifest themselves for the nucleon
sigma term σN > 60 MeV. Including the condensates with d ≤ 6 we find equilibrium states of nuclear
matter for σN > 41 MeV. In all cases the equilibrium states are due to influence of the relativistic motion
of nucleons on the scalar quark condensate.

1 Introduction

The vacuum QCD sum rules enable to express the charac-
teristics of the observed hadrons in terms of the vacuum
expectation values of the QCD operators, also known as
condensates. The method was employed for calculation of
the meson and nucleon characteristics [1–4] (see also [5]).

In the vacuum sum rules one starts with building the
function Π(0)(q) which describes the time-space propa-
gation of the three-quark system with the proton quan-
tum numbers carrying the four-momentum q. It contains
two scalar functions Πi(0)(q2) (i = q, I), and Π(0)(q) =
q̂Πq(0)(q2) + IΠI(0)(q2) with q̂ = qμγμ while I is the unit
4 × 4 matrix. Analysis of the dispersion relations for the
functions Πi(0)(q2) is the next step. They are considered
at large and negative values of q2. The asymptotic free-
dom of QCD enables to present the functions Πi(0)(q2)
as the power series of 1/q2 and of the QCD coupling αs.
The QCD condensates are the coefficients of the 1/q2 se-
ries which is known as the Operator Product Expansion,
OPE [6]. In the OPE the large distances contribution is
included in terms of the vacuum expectation values of the
local quark and gluon operators. The scalar quark con-
densate 〈0|q̄(0)q(0)|0〉 is the most important one.

The imaginary parts of the functions Πi(0)(q2) are
caused by their singularities corresponding to real states
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with the quantum numbers of the proton. In the standard
approach to the description of the spectrum of the func-
tions Πi(0)(q2) the lowest lying pole (the proton) is writ-
ten explicitly while the higher excited states are treated
approximately. This is known as the “pole+continuum”
model [1–5]. The position of the nucleon pole m, its residue
λ2

0 and the effective continuum threshold W 2
0 are the un-

knowns of the QCD sum rules equations. Thus the vacuum
QCD sum rules express the characteristics of free proton
in terms of vacuum QCD condensates.

In nuclear matter we introduce the 4-vector P = (m,0)
with m being the vacuum value of the nucleon mass (we
neglect the neutron-proton mass splitting). The function
Π(q, P ) describes the time-space propagation in nuclear
matter of the three quark system with the proton quantum
numbers carrying the four-momentum q. There are three
structures of the function Π(q) proportional to the matri-
ces q̂, P̂ and I, i.e. Π(q, p) = q̂Πq(q, P ) + P̂ΠP (q, P ) +
IΠI(q, P ).

We employ the approach suggested in [7]. It was em-
ployed later e.g. in [8,9] and was reviewed in [10]. The
approach is based on the dispersion relations in q2. To
separate the singularities connected with the probe nu-
cleon from those connected with the matter itself the value
s = (q +P )2 is fixed. Putting s = 4m2 we exclude the sin-
gularities connected with excitations of the matter. Thus
we consider Πi(q, P ) = Πi(q2, s) with i = q, P, I and
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analyze the dispersion relations in q2 for the functions
Πi(q2, s).

In alternative approach, developed in [11] the disper-
sion relations in q0 at fixed value of the three-dimensional
momentum |q| is the departure point. It was employed
e.g. in [12–14] and was reviewed in [15].

In both approaches the left hand sides of the disper-
sion relations contain the in-medium QCD condensates.
Imaginary parts of the functions Πi(q, P ) are treated in
the “pole+continuum” model. The nucleon Dirac effective
mass m∗ (or the scalar self-energy ΣS = m∗ − m), the
vector self-energy ΣV , as well as in-medium values of the
nucleon residue λ2

m and of continuum threshold W 2
m are

the unknowns to be determined from the QCD sum rules.
Hence the finite density QCD sum rules express the char-
acteristics of the nucleon in nuclear matter m∗ and ΣV

in terms of the in-medium QCD condensates. The latter
are the functions of the nuclear matter density ρ. Thus we
expect to find the density dependence of m∗ and ΣV .

In the OPE and αs expansions weakly correlated
quarks are exchanged between our three quark system and
the matter. The scalar and vector nucleon self-energies
can be viewed as due to exchange of mesons (systems
of strongly correlated quarks) between the probe nucleon
and the nucleons of the matter. Thus the exchange by
systems of strongly correlated quarks between the probe
nucleon and the nucleons of the matter is expressed in
terms of exchanges by weakly correlated quarks with the
same quantum numbers between our three-quark system
and the matter.

Both approaches provided reasonable values of the nu-
cleon self-energies by inclusion of the condensates of the
lower dimensions in the nonrelativistic gas approximation.
In the lowest dimension (d = 3) these were the vector and
scalar quark expectation values v(ρ) = 〈M |

∑
i q̄iγ0q

i|M〉
and κ(ρ) = 〈M |

∑
i q̄iqi|M〉. Here |M〉 is the vector of

state of nuclear matter, the sums are carried out over
the quark flavors. (The vector condensate is model in-
dependent. It is just the density of the valence quarks.)
In next steps the approach based on the dispersion rela-
tions in q2 was improved by the consistent inclusion of the
in-medium four-quark condensates which requires model
assumptions on the quark structure of the nucleon and
of the radiative corrections beyond the logarithmic ap-
proximation (see [10] and the references therein). In other
moves to improve the approach [16,17] the scalar conden-
sate was included beyond the gas approximation. The in-
medium corrections provided by pion exchanges between
free nonrelativistic nucleons [18] were taken into account.
This helped to clarify the role of many body forces but
did not answer the question, if the finite density QCD sum
rules approach provide the equilibrium of nuclear matter.

To answer the question we take a different look on
the scalar quark condensate. In all the papers mentioned
above the analysis was started by treating the nuclear
matter as a gas of free noninteracting nucleons. Now we
follow another strategy. We assume the state |M〉 to be a
system of interacting relativistic nucleons moving in self-
consistent scalar and vector fields. This system is placed

in the QCD vacuum. Our key assumption is that in the
in medium change of the scalar condensate the relativistic
motion of nucleons is at least as important as the influ-
ence of the meson (mostly the pion) cloud. In the present
paper we include only the relativistic motion of nucleons.
We calculate the average binding energy per nucleon B(ρ)
in terms of m∗(ρ) and ΣV (ρ). We look if the condition
dB(ρ)/dρ = 0 can be satisfied for a reasonable value of
ρ = ρeq with B(ρeq) < 0.

The convergence of 1/q2 series is an important assump-
tion. Thus we expect the terms containing the condensates
of the lowest dimension to be the most important ones.
The higher terms of the 1/q2 series contains the conden-
sates of the higher dimensions. The condensates of the
lowest dimension d = 3 are the vector and scalar quark
expectation values v(ρ) = 〈M |

∑
i q̄i(0)γ0q

i(0)|M〉 and
κ(ρ) = 〈M |

∑
i q̄i(0)qi(0)|M〉. Here |M〉 is the vector of

state of nuclear matter, the sums are carried out over the
quark flavors. In these condensates two quark operators
act at the same space-time point. The vector condensate
is model independent. It is just the density of the valence
quarks.

We must include also the configuration in which the
two quark operators act in different space-time points. For
example, we must include the nonlocal vector condensate
〈M |

∑
i q̄i(0)γ0q

i(x)|M〉. To be consistent with the gauge
invariance one should treat the operator q(x) as the Taylor
series q(x) = (1 + xαDα + 1/2 · xαxβDαDβ + . . .)q(0)
providing infinite series of the local condensates. We shall
consider the point in more details in sect. 5.

We include consequently the condensates of higher di-
mension and the radiative corrections in calculation of
nucleon parameters. We find that after inclusion of the
condensates with d ≤ 6 the nuclear matter obtains equi-
librium states for reasonable values of the sigma term σN .
Inclusion of the condensates with d ≤ 6 means that we
include the terms of the order q2 ln q2, ln q2 and 1/q2 in
the polarization operator.

Note that in the present analysis we include only the
contributions corresponding to the 2N interactions be-
tween the probe proton and the matter. Each of QCD
condensates is presented as the sum of its vacuum value
and the expectation value of the same operator summed
over the nucleons of the matter.

We recall the main points of the finite density QCD
sum rules approach based on dispersion relations in q2 in
sect. 2. We present the expression for the binding energy
in sect. 3. In sects. 4–6 we calculate the nucleon parame-
ters m∗ and ΣV and the energy per nucleon B including
consequently the condensates of the higher dimension. We
summarize in sect. 7.

2 Finite density QCD sum rules

The vacuum sum rules [4,5] are based on dis-
persion relations for the function Π(0)(q2) =
i
∫

d4xei(q·x)〈0|T [j(x)j̄(0)]|0〉, describing the propagation
in vacuum of the system with the four-momentum q which
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carries the quantum numbers of the hadron (this is the
proton in our case). Here j(x) is the local quark operator
with the proton quantum numbers. In similar way the fi-
nite density sum rules are based on dispersion relations for
the function Π(q2, s) = i

∫
d4xei(q·x)〈M |T [j(x)j̄(0)]|M〉

describing the propagation of the system in nuclear
matter. The functions Π(0)(q2) and Π(q2, s) are often
referred to as the “polarization operators” in vacuum and
in nuclear matter correspondingly.

In the dispersion relations for the three components
i = q, I, P

Πi(q2, s) =
1
π

∫
dk2 Im Πi(k2, s)

k2 − q2
, (1)

the left hand side is presented by several lowest terms
of the OPE series (this will be labeled by the upper in-
dex OPE). The imaginary parts on the right hand sides
describe the physical states with the proton quantum
numbers and are approximated by the “pole+continuum”
model in which the lowest lying pole is written down ex-
actly, while the higher states are described by continuum
with the discontinuity corresponding to the OPE terms,

Πi(k2, s)
π

= ζiλ2
Nm(s)δ(k2 − m2

m(s))

+
ΔΠiOPE(k2, s)

π
θ(k2 − W 2

m(s)).

Here ζq = 1, ζI = m∗, ζP = −ΣV /m, while m is the
vacuum nucleon mass. The vector and scalar self-energies
ΣV and ΣS = m∗ − m and also the parameters λ2

Nm and
W 2

m are the unknowns of the sum rules equations. The po-
sition of the pole corresponding to the probe proton can
be expressed in terms of ΣV and ΣS ; in linear approxima-
tion mm = m + ΣS + ΣV . Note that the negative energy
solution for the nucleon pole with q0 = −m corresponds
to q2 = 5m2. Its contribution is strongly quenched by the
Borel transform (see below). This is one of the states de-
scribed by continuum.

The polarization operator Π(q2, s) can be presented
as the sum of the vacuum term Π0(q2) and the contri-
bution Π(m)(q2, s) caused by the nucleons of the matter,
i.e. Π(q2, s) = Π0(q2) + Π(m)(q2, s). There is no vacuum
term for the P structure, and ΠP (q2, s) = ΠP (m)(q2, s).
Also the OPE expansion of the structures Πi(q2, s) can
be written as

Πq,OPE(q2, s) =
∑

d=0

πq
d(q2, s);

ΠI,OPE(q2, s) =
∑

d=3

πI
d(q2, s);

ΠP,OPE(q2, s) =
∑

d=3

πp
d(q2, s),

with d the dimensions of the condensates. The lowest
terms for the OPE expansions of the I and P structures
contain the condensates with dimension d = 3. The term
with d = 0 in the OPE expansion of Πq,OPE is the free

three-quarks loop. The calculations are carried out in the
chiral limit, with the light quark masses mu,d = 0.

In next step the Borel transform (the inverse Laplace
transform) is used. Operator B̂ = (Q2)n+1/n! ×
(−∂/∂Q2)n with Q2 = −q2, Q2, n → ∞ converts a func-
tion f(q2) to B̂f(q2) = f̂(M2) depending on M2 = Q2/n.
The Borel transform eliminates the divergent terms (thus
we should not worry about subtractions in the dispersion
relations). Also the Borel transform suppress the contribu-
tion of continuum in the dispersion relations. Calculating
B̂(k2−q2)−1 = e−k2/M2

and applying the operator 32π4B̂
to both sides of eq. (1) we obtain the Borel transformed
finite density QCD sum rules

Lq(M2,W 2
m; η) = Λm(M2);

LI(M2,W 2
m; η) = m∗Λm(M2);

LP (M2,W 2
m; η) = −ΣV

m
Λm(M2). (2)

Here η(ρ) is the set of the QCD condensates in nuclear
matter with ρ the baryon density of the matter. The right
hand sides describe the pole corresponding to the probe
proton, Λm = λ2

me−m2
m/M2

with λ2
m = 32π4λ2

Nm while
λ2

Nm is the residue of the nucleon pole. The factor 32π4

is introduced to deal with the quantities of the order of
unity in powers of GeV. Here η(ρ) is the set of the QCD
condensates in nuclear matter.

One can write

Lq(M2,W 2
m; η) =

∞∑

d=0

Ad(M2,W 2
m; η);

LI(M2,W 2
m; η) =

∞∑

d=3

Bd(M2,W 2
m; η);

LP (M2,W 2
m; η) =

∞∑

d=3

Cd(M2,W 2
m; η), (3)

with d the dimension of the condensates, Ad, Bd, Cd the
Borel transformed OPE terms multiplied by 32π4. The
OPE terms of the dimensions d ≤ 6 are shown in fig. 1.
Recall that A0 stands for the free three quark loop.

Each condensate can be presented as

η(ρ) = η(0) + η(m)(ρ), (4)

with η(0) = η(0) the vacuum value of η, while ηm(ρ) is
caused by the nucleons of the matter. Some of the conden-
sates obtain nonzero values only for ρ �= 0, i.e. η(0) = 0.
Also, the terms on the right hand sides of eq. (3) can be
written as

Ad(M2,W 2
m; η(ρ)) = A

(0)
d (M2,W 2

m; η(0))

+A
(m)
d (M2,W 2

m; η(ρ));

Bd(M2,W 2
m; η(ρ)) = B

(0)
d (M2,W 2

m; η(0))

+B
(m)
d (M2,W 2

m; η(ρ));

Cd(M2,W 2
m; η(ρ)) = C

(m)
d (M2,W 2

m; η(ρ)). (5)
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Fig. 1. Feynman diagrams for the leading OPE terms of po-
larization operator. The helix line denotes the system with
the quantum numbers of the proton. Solid lines stand for the
quarks. The bold lines are for the nucleons of the matter.
Dashed lines denote gluons. Panels (a), (b): contributions of the
vector and scalar condensates; panel (c): a typical in-medium
radiative correction; panel (d): contribution of the gluon con-
densate; panel (e): contributions of the four-quark condensates.

Here A
(0)
d and B

(0)
d are the vacuum values, C

(0)
d = 0. A

(m)
d ,

B
(m)
d , C

(m)
d are due to exchange by quarks and by gluons

between our three quark system and the nucleons of the
matter. They can depend on both η(0) and η(m). Also the
left hand sides of eq. (2) can be written as the sum of the
vacuum contribution and that caused by the nucleons of
the matter

Li = Li(0) + Li(m).

The vacuum Borel transformed sum rules [5] are

Lq(0) = Λ(M2); LI(0) = mΛ(M2), (6)

with

Lq(0)=A
(0)
0 (M2,W 2)+A

(0)
4 (M2,W 2)+A

(0)
6 (M2)=Λ(M2);

LI(0)=B
(0)
3 (M2,W 2) + B

(0)
7 (M2,W 2). (7)

Here W 2
0 is the vacuum value of the threshold. Also

Λ = λ2
0e

−m2/M2
with λ2

0 the vacuum value of the residue
in the proton pole. The leading logarithmic radiative cor-
rections αs ln M2 are summed in all orders. The radiative
corrections of the order αs are included in the first order

of perturbative theory. The terms on the right hand sides
of eq. (7) are

A
(0)
0 =

M6E2(W 2/M2)
L4/9

(

1 +
71
12

αs

π

)

;

A
(0)
4 =

bM2E0(W 2/M2)
4

;

A
(0)
6 (M2) =

4
3
a2

(

1 − 5
6

αs

π

)

;

B3 = 2aM2E1(W 2/M2)
(

1 +
3
2

αs

π

)

;

B7 = −ab

12
. (8)

Here the functions E0(x) = 1 − e−x, E1(x) = 1 −
(1 + x)e−x and E2(x) = 1 − (1 + x + x2/2)e−x de-
scribe the contributions of continuum which approximates
the higher excited states. The factors a and b are pro-
portional to the quark and gluon vacuum condensates:
a = −(2π)2〈0|ūu|0〉, b = (2π)2〈0|(αs/π)GaμνGaμν |0〉.
The conventional values are 〈0|ūu|0〉 = (−240MeV)3
and 〈0|(αs/π)GaμνGaμν |0〉 = (0.33GeV)4 [5]. The func-
tion L = (lnM2/Λ2

QCD)/(ln μ2/Λ2
QCD) with ΛQCD =

230MeV accounts for the leading logarithmic radiative
corrections. The standard normalization point is μ =
500MeV.

The solution is found by minimization of the difference
between left hand sides and right hand sides of eq. (7) in
the interval [5]

0.8GeV2 ≤ M2 ≤ 1.4GeV2. (9)

This provides m = 928MeV for the nucleon mass [19].
We employ this value in further calculations. Also λ2

0 =
2.36GeV6 and W 2

0 = 2.13GeV2 are the vacuum values of
the nucleon residue and of the continuum threshold cor-
respondingly. We shall add consequently the terms A

(m)
d ,

B
(m)
d and C

(m)
d to eq. (6).

Employing eq. (2) one can present the effective mass
of the probe nucleon m∗ and the vector self-energy ΣV as

LI(M2,W 2
m; η(ρ))

Lq(M2,W 2
m; η(ρ))

=m∗;
LP (M2,W 2

m; η(ρ))
Lq(M2,W 2

m; η(ρ))
=−ΣV /m.

(10)
The unknown W 2

m ties the two equations. Neglecting the
in-medium shift of the vacuum threshold W 2

0 , i.e. putting
W 2

m = W 2
0 we find two independent expressions for the

nucleon parameters. One can see that m∗ and ΣV do not
exhibit linear dependence on ρ even if we include only the
linear ρ dependence of the condensates.

3 Binding energy

The matter has an equilibrium bound state at ρ = ρeq if
the average binding energy per nucleon

B(ρ) =
E(ρ)

ρ
− m (11)
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reaches its minimum value at this point, i.e.
dB/dρ|ρ=ρeq

= 0, and B(ρeq) < 0. The phenomeno-
logical equilibrium value is

ρ0 = 0.17 fm−3,

with B(ρ0) ≈ −16MeV (see e.g. [20]).
To calculate E in terms of m∗ (or ΣS = m∗ − m) and

ΣV we write the wave equation for the nucleon with the
four-momentum p.

(

p̂ − P̂

m
ΣV + m∗

)

u = 0; P = (m,0).

The bispinor u is normalized by condition ūγ0u = 1. The
energy of the nucleon is

p0 = E(|p|) = ū(piγ
i + m∗)u + ΣV ūγ0u, (12)

with m∗ and ΣV the effective mass and the vector self-
energy which can be found from eq. (10). Note that in
nuclear mater the self-energies ΣS and ΣV do not depend
on p.

The three momenta of the nucleons p can not exceed
the Fermi momentum pF (for the probe nucleon p = pF ).
The Fermi momentum is connected with baryon density
ρ by the relation

ρ = 4
∫

d3p

(2π)3
θ(pF − p) =

2
π2

∫ pF

0

dpp2 =
2p3

F

3π2
. (13)

If only the 2N forces are included [21],

E =4
∫

d3p

(2π)3
θ(pF − p)Φ(p);

Φ(p)= ū(piγ
i+m)u+

ΣV

2
ūγ0u+

ΣS

2
ūu; ΣS =m∗ − m.

(14)

Employing the equalities ūu = m∗/E∗ and ūpiγ
iu =

p2/E∗ with E∗ =
√

m∗2 + p2 [22], one can find

E = 4
∫

d3p

(2π)3
θ(pF − p)E∗(p) − ΣS

2
ρF (ρ) +

ΣV

2
ρ. (15)

Here

F (ρ) =
4
ρ

∫
d3p

(2π)3
θ(pF − p)

γ(p)
=

2
π2ρ

∫ pF

0

dpp2 1
γ(p)

,

(16)
with

γ(p) =

√
m∗2 + p2

m∗ =
1√

1 − v2
,

the Lorentz factor of the nucleon moving with the velocity
v = p/m∗.

This enables us to calculate B(ρ) following the defini-
tion (11). In the nonrelativistic limit p2

F 
 m∗2 we come
to the well known expression

B(ρ) =
3
5

p2
F

2m∗(ρ)
+

ΣV (ρ)
2

+
ΣS(ρ)

2
, (17)

with ΣS(ρ) = m∗(ρ) − m.

4 Contributions of the condensates of lowest
dimension caused by the nucleons of the
matter

Here we include only the contributions of condensates with
d = 3. These are the vector and the scalar condensates.
The vector condensate written in the rest frame of the
matter is

v(ρ) = 〈M |
∑

i

q̄i(0)γ0q
i(0)|M〉 = nvρ, (18)

with nv = 3 the number of the valence quarks in nucleon.
Thus the vector condensate is exactly proportional to the
nucleon density. The scalar condensate is

κ(ρ) = 〈M |
∑

i

q̄i(0)qi(0)|M〉. (19)

Thus we included exchange by quark-antiquark pairs
between out three-quark system and the nucleons of the
matter in the vector and scalar channels. Only the quark
interactions at very small distances much smaller than
1GeV−1 are included. They are described by the factor
L = (ln M2/Λ2

QCD)/(ln μ2/Λ2
QCD)— see the text after

eq. (8). Note that absorbtion and radiation of quarks takes
place at the same space-time point.

The q̂ and P̂ structures A3 and C3 are proportional
to the vector condensate. Since v(ρ) = 0 at ρ = 0,
A

(0)
3 = C

(0)
3 = 0 and A3 = A

(m)
3 while C3 = C

(m)
3 . The I

structure B3 is proportional to the scalar condensate with
B

(0)
3 contributing to the vacuum sum rules. The left hand

sides of eq. (2) can be presented as

Lq = Lq(0) + A3; LI = LI(0) + B
(m)
3 ; LP = C3.

(20)
Direct calculation provides

A3 =

−8π2

3
(s − m2)M2E0(W 2

m/M2) − M4E1(W 2
m/M2)

mL4/9
v(ρ);

B
(m)
3 = −4π2M4E1(W 2

m/M2)
(

κ(ρ) − κ(0)
)

;

C3 = −32π2

3
M4E1(W 2

m/M2)
L4/9

v(ρ). (21)

As in eq. (8), the functions E0(x) and E1(x) describe the
contributions of the higher excited states.

While the vector condensate can be obtained in model
independent way, calculation of the scalar condensate re-
quires certain assumptions on the structure of the state
|M〉. We assume the state |M〉 to be a system of interact-
ing relativistic nucleons moving in self-consistent scalar
and vector field. The system is placed into the QCD vac-
uum. Thus we can write

κ(ρ) = κ(0) + κ(m)(ρ);

κ(0) = 〈0|
∑

i

q̄iqi|0〉;

κ(m)(ρ) = 〈M̃ |
∑

i

q̄iqi|M̃〉. (22)
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with |M̃〉 the vector of state describing the nucleons of the
matter. Here κ(0) = 〈0|ūu + d̄d|0〉 is the vacuum value.
Neglecting the small SU(2) breaking effects we can put
κ(0) = 2〈0|ūu|0〉 = 2〈0|d̄d|0〉. The conventional value is
κ(0) = 2(−240MeV)3 [5].

Also in eq. (22)

κ(m)(ρ) = 〈M̃ |
∑

i

q̄iqi|M̃〉 = 〈M̃ | ∂H

∂mq
|M̃〉;

mq =
mu + md

2
, (23)

with H(x) = muū(x)u(x)+mdd̄(x)d(x)+. . . the density of
the QCD Hamiltonian. Here the dots stand for the terms
which do not depend on the masses of the light quarks
mu and md. Note that 〈M̃ |H|M̃〉 = E . The latter is deter-
mined by eq. (15). The Hellmann-Feynman theorem [23,
24] enables to evaluate the second term on the right hand
side of eq. (23)

〈M̃ | ∂H

∂mq
|M̃〉 =

∂E
∂mq

,

(the derivatives of the vectors of state 〈M̃ | and |M̃〉 can-
cel). Hence

κ(ρ) = κ(0) +
∂E

∂mq
. (24)

The energy density E determined by eq. (15) depends
on nucleon characteristics m, ΣS and ΣV , depending on
the quark mass mq. The derivative ∂m/∂mq can be ex-
pressed through the nuclear sigma term σN related to the
low energy pion-nucleon scattering amplitude [25]

σN = mq
∂m

∂mq
. (25)

The conventional value is σN = (45 ± 8)MeV [25]. This
provides

∂m

∂mq
=

σN

mq
≈ 8.

Note than employing the Hellmann-Feynman theorem for
the free nucleon at rest described by the vector of state
|N〉 one finds that

∂m

∂mq
= 〈N |

∑

i

q̄iqi|N〉 = κN , (26)

is the expectation value of the operator
∑

i q̄iqi in free
nucleon.

Our assumption is that the main dependence of the
energy density E on the quark mass mq is contained in the
nucleon mass m. It is based on the estimation of the quark
mass dependence of contribution provided by diagrams
shown in fig. 1(a), (b) made in [26]. The estimations show
that (m/Πi)∂Πi/∂mu,d 
 κN , and such contributions
can be neglected. Also, the assumption is supported by
relatively small contribution of the nucleon interactions
to the condensate κ(ρ) found in numerous approaches [10,
18].

Thus, neglecting the derivatives ∂ΣS/∂mq and
∂ΣV /∂mq we obtain

κ(ρ) = κ(0) + κeff
N (ρ)ρ, (27)

with
κeff

N (ρ) = κNF (ρ), (28)

while F (ρ) is defined by eq. (16). Thus the function
F (ρ) describes the modification of the nucleon expecta-
tion value κN caused be relativistic motion of the nucleons
composing the matter.

The function F (ρ) also ties the baryon and scalar den-
sities in the mean field solution of the scalar-vector model
of nuclear matter, known also as the Walecka model [22].
Note that F (ρ) = 1 in the nonrelativistic limit pF 
 m∗.
Since the function F (ρ) depends explicitly on the nu-
cleon effective mass m∗, we shall write it sometimes as
F (ρ,m∗(ρ)) employing also the notations κeff

N (ρ,m∗(ρ))
and κ(ρ,m∗(ρ)). Hence expression for B

(m)
3 in eq. (21) can

be written as

B
(m)
3 = −4π2M4E1(W 2

m/M2)κeff
N (ρ)ρ, (29)

with κeff
N defined by eq. (28).

Including only the condensates of the lowest dimension
d ≤ 3 and employing eq. (3) we write eq. (2) as

Lq(0)(M2,W 2
m) + A3(M2,W 2

m; v(ρ)) = Λm(M2);

LI(0) + B
(m)
3 (M2,W 2

m;κ(ρ,m∗(ρ))) = m∗(ρ)Λm(M2);

C3(M2; v(ρ)) = −ΣV (ρ)
m

Λm(M2).

(30)

The vacuum terms Lq(0) and LI(0) are given by eq. (7).
The first and the last equations just tie the nucleon pa-
rameters with the vector condensate v(ρ). The second
one contains dependence on m∗(ρ) in both sides. Thus,
solving eq. (30) we find the nucleon parameters and the
in-medium scalar condensate κ(ρ) self-consistently. The
values of nucleon parameters depend on the value of nu-
cleon sigma term σN . The conventional value is σN =
(45 ± 8)MeV [25]. However some recent results [27] are
consistent with smaller values, i.e. σN = (44 ± 12)MeV.
Also, one can meet the larger values of σN in literature
(see, e.g. [28]). The value σN = (66 ± 6)MeV [29] is the
largest one. We consider the values of the sigma term in
the interval

35MeV ≤ σN ≤ 65MeV. (31)

One can make a rough estimation for the values of
the nucleon self-energies. Assuming that the vacuum sum
rules equations given by eq. (6) hold exactly and putting
W 2

m = W 2 we write eq. (10) as

m∗ =
m + hI(M2)
1 + hq(M2)

; ΣV = − hP (M2)
1 + hq(M2)

. (32)
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We denoted hq(M2) = A3(M2)/Λ(M2), hI(M2) =
B

(m)
3 (M2)/Λ(M2), and hP (M2) = C3(M2)/Λ(M2). Re-

call that Λ(M2) = λ2
0e

−m2/M2
. Introducing the functions

fq(M2) =
(s − m2)M2E0(W 2

0 /M2) − M4E1(W 2
0 /M2)

mL4/9

×em2/M2

λ2
0

,

f I(M2) = M4E1(W 2
0 /M2)

em2/M2

λ2
0

,

fP (M2) =
M4E1(W 2

0 /M2)
L4/9

em2/M2

λ2
0

,

we can write the ingredients of eq. (32) as

hq(M2) = −8π2

3
fq(M2)v(ρ);

hI(M2) = −4π2f I(M2)κeff
N (ρ);

hP (M2) = −32π2

3
f I(M2)v(ρ). (33)

The functions f i(M2) (i = q, I, P ) vary very slowly in
the interval determined by eq. (9). There values change
by about 10 percent in this interval. This enables us to
replace the functions f i(M2) (i = q, I, P ) by their average
values βq = 1.28GeV−3, βI = 0.65GeV−2, and βP =
0.49GeV−2.

Thus the nucleon parameters can be presented as

m∗ =
m + FI

1 + Fq
; ΣV = − FP

1 + Fq
, (34)

where the parameters F i are the averaged values of the
functions hi(M2).

Employing these values we find that Fq = −0.13,
FP = −204MeV for ρ = ρ0. Thus ΣV ≈ 235MeV. A
similar estimation for the effective mass can be obtained
by neglecting the influence of the Lorentz factor on the
scalar condensate, i.e. by putting κeff

N = κN in eq. (29)
for B3. For the value of σN on the upper limit of the in-
terval determined by eq. (31), i.e. at σN = 65MeV, with
κN = 11.8, we find FI ≈ −400MeV for ρ = ρ0, providing
m∗ ≈ 607MeV, and ΣS ≈ −321MeV.

Solutions of eq. (10) (with F (ρ) = 1) provide ΣV =
293MeV and m∗ = 569MeV for ρ = ρ0 and σN =
65MeV. Solving eq. (10) with inclusion of the factor F (ρ)
we find ΣV = 295MeV and m∗ = 601MeV (ΣS =
−327MeV) at this point.

Now we calculate the binding energy. The result is
shown in fig. 2. The function B(ρ) obtains its minimal
value at a density close to ρ0. However B(ρ) is always pos-
itive. Thus there are no equilibrium states. This is true for
the smaller values of the sigma term σN . Indeed, one can
see from eq. (15) that ∂B(ρ)/∂m∗ > 0. On the other hand
m∗ drops with σN . Hence ∂B(ρ)/∂σN < 0, and B(ρ) is
larger for smaller values of σN .

Note that the shape of the curve B(ρ) is due to the in-
fluence of the relativistic motion of nucleons on the scalar

Fig. 2. Density dependence of the average binding energy per
nucleon B with only the condensates with dimension d = 3
included; σN = 65MeV. The vertical axis is for B(ρ) in MeV.
The solid line corresponds to κeff

N determined by eq. (28). The

dashed line is for κeff
N = κN .

quark condensate. Indeed, putting F = 1 in eq. (28) (but
keeping it on the right hand side of eq. (15)), and thus
assuming κeff

N = κN we find the dropping down curve
shown by dashed line in fig. 2.

5 Inclusion of radiative corrections and of
next to leading OPE terms

Now we include the leading radiative corrections to the
contributions A

(m)
3 , B

(m)
3 and C

(m)
3 beyond the logarith-

mic approximation. This means that we include the cor-
rections of the order αs which do not contain large log-
arithmic factors lnM2. The latter have been included
in calculations carried out in the previous section. This
means that the quarks which compose the polarization
operator experience interactions at the distances of the
order M−1. These interactions are rather weak and are
included in the lowest order of perturbative theory. The
corresponding contributions are [10]

Ar
3 =A3 ·

7
2

αs

π
; B

(m)r
3 =B

(m)
3 · 3

2
αs

π
; Cr

3 =C3 ·
15
4

αs

π
.

(35)
We employ the value αs(M2) = 0.475 corresponding to
ΛQCD = 230MeV.

We include also the contributions of condensates with
d = 4. One of them is caused by the gluon condensate. The
gluon condensate provides the term A

(0)
4 in the vacuum

sum rule for the q̂ structure given by eq. (6) describing
the exchange by gluons between the free three-quark loop
and the QCD vacuum. The gluon exchange between the
three quark loop and the nucleons of the matter is given
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by the term

A
(m)
4a = π2M2E0(W 2

m/M2)g(ρ), (36)

with g(ρ) = gNρ, gN = 〈N |(αs/π)GaμνGaμν |N〉, with
|N〉 describing the nucleon in the nuclear matter. Gμν is
the tensor of the gluon field, a is the color index —see
fig. 1(d). Since the contribution of the gluon condensate is
numerically small we employ the value for a free nucleon
gN = −8/9m [10].

Another type of contributions comes from the nonlo-
cality of the vector condensate vn� = 〈M |q̄(0)γ0q(x)|M〉
with q(x) determined by its Taylor series (see the introduc-
tion). The terms containing the vector condensate depend
on q2 ln q2 and ln q2. Here we consider in brief the latter
one (see [30] for more details).

The contribution to polarization operator takes the
form Π(q, P ) =

∫
d4xei(q·x)ϕ(x)vnl(x2, (Px)), with ϕ(x)

describing the two-quark loop in x space (see fig. 1(a)),
and

∫
d4xei(q·x)ϕ(x) ∼ ln q2. Note that vn� depends

on two variables. One can present vn�(x, (Px)) =
∫ 1

0
dαe−iPα·xf(x2, α), where f(x2, α) are the structure

functions of deep inelastic scattering [31]. We obtain
Π(q, P ) =

∫
d4x

∫ 1

0
dαei(q−Pα)·xϕ(x)f(x2, α). Since the

moments of nucleon structure functions are not changed
noticeably in nuclear medium, we put f(x2, α) =
ρfN (x2, α) with fN (x2, α) the nucleon structure functions,
normalized by condition

∫ 1

0
dαf(α) = nq (nq = 3 is the

number of valence quarks in a nucleon). Thus Π(q, P ) =
ρ

∫
d4x

∫ 1

0
dαei(q−Pα)·xϕ(x)fN (x2, α).

Now we expand the functions fN (x2, α) in powers of
x2 with the leading term corresponding to x2 = 0. The
functions fN (α) = fN (x2 = 0, α) describe the asymptotics
of the structure functions. In the asymptotics

Π(q, P ) ∼ ρ

∫ 1

0

dα ln(q − pα)2fN (α).

Now we present

ln(q − Pα)2 = ln(1 + α) + ln q2

+ ln
(

1 − (s − m2)α − m2α2

q2(1 + α)

)

.

The contribution of the first term is eliminated by the
Borel transform. the second term corresponds to the lo-
cal vector condensate, the third term can be expanded in
powers of 1/q2. We need only the term of the order 1/q2.
In the Borel transformed form

B̂Π(q, P )∼−ρM2

∫ 1

0

dα exp
−(s − m2)α + m2α2

M2(1 + α)
fN (α).

The lowest term of the expansion of the exponential factor
corresponds to the local condensate, we need the second
term corresponding to the terms of the order 1/q2 in the
expansion of the polarization operator. Expanding also
1/(1 + α) in powers of α we come to the expansion of
the nonlinear vector condensate in terms of the moments

Mn =
∫ 1

0
dααn−1f(α) of the nucleon structure function.

Neglecting numerically small [32] contribution caused be
the second term of expansion of fN (x2, α) in powers of
x2 we find that the most important contribution is pro-
vided by the second moment M2. Its contribution to the
q̂ structure is

A
(m)
4b =

16π2

3
mM2E0(W 2

m/M2)M2ρ. (37)

Its combination with that of the gluon condensate pro-
vides the contribution to the q structure

A
(m)
4 =A

(m)
4a + A

(m)
4b =π2M2E0(W 2

m/M2)
(

gN +
16
3
M2

)

ρ.

(38)
The contribution to the P structure is

C
(m)
4 =

8π2

3

×5
(s − m2)M2E0(W 2

m/M2) − M4E1(W 2
m/M2)

m
M2ρ.

(39)

We employ the numerical value M2 = 0.32 found in [33].
Note that the term B

(m)
4 corresponding to nonlocality

of the scalar condensate vanishes in the chiral limit. The
contribution B

(m)
4 is proportional to the expectation value

〈M |q̄(0)Dμq(x)|M〉 with q = u, d denoting a light quark.
Presenting Dμ = (γμD̂+D̂γμ)/2 and employing the QCD
equation of motion D̂q = mqq we find that B

(m)
4 is indeed

proportional to mq. Thus in out approach B
(m)
4 = 0.

The rough estimation can be made in the same way
as in previous section. We present the estimations for
ρ = ρ0. The radiative corrections and those caused by
nonlocality of the vector condensate add −0.07 and 0.01
correspondingly to the value of Fq. Thus the new value
is Fq = −0.19. The radiative corrections diminish FP by
116MeV. However this is compensated to large extent by
the contribution presented by eq. (39) which increases FP

by 95MeV. Thus the vector self-energy ΣV ≈ 280MeV.
The radiative corrections to the scalar structure FI di-
minish it by 90MeV for σN = 65MeV and κeff

N = κN .
This provides m∗ ≈ 540MeV Thus we can expect that the
effects considered in this section increase the value of ΣV

by about 40MeV and diminish the value of m∗ by about
70MeV at ρ = ρ0 and σN = 65MeV. Note. however that
inclusion of the effects discussed in this section lead to
noticeable modifications of the values of the continuum
threshold W 2

m— see table 1. This makes the numbers ob-
tained by such estimation less reliable.

Solving eq. (2) we find that the values of nucleon pa-
rameters are consistent with the estimated ones. Putting
κeff

N = κN = 11.8 corresponding the σN = 65MeV we
find ΣV = 333MeV and m∗ = 460MeV, at ρ = ρ0. Em-
ploying eq. (28) for the value of κeff

N we obtain ΣV =
336MeV and m∗ = 506MeV, ΣS = −422MeV at this
point. These values are rather close to those of the Walecka
model where the equilibrium is reached at ρeq = 1.13ρ0.
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Table 1. Nucleon parameters obtained with inclusion of the
condensates with d ≤ 4 and of the lowest order radiative cor-
rections, σN = 65 MeV. For each value of the baryon density
ρ the upper line corresponds to κeff

N determined by eq. (28).

The lower line is for κeff
N = κN .

ρ/ρ0 m∗, MeV ΣV , MeV λ2
m, GeV6 W 2

m, GeV2

0.90 552 294 1.55 1.84

519 292 1.46 1.78

0.95 529 314 1.53 1.83

490 312 1.42 1.76

1.00 506 336 1.50 1.83

460 333 1.39 1.75

1.05 484 358 1.49 1.83

428 355 1.35 1.73

1.10 462 380 1.47 1.82

396 377 1.32 1.72

Fig. 3. Density dependence of the average binding energy
per nucleon B. The vertical axis is for B(ρ) in MeV. The
radiative corrections and the condensates with dimensions
d ≤ 4 are included. The numbers 1, 2, 3 are for the cases
σN = 45, 61, 65 MeV, correspondingly. Other notations are the
same as in fig. 2.

At this point ΣV = 323MeV, while ΣS = −413MeV.
Thus we can expect that there are equilibrium states of
the matter for the values of σN close to the upper limit
σN = 65MeV and at ρ around the point ρ0.

Direct calculations demonstrate that energy B deter-
mined by eqs. (11), (15) obtains a minimum for σN ≥
60MeV —see fig. 3. The value of ρeq is very close to the
phenomenological equilibrium value ρ0 for σN ≈ 65MeV.
We find ρeq = 0.95ρ0 for σN = 64.5MeV with Bmin =
−15.8MeV. Note that the existence of equilibrium states
is due to the influence of the relativistic motion of nucle-
ons on the scalar quark condensate. Putting F (ρ) = 1 in
eq. (34) for m∗ we see that the numerator exhibits the

Fig. 4. Density dependence of the nucleon parameters. The
radiative corrections and the condensates with dimensions d ≤
4 are included. The horizontal axis corresponds to the density ρ
related to its empirical saturation value ρ0. Panel (a): effective
nucleon mass m∗ and of the vector self-energy ΣV . Panel (b):
the nucleon residue λ2

m and the continuum threshold W 2
m. The

meaning of the solid and dashes lines is the same as in fig. 2.

linear drop with density. Since Fq < 0, the effective mass
drops even faster. This leads to dropping down curve for
B(ρ) at σN ≈ 65MeV-see the dashed line in fig. 3. Inclu-
sion of the factor F (ρ) slows the drop of m∗.

In fig. 4 we present the results for nucleon parame-
ters for σN = 65MeV with ρeq = 0.99ρ0 and Bmin =
−17.8MeV. In fig. 4(a) we show the density dependence
of the vector self-energy ΣV and for the nucleon effec-
tive mass m∗. In fig. 4(b) we demonstrate the density
dependence of the residue λ2

m and that of the effective
threshold W 2

m. The function F is determined by eq. (16).
More detailed results for the values of density close to
ρeq are presented in table 1. At the equilibrium point
ΣS = −418MeV while ΣV = 334MeV. Note that the
value of the nonrelativistic single particle potential en-
ergy U = ΣS + ΣV = −84MeV is close to that of the
Walecka model U = −90MeV at its equilibrium point In
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Fig. 5. Dependence of the average binding energy per nucleon
B(ρeq) in equilibrium state of the matter on the value of σN .
The vertical axis is for B(ρeq) in MeV. The radiative corrections
and the condensates with dimensions d ≤ 4 are included.

Fig. 6. Dependence of the equilibrium density ρeq on the value
of σN . The radiative corrections and the condensates with di-
mensions d ≤ 4 are included.

fig. 5 we present dependence of Bmin on the value of σN .
The dependence of ρeq on σN is shown in fig. 6.

6 Inclusion of the four-quark condensates

Now we include the terms with dimension d = 6. These
are the four-quark condensates described by the matrix
elements 〈M |qia

α q̄ib
β qjc

γ q̄jd
δ |M〉 with i = u, d and j = u, d.

For each of the products of the quark operators (here we
omit the flavor indices) we can write

qa
αq̄b

β = − 1
12

∑

X

q̄ΓXq(ΓX)αβδba

−1
8

∑

X,a

q̄ΓXλαq(ΓX)αβλα
ba,

with λα standing for SU(3) color Gell-Mann matrices.
There are 16 basic 4 × 4 matrices ΓX,Y acting on the
Lorentz indices of the quark operators. They are ΓX = I;
ΓX = γ5; ΓX = γμ; ΓX = γμγ5, with ΓX = i/2(γμγν −
γνγμ) = σμν(μ > ν). They describe the scalar (S), pseu-
doscalar (P ), vector (V ), axial (A) and tensor (T ) cases

correspondingly. Thus the four quark condensates have
the Lorentz structure 〈M |q̄ΓXqq̄ΓY q|M〉. We do not dis-
play the color indices here. We can write this expectation
value as

〈0|q̄ΓXqq̄ΓY q|0〉 + 〈0|q̄ΓXq|0〉〈M̃ |q̄ΓY q|M̃〉
+〈M̃ |q̄ΓXqq̄ΓY q|M̃〉.

The first term on the right hand side is the vacuum expec-
tation value included in the vacuum sum rules. The second
(factorized) term describes the configuration in which one
pair of quarks acts on the QCD vacuum while the other
one interacts with the nucleon matter. In the third term
all quark operators act on the same nucleon of the matter.
It will be referred to as the “nucleon term”. We include the
nucleon terms in which all four quarks act on the same nu-
cleon of the matter. The configuration in which two pairs
of quarks act on two different nucleons of the matter cor-
responds to of the 3N forces in QCD sum rules. We do
not include them in the present paper.

The factorized terms obtain nonzero values for SS and
SV structures, i.e. for ΓX = I and ΓY = I or ΓY = γ0.
Note that the scalar expectation value 〈N |q̄q|N〉 can be
expressed in terms of observable nucleon sigma term. The
vector condensate of the flavor i is just 〈N |q̄iγ0q

i|N〉 = ni,
the number of the valence quarks with this flavor. Thus the
factorized terms can be obtained in a model independent
way. Calculation of the nucleon terms shown in fig. 1(e)
requires model assumptions on the nucleon structure.

As we said in Introduction, we employ a relativistic
quark model suggested in [34]. The nucleon is considered
as a system of three relativistic valence quarks moving
in an effective static field. The valence quarks are supple-
mented by the pion cloud introduced with requirements of
the chiral symmetry. The meson cloud is included in the
lowest order of the perturbation theory. We employ the
model in the version suggested in [35] were the authors
did not solve the Dirac equation for the given form of the
effective field, but postulated the Gaussian shape of the
constituent quark density.

Following the analysis carried out in [36] we find that in
the q̂ structure the large factorized SS term in almost to-
tally canceled by contributions of the nucleon terms. The
leading contribution to the I structure is provided by the
factorized SV condensate. The P̂ structure is dominated
by the V V and AA nucleon terms.

Inclusion of the factorized SV condensate corresponds
to exchange by vector meson between the probe nucleon
and the nucleons of the matter. This exchange has an
anomalous vertex since it contributes to the scalar self-
energy of the probe nucleon. Note that such contributions
can be cause by the Fierz transformed exchange terms of
the vector interaction between the probe nucleon with the
nucleons of the matter. The nucleon term with V V and
AA condensate corresponds to exchange by two mesons
with corresponding quantum numbers.

The contributions of the four-quark condensates can
be presented as

A
(m)
6 = 8aπ2Aqρ; B

(m)
6 = 4π2 s − m2

m
aBqρ;
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Fig. 7. Density dependence of the average binding energy
per nucleon B. The vertical axis is for B(ρ) in MeV. The
radiative corrections and the condensates with dimensions
d ≤ 6 are included. The numbers 1, 2, 3 are for the cases
σN = 40, 42, 43.6 MeV, correspondingly. Other notations are
the same as in fig. 2.

C
(m)
6 = 4π2 s − m2

m
aCqρ, (40)

with s = 4m2, a = −0.55GeV3. The dimensionless pa-
rameters Aq = −0.10, Bq = −1.80 and Cq = −0.88 were
obtained in [36]. Thus the contributions of the four-quark
condensates diminish the values of ΣV and m∗ at ρ = ρ0.
Hence the equilibrium states, if there are any manifest
themselves at somewhat larger values of ρ.

Now the matter has equilibrium states for σN ≥
41.2MeV —see fig. 7. As in the previous case and for
the same reasons there are no equilibrium states if we put
F (ρ) = 1.

We find Bmin = −16.0MeV for σN = 43.6MeV.
The latter number is close to the conventual value σN =
45MeV. The corresponding equilibrium density is ρeq =
1.46ρ0.

In fig. 8(a) we present the results for the vector self-
energy ΣV , for the nucleon effective mass m∗. In fig. 8(b)
we demonstrate the density dependence of the residue λ2

m

and that of the effective threshold W 2
m. The function F

is determined by eq. (16). More detailed results for the
values of density close to ρeq are presented in table 2. At
the equilibrium point ΣS = −482MeV. Thus the values
of ΣS at the equilibrium points of our approach and of
the Walecka model differ by about 70MeV. The value of
the vector self-energy ΣV = 387MeV exceeds that of the
Walecka model by 65MeV. The single-particle potential
energy equilibrium value U = −95MeV is very close to
the Walecka model result U = −90MeV.

Equation (10) enable us to write the physically moti-
vated parametrization for the density dependence of nu-
cleon parameters. Since the shift of the threshold W 2

m−W 2
0

is small, it can be treated perturbatively and can be as-

Fig. 8. Density dependence of the nucleon parameters. The
radiative corrections and the condensates with dimensions d ≤
6 are included. The horizontal axis corresponds to the density ρ
related to its empirical saturation value ρ0. Panel (a): effective
nucleon mass m∗ and of the vector self-energy ΣV . Panel (b):
the nucleon residue λ2

m and of the continuum threshold W 2
m.

The meaning of the solid and dashes lines is the same as in
fig. 2.

sumed to be proportional to ρ (see fig. 8(b)). Start with
expression for ΣV . Since LP and Lq are linear in ρ we
write immediately

ΣV =
aV x

1 + aqx
; x =

ρ

ρ0
, (41)

with aq, aV the coefficients which chosen for the best fit-
ting of the right hand side. Turning to expression for m∗

we see that LI also contains the terms which are propor-
tional to ρ. They are caused by the four-quark condensates
and by the finite value of the shift W 2

m − W 2
0 . However

there are also the nonlinear terms which are proportional
to the product ρF (ρ) caused by the scalar condensate.
Thus we can write

m∗ =
m + a

(1)
S x + a

(2)
S x2

1 + aqx
.
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Table 2. Nucleon parameters obtained with inclusion of the
condensates with d ≤ 6 and of the lowest order radiative cor-
rections, σN = 43.6 MeV. For each value of the baryon density
ρ the upper line corresponds to κeff

N determined by eq. (28).

The lower line is for κeff
N = κN .

ρ/ρ0 m∗, MeV ΣV , MeV λ2
m, GeV6 W 2

m, GeV2

1.40 484 351 1.23 1.70

424 347 1.16 1.68

1.45 465 369 1.20 1.69

396 366 1.13 1.67

1.50 446 387 1.18 1.68

367 384 1.11 1.67

1.55 428 407 1.16 1.68

336 404 1.09 1.66

1.60 411 427 1.15 1.67

304 423 1.06 1.65

Fig. 9. Dependence of the average binding energy per nucleon
B(ρeq) in equilibrium state of the matter on the value of σN .
The vertical axis is for B(ρeq) in MeV. The radiative corrections
and the condensates with dimensions d ≤ 6 are included.

The second term in numerator approximates the nonlin-
ear contribution. We find that aq = −0.190 and aV =
186MeV for σN = 43.6MeV. The effective mass is well
approximated by the choice a

(1)
S = −468MeV; a

(2)
S =

43MeV. The scalar self-energy can be thus presented as

ΣS =
ã
(1)
S x + a

(2)
S x2

1 + aqx
, (42)

with ã
(1)
S = −292MeV. One can see that a

(1)
S is propor-

tional to σN . The parameters aq and aV exhibit weak
dependence on the value of sigma term.

In fig. 9 we present dependence of Bmin on the value
of σN . The dependence of ρeq on σN is shown in fig. 10.

7 Summary

We calculated the nucleon parameters in symmetric nu-
clear matter focusing on the average energy per nucleon

Fig. 10. Dependence of the equilibrium density ρeq on the
value of σN . The radiative corrections and the condensates
with dimensions d ≤ 6 are included.

B. We include only the contributions corresponding to the
2N forces. Analysis of the behavior of the energy B(ρ) en-
abled us to investigate the equilibrium states of the mat-
ter.

We use the finite density QCD sum rules method. In
this approach the nucleon parameters are expressed in
terms of the QCD condensates. The lowest dimension con-
densates (d = 3) are the vector and scalar expectation
values. Calculation of the scalar condensate requires cer-
tain assumptions on the structure of the matter. We treat
the matter as a relativistic system of interacting nucle-
ons. This differs from the previous QCD sum rules studies
which start with considering of the polarization operator
in the system of nonrelativistic free nucleons.

The Hellmann-Feynman theorem ties the scalar con-
densate with the derivative of the relativistic energy den-
sity with respect to the light quark mass. We assume that
the dependence of the energy density on the light quark
mass is dominated by that of the nucleon mass. The contri-
bution of the nucleon interaction is relatively small. The
assumption is consistent with the result that the model
calculations provide small contribution of nucleon interac-
tions to the scalar condensate. This enables us to express
the scalar condensate as the product of the nucleon matrix
element κN and the function F (ρ) which can be expressed
in terms of the Lorentz factors of the nucleons of the mat-
ter —eq. (28). The same function F (ρ) ties the baryon and
scalar densities in the scalar-vector model of nuclear mat-
ter [22]. The nucleon matrix element κN can be expressed
in terms of the observable nucleon sigma term σN .

We start with condensates of dimension d = 3 adding
consistently those of the higher dimension. We find that
B(ρ) > 0 if only the condensates with d = 3 are included.
Thus there are no equilibrium states. Including the con-
densates with dimension d = 4 and the lowest order ra-
diative corrections we find the equilibrium states for the
values of σN near the upper limit of the interval deter-
mined by eq. (31). For σN = 65MeV the equilibrium
density surprisingly close to the phenomenological value
ρ0, i.e. ρeq = 0.99ρ0. The average energy per nucleon
B(ρeq) = −12.7MeV. The values of m∗ and ΣV are close
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to those provided by the Walecka model at its saturation
point.

The contributions of the condensates with d ≤ 4 are
obtained in a model independent way. The calculation
of the four-quark condensates (d = 6) requires model
assumptions on the quark structure of the nucleon. We
employ the relativistic quark model suggested in [34,35].
Since we consider only the 2N contributions, we include
only the configurations in which all four quark operators
act on the same nucleon of the matter. We find equilibrium
states of the matter for all σN > 41MeV. The equilibrium
with B(ρeq) = −16MeV is realized at σN = 43.6MeV,
very close to the conventional value. For this value of the
sigma term ρeq = 1.46ρ0. The values of m∗ and ΣV dif-
fer by about 20 percent from those given by the Walecka
model. However the values of the single-particle potential
energies U(ρeq) in the two approaches are very close.

Note that neglecting the influence of relativistic mo-
tion of nucleons composing the matter on the scalar quark
condensate, i.e. putting F (ρ) = 1 on the right hand side
of eq. (28) we find no equilibrium states. Thus the satu-
ration is an essentially relativistic effect in our approach,
similar to the Walecka model.

To find the contribution of the 3N interactions we
must include the configurations of the four-quark conden-
sates where two pairs of quark operators act on two differ-
ent nucleons of the matter. This will be a subject of next
work.
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ated data or the data will not be deposited. [Authors’ com-
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this published article.]
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