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Abstract. In simulations of binary neutron star mergers, the dense matter equation of state (EOS) is
required over wide ranges of density and temperature as well as under conditions in which neutrinos are
trapped, and the effects of magnetic fields and rotation prevail. Here we assess the status of dense matter
theory and point out the successes and limitations of approaches currently in use. A comparative study of
the excluded volume (EV) and virial approaches for the npα system using the equation of state of Akmal,
Pandharipande and Ravenhall for interacting nucleons is presented in the sub-nuclear density regime.
Owing to the excluded volume of the α-particles, their mass fraction vanishes in the EV approach below
the baryon density 0.1 fm−3, whereas it continues to rise due to the predominantly attractive interactions
in the virial approach. The EV approach of Lattimer et al. is extended here to include clusters of light
nuclei such as d, 3H and 3He in addition to α-particles. Results of the relevant state variables from this
development are presented and enable comparisons with related but slightly different approaches in the
literature. We also comment on some of the sweet and sour aspects of the supra-nuclear EOS. The extent
to which the neutron star gravitational and baryon masses vary due to thermal effects, neutrino trapping,
magnetic fields and rotation are summarized from earlier studies in which the effects from each of these
sources were considered separately. Increases of about 20%(� 50%) occur for rigid (differential) rotation
with comparable increases occurring in the presence of magnetic fields only for fields in excess of 1018

Gauss. Comparatively smaller changes occur due to thermal effects and neutrino trapping. Some future
studies to gain further insight into the outcome of dynamical simulations are suggested.

1 Introduction

The first observation of gravitational waves from
the merger of binary neutron stars, now known as
GW170817 [1], has given much impetus to ongoing the-
oretical investigations of the equation of state (EOS) of
dense matter. Analysis of the data during inspiral (the
phase prior to coalescence) by the LIGO and Virgo Col-
laborations has yielded the chirp mass M = (M1M2)3/5/
M1/5 = 1.188+0.004

−0.002 M�, where M1 and M2 are the com-
panion masses and the total mass M = M1 + M2 =
2.74+0.04

−0.01 M�. Accounting for the component spins in the
range inferred from known spinning neutron stars, the
individual masses were determined to be in the range
M1 = (1.36–1.60)M� and M2 = (1.17–1.36)M� when
the analysis was restricted to low-spin priors with the di-
mensionless spin |χ| = |Jic/GM2

i | � 0.05. Of particular
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relevance to the zero-temperature EOS is the limit set by
the data on the dimensionless tidal deformability [2, 3]

Λ̃ =
16
3

(M1 + 12M2)M4
1 Λ1 + (M2 + 12M1)M4

2 Λ2

(M1 + M2)5
. (1)

For each star, the tidal deformability (or induced
quadrupole polarizability) is given by [4]

Λ1,2 =
2
3
k2

(
R1,2c

2

GM1,2

)5

, (2)

where the dimensionless Love number k2 depends on the
structure of star, and therefore on the mass and the EOS.
Here, G is the gravitational constant, and R1,2 are the
radii. The computation of k2 with input EOSs is described
in refs. [5–7]. For a wide class of neutron star EOSs, k2 �
0.05–0.15 [6,8,9]. With unconstrained assumptions about
the EOS of each of the stars, ref. [1] sets the limits Λ̃ � 800
(for low-spin priors with |χ| � 0.05) and Λ̃ � 700 (for
high-spin priors with |χ| � 0.89).

Recently, ref. [10] has reported results from a reanalysis
of the GW170817 data by imposing the common EOS con-
straint for the structure of both stars. At the 90% credible
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interval, the bounds Λ̃ = 222+420
−138 for a uniform component

mass prior, Λ̃ = 245+453
−151 for a component consistent with

Galactic double neutron stars, and Λ̃ = 233+448
−144 for a com-

ponent mass tallied with the systematics of radio pulsars
have been placed. Across all prior masses, a measurement
of the common radius in the range 8.9 < R̃ < 13.2 km
with a mean value 〈R̃〉 = 10.8 km appears to be con-
sistent with the data. This analysis was performed with
polytropic EOSs consistent with constraints from labo-
ratory data up to the nuclear equilibrium or saturation
density ns � 0.16 fm−3, microscopic calculations of the
zero-temperature EOS up to ∼ 2ns, and a large number
of extrapolations consistent with causality beyond 2ns.

Combining the electromagnetic (EM) [11] and grav-
itational wave (GW) information from the merger
GW170817, ref. [12] provides constraints on the radius
Rns and maximum gravitational mass Mg

max of a neutron
star,

Mg
max � 2.17M�,

R1.3 � 3.1GMg
max � 9.92 km, (3)

where R1.3 is the radius of a 1.3M� neutron star and its
numerical value above corresponds to Mg

max = 2.17M�.
No evidence of a post-merger signal from GW170817

was found at frequencies up to 4 kHZ [1], the interferom-
eter response at higher frequencies precluding the detec-
tion of GW waves exhibiting expected quasi-periodic os-
cillations of the remnant (see refs. [13, 14] and references
therein). Promising prospects for future detections of post-
merger signals in upgraded LIGO detectors offer the op-
portunity to explore the EOS beyond the supra-nuclear
densities afforded by the current data. Simulations of the
post-merger phase require the EOS of neutron-star mat-
ter for wide ranges of physical quantities (see refs. [14–19],
and references therein). The baryon number density ra-
tio n/ns ranges from 10−8–10, the latter value depend-
ing on the constituents of matter in the core of a neu-
tron star. Temperatures up to 100MeV can be reached
during the late stages of the merger. Net electron frac-
tions, Ye = ne/n, ranging from 0.01–0.6, and entropies
per baryon S (in units of kB) in the range 0–100 have
been reported in simulations.

Examples of the entropy and temperature profiles vs.
baryon mass density in the merger of two equal mass neu-
tron stars after about 7.8ms subsequent to merger are
shown in figs. 1 and 2, respectively. Thanks are due to
David Radice for providing these results obtained using
the EOS of Lattimer and Swesty (LS220) [20]. The results
shown in these figures are drawn from the calculations
reported in refs. [21–23]. The neutron star gravitational
masses were 1.35M� each. The rest-mass of the remnant
is approximately 2.7–2.8M�. Higher values of S and T
are attained during the later stages of evolution. A black
hole forms ∼ 20ms after merger in these calculations.

Gravitational signals from the post-merger remnant
with a mass close to the maximum gravitational mass,
Mg

max, or even larger for short times, can provide insight
into the possible phases of dense matter complementing

Fig. 1. Entropy profile of a hyper-massive neuron star during
merger. The data represents the meridional plane (i.e., the x-z
plane, z being the rotational axis). Results are for the nomi-
nal EOS of Lattimer and Swesty (LS220) [20] and coalescing
neutron stars each of mass 1.35 M�. Figure courtesy of David
Radice.

Fig. 2. Temperature profile of a hyper-massive neuron star
during merger. Details as in fig. 1. Figure courtesy of David
Radice.

that offered by electromagnetic signals. Unlike pulsar sig-
nals from neutron stars of mass � 2M�, gravitational
signals after coalescence also enable determination of the
thermal properties of dense matter.

One of the main objectives in this paper is to high-
light and critically assess the sweet and sour spots of the
EOS approaches currently in use. The bulk of sect. 2 is de-
voted toward this end with new contributions that include
a comparison of the excluded volume approach [20] using
the EOS of APR [24] for the npα system with the virial
approach [25] and an extension of the excluded volume ap-
proach to include additional light nuclei such as d, 3H and
3He in addition to α-particles. Results of the latter allows
for comparisons to be made with earlier works in both of
these approaches. Limitations of both of these approaches
are also pointed out in this section. Another objective is
to address the question of how the masses and radii of
neutron stars are affected by thermal effects, composition,
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trapped neutrinos, magnetic field, and rotation (rigid and
differential). Sections 3 through 6 provide brief reviews of
earlier works in which these effects were studied individ-
ually along with suggestions for future work that may aid
in qualitative and semi-quantitative understanding of the
outcome of dynamical simulations of the mergers of binary
neutron stars. Our conclusions are in sect. 7.

2 Sweet and sour points of the EOS
approaches

Several approaches to the EOS for simulations of core-
collapse supernovae, young and old neutron stars, and
binary mergers of neutron stars have been developed
in the past decades (see ref. [26] for an extensive re-
view). Owing to the different phases of matter encoun-
tered at different densities and temperatures, a combina-
tion of techniques has been used to calculate the required
thermodynamical variables. Broadly speaking, three dis-
tinct regions (with different phases and degrees of free-
dom) in baryon density can be identified: i) the sub-
nuclear density homogeneous and inhomogeneous phases
for n � 0.1 fm−3, ii) near-nuclear density homogeneous
phase for 0.1 < n � 0.3 fm−3, and iii) supra-nuclear den-
sity with or without phase transitions for n � 0.3 fm−3.
We use the term “homogeneous phase” to refer to a sys-
tem consisting of hadrons, and leptons of any or all fla-
vors, all regarded as point particles. The same term is also
used for supra-nuclear density matter with or without non-
nucleonic degrees of freedom. The term “inhomogeneous
phase” refers to matter which includes, in addition to nu-
cleons and leptons, composite objects such as light nuclear
clusters, heavy nuclei, and pasta-like configurations in
which various geometrical shapes (cylindrical (spaghetti),
flat (lasagna), cylindrical holes (anti-spaghetti), spherical
holes (swiss cheese)) are permitted [27,28].

As the thermal variables depend on n, Ye, and T ,
and on neutrino fractions Yνi

when neutrinos of species
i = e, μ, τ are trapped in matter, the preferred phase will
be determined by the minimization of the total free en-
ergy with respect to the appropriate variables. As a re-
sult, the concentrations of the various species in both
phases depend on (n, Ye, T ). For example, in the range
n/ns = 0.3–0.4 and Ye = 0.3–0.4 in neutrino-free matter,
nuclei with charge and mass numbers well exceeding 70
and 200 exist respectively at T = 2MeV whereas the cor-
responding numbers are 30 and 80 at T = 12MeV. It must
be noted, however, that the precise values depend on the
underlying nuclear energy density functionals used in the
description of bulk homogeneous matter, nuclei and pasta
configurations. For example, typical values of T below
which the pasta phase is present are ∼ 4MeV for Ye = 0.05
and ∼ 14MeV for Ye = 0.5 for the EOS of APR [29].
For charge neutral stellar matter in beta-equilibrium, the
dissolution temperature of the pasta phase is around 4–
5MeV (see ref. [30] which contains an extensive set of
references including classical and quantum molecular dy-
namical calculations).

At very low densities, n � 10−6 fm−3, the abundance
of nuclei is generally calculated using the nuclear sta-
tistical equilibrium (NSE) approach using mass formulas
to calculate the needed chemical potentials μi of nuclei
(see [26] for a review and extensive references). The sour
point here is that nuclei not encountered in the labora-
tory will be present and the use of different mass formulas
yields different μi as extrapolations are required. In this
region, interactions between the nucleons and nuclei are
small.

With the density approaching 0.1 fm−3 and increas-
ing temperature, however, effects of interactions become
progressively important. Methods devised to account for
interactions include the excluded volume approach, the
single-nucleus approximation, the full ensemble method,
virial expansion, etc. [26]. Matching the NSE results to
those of others is also beset with difficulties. Furthermore,
the excluded volume approximation lacks attractive inter-
actions, whereas the virial method requires information
about phase shifts not always available from experiments
in addition to fugacities exceeding unity in certain regions
of n, Ye, T (see below).

Properties of nucleonic matter in the near-nuclear den-
sity region 0.1 < n � 0.3 fm−3 have received much atten-
tion recently from effective field theoretical (EFT) tech-
niques. Among the advantages of EFT is that systematic
error estimates can be made, but the drawback is that it
cannot be carried through for densities n � 0.3 fm−3 due
to the perturbative expansion scales reaching invalid re-
gions as the density increases toward the central densities
of neutron stars of increasing masses. For the same rea-
son, the exploration of non-nucleonic degrees of freedom
such as Bose condensates or quarks is beyond EFT at the
current time.

The discussion above highlights some of the sweet and
sour aspects of the current status of dense matter the-
ory. Clearly, advances in each of the three density regions
mentioned above are needed for a fuller microscopic under-
standing of nuclear matter to better explain astrophysical
phenomena.

2.1 Instabilities in the sub-nuclear phase of nucleonic
matter

Our considerations in this subsection are more relevant
for the matter produced in intermediate energy heavy ion
collisions than for stellar matter discussed in the next
subsection. However, the discussion here sets the stage
for the case when electrons are present in stellar matter.
A uniform phase of nucleonic matter becomes mechani-
cally unstable (also referred to as spinodally unstable) at
sub-nuclear densities, n < ns, for which the compress-
ibility K(n) = 9 dP/dn ≤ 0, where P = n2(dE/dn)
is the pressure. The energy E and pressure of isospin
asymmetric matter with u = n/ns and neutron excess
α = (nn − np)/n(= nn + np) can be written as

E(u, α) = E(u, 0) + α2S2(u) + . . . (4)
P (u, α)

ns
= u2

[
E′(u, 0) + α2S′

2(u)
]
+ . . . , (5)
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where the nuclear symmetry energy S2(u) = 1
2

∂2E(u,α)
∂α2 |α=0

and the prime denotes derivative with respect to u.
Higher order terms in α are generally small as S2(u) �
S4(u), S6(u), . . . (only even powers of α contribute as the
two species are treated symmetrically in the Hamiltonian
because of the near-complete isospin invariance of the
nucleon-nucleon interaction). As a result,

∂(P (u, α)/ns)
∂u

� 2uE′(u, 0) + u2E′′(u, 0)

+α2
[
2uS′

2(u, 0) + u2S′′
2 (u, 0)

]
. (6)

An estimate of the density at which the spinodal insta-
bility sets in for T = 0 symmetric nuclear matter (SNM)
with α = 0, or proton fraction x = (1 − α)/2 = 1/2, can
be made using the quadratic approximation to the energy
vs. density close to u = 1

E(u, 0) = −B.E. +
Ks

18
(u − 1)2, (7)

where B.E. = 16 ± 1MeV is the binding energy of SNM
and Ks = (230±30)MeV is its compression modulus. The
pressure P and its density derivative thus become

P

ns
=

Ks

9
u2(u − 1),

d(P/ns)
du

=
1
3
Ksu

(
u − 2

3

)
. (8)

Spinodal instability sets in at the density nsp = (2/3)ns �
0.11 fm−3 for SNM, independent of KS . This estimate for
nsp is not greatly affected by the skewness of the EOS
around u, which would add a term ∝ (u − 1)3 to eq. (7).
For the EOS of Akmal, Pandharipande and Ravenhall
(APR) [24], nsp � 0.10 fm−3; other EOSs in current use
have similar values of nsp. With increasing neutron ex-
cess (α → 1), or decreasing proton fraction (x → 0),
the quadratic approximation in E(u, 0) or S2(u) around
u = 1 becomes inadequate [31]. In this case, nsp(u, x)
can be found from the density ratio u at which eq. (6)
vanishes for each x. For x 
= 0.5, the first and second
density derivatives of both E(u, 0) and S2(u) determine
nsp(n, x), which decreases from its value for SNM; e.g.,
nsp(n, 0.1) � 0.05 fm−3 for the EOS of APR. Other EOSs
yield similar qualitative results, quantitative differences
being small.

Thermal effects, which provide positive contributions
to the total energy and pressure, also influence the stabil-
ity of uniform nucleonic matter at sub-nuclear densities.
The onset of the liquid-gas phase transition, determined
by the requirements

dP

dn

∣∣∣∣
nc,Tc

=
d2P

dn2

∣∣∣∣
nc,Tc

= 0, (9)

occurs at the critical density nc � 0.06 fm−3 and crit-
ical temperature Tc � 17.9MeV, respectively, for SNM
using the EOS of APR [31]. Although Tc/Tc(x = 0.5)
drops significantly with decreasing x, the ratio Pc/(ncTc)
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Fig. 3. Derivative of the pressure of nucleons with respect to
density vs. density at the indicated temperatures T and proton
fractions x.

remains very close to 0.347 for x in the range 0.1–0.5 (see
fig. 9 of ref. [31]). Qualitative features of the above re-
sults are generic to other EOSs in common use. For ex-
ample, for the Skyrme EOS parametrization Ska for which
Tc = 15.12MeV, Pc/(ncTc) = 0.303, again with little vari-
ation in the range of x = 0.1–0.5 [31].

Figure 3 shows the pressure derivative (with respect to
density) of the bulk phase of nucleons for different tem-
peratures and proton fractions. In SNM (x = 0.5), the
spinodal region can be clearly identified for the lowest two
temperatures shown. For the same x but at T = 20MeV,
the spinodal instability is absent as this temperature ex-
ceeds the liquid-gas phase transition temperature Tc =
17.91MeV for this model. As the proton fraction decreases
toward that of pure neutron matter (PNM), the instabil-
ity region shrinks in size as fig. 3(b), in which x = 0.1,
shows. Results for intermediate values of x show similar
trends [31]. The value of xc below which the spinodal den-
sity disappears, i.e., for which dP/dn ≥ 0, is shown as a
function of T in fig. 4 with the spinodally stable and unsta-
ble regions indicated. For all T > Tc, there is no density
interval for which spinodal instability occurs as eq. (9)
guarantees dP/dn > 0 for all n. The qualitative behav-
ior of this curve is also exhibited in other models of the
EOS [31].

At the densities and temperatures for which the homo-
geneous uniform phase of nucleonic matter is unstable, an
inhomogeneous phase of matter consisting of light nuclear
clusters such as d, 3H, 3He, α, etc. and heavier nuclei in
addition to nucleons becomes energetically favorable.
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Fig. 4. Spinodally stable and unstable regions in nucleonic
matter for the APR model with xc denoting the proton fraction
above which dP/dn ≥ 0 for all n.
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Fig. 5. Phases in dense stellar matter. Figure courtesy of An-
dre Schneider.

2.2 Stability of the sub-nuclear phase in stellar matter

Through beta decays and electron capture processes in-
volving nucleons and nuclei, a uniform background of elec-
trons would also be present in charge neutral stellar mat-
ter. The concentration of each species is determined by
the conservation equations for baryon number and charge
neutrality together with the minimization of the total free
energy with respect to the appropriate internal variables
(see below). Earlier work [20, 32, 33] has identified three
phases of matter depicted in fig. 5. The generic features
shown in this figure are for the EOS of APR adopting the
excluded volume treatment of ref. [20] for nuclei and for
a typical net electron fraction Ye. Similar features are ob-
tained by using other EOSs and for other Ye’s albeit with
quantitative differences.

In phase I of fig. 5, only nucleons, light nuclei (d, 3H,
3He, α, etc.), and a uniform background of leptons (mostly
electrons and positrons, and smaller amounts of muons at
high enough T ’s) to maintain charge neutrality, and pho-
tons would be present. Phase II is characterized by the
presence of light and heavy nuclei, many rather neutron

rich. In a very small region close to n � 0.1 fm−3, exotic
shapes of nuclei commonly called pasta configurations are
also energetically favored. With density increasing beyond
n = 0.1 fm−3, the dissolution of all nuclei in the inhomoge-
neous phase gives way to the uniform phase III of nucleons
with charge balancing leptons, and photons.

At supra-nuclear densities beyond 2–3 ns, matter may
also consist of Δ-isobars, Bose (pion, kaon, charged ρ-
mesons, etc.) condensates, hyperons and/or quarks [34].
At these densities, the effects of baryon superconductivity
and superfluidity on the EOS are negligible as the asso-
ciated gap parameters are small, ∼ 1–2MeV, compared
to the other energy scales in dense matter. However, their
effects on the long-term cooling of cold-catalyzed neutron
stars through neutrino emission are important in inter-
preting the observed surface temperatures (see the com-
pendium of contributions in ref. [35]). This latter subject
is not covered here as it falls outside the scope of this
article.

Electrons restore stability

To highlight the role of electrons in the sub-nuclear phase,
we first consider the case in which only nucleons and elec-
trons are present. In this case, the conservation of baryon
number and charge neutrality yield nn = n(1 − x) and
np = nx = ne. Minimizing the total free energy density
F (n, x, T ) with respect to x gives the energy balance re-
lation between the chemical potentials

μ̂ = μn − μp = μe,

� 4(1 − 2x)
[
S2(n) + 2S4(n)(1 − 2x)2 + · · ·

]
, (10)

which highlights the role of the nuclear symmetry energy.
The pressure is then found from P = n2∂(F/n)/∂n|x,T

from which the derivative (∂P/∂n)|x,T can be calculated.
Figure 6 shows results of this derivative for representa-
tive values of x and T as functions of n. The results here
were calculated without approximation using the Hamilto-
nian density of APR for the nucleons with electrons being
treated as a free Fermi gas.

It is clear from fig. 6 that contributions from electrons
to the total pressure entirely remove the mechanical (spin-
odal) instability present in baryons-only matter for all x
and T . A similar conclusion was reached by ref. [36] in
which the adiabatic index ΓS = (n/P )(∂P/∂n)|S , where
S is the entropy per baryon, was calculated (in sect. VI
there) for other nonrelativistic models (MDYI and SkO′)
and a mean field theoretical model of nucleons. This con-
clusion also applies for charge neutral and beta-stable neu-
tron star matter at both zero and finite temperatures for
which the equilibrium proton fraction x̃ varies with n. In
this case, the requirement that pressure be a continuously
increasing function of n in a stable star assures stabil-
ity against spinodal collapse. Note also that baryons-only
matter is mechanically stable at all T for roughly x < 0.1.
For these proton fractions, electrons are required only for
the purposes of charge neutrality.
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Fig. 6. Derivative of the pressure of nucleons and electrons
with respect to density vs. density for the indicated tempera-
tures and proton fractions.

2.3 Inclusion of light nuclear clusters

Although electrons restore mechanical stability in stellar
matter, the presence of light nuclear clusters such as d, 3H,
3He, α, etc. lowers the free energy and thus becomes the
favored state of matter in phase I of fig. 5. In what follows,
we discuss the excluded volume and virial approaches com-
monly used for treating the presence of these light nuclear
clusters. An extension of the excluded volume approach of
refs. [20, 33] to include other clusters beyond α-particles
will be presented. A comparison of the excluded volume
and virial approaches for the npα system with leptons and
photons will be made together with a brief discussion of
the advantages and drawbacks of each of these approaches.

The excluded volume approach with α-particles

With a binding energy Bα � 28.3MeV, α-particles are
the most bound among the light nuclear clusters. The dis-
cussion here to include α-particles in addition to nucle-
ons, electrons, and photons follows closely that of ref. [20]
which, in turn, is a simplified version of an earlier treat-
ment in ref. [33]. We first outline the procedure of ref. [20]
here as it paves the way for the subsequent inclusion of
additional light nuclear clusters in this approach.

Interactions between α-particles and nucleons (as-
sumed to be point particles) are taken into account by
treating the α-particles as rigid spheres of volume vα =
4π
3 ( 4

5apα)3 � 24 fm3, where apα is the proton-α scattering
length. This treatment accounts for repulsive interactions

only, attractive interactions being deemed as small. The
conservation equations for baryon number and charge neu-
trality are

n = 4nα + (nno + npo)(1 − nαvα) (11)

nYe = 2nα + npo(1 − nαvα), (12)

where nno and npo are the neutron and proton densities
outside the α-particles of density nα, and Ye = ne/n is the
net electron fraction (i.e., ne = ne− −ne+). Equation (11)
enables the mass fractions to be defined as

Xα = 4
nα

n
,

Xno =
nno(1 − nαvα)

n
, Xpo =

npo(1 − nαvα)
n

.

(13)

The total free energy density can be decomposed as

F = Fb + Fe + Fγ , (14)

where Fb = Fo + Fα is the free energy density of baryons,
Fe and Fγ are those of the leptons and photons. The com-
ponent Fo refers to the outside (of α-particles) nucleons
and can be written as

Fo = (1 − nαvα) nofo(no, xo, T ), (15)

where fo is the free energy per nucleon, no = nno + npo

and xo = npo/no. The quantity fo can be calculated us-
ing a suitable model for the EOS of interacting nucleons.
Here we use that of APR at finite T following ref. [31]
where details for calculating Fe and Fγ are also provided.
The α-particles are treated as non-interacting Boltzmann
particles, whence

Fα = nα(μα − Bα − T ). (16)

The α-particle chemical potential, easily obtained from
the classical gas expression nα = 8nQ exp(μα/T ), is

μα = T ln
(

nα

8nQ

)
with nQ =

(
mT

2π�2

)3/2

, (17)

where nQ is the quantum concentration of nucleons with
m denoting the nucleon mass. Being non-interacting par-
ticles, the α-particle pressure, energy density and entropy
density are

Pα = nαT, εα = nα

(
3
2
T − Bα

)
, and

sα = nα

(
5
2
− μα

T

)
. (18)

Minimization of F with respect to nα yields the relation-
ship between the chemical potentials of the baryons,

0 =
∂F

∂nα
⇒ μα = 2(μno + μpo) + Bα − povα, (19)
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where po is the pressure of nucleons outside the α-particles
obtained using the (purely nucleonic) EOS at the given
(subnuclear) density, lepton fraction, and temperature.
Because the EOS of APR uses a common value for the
rest masses for the neutron and proton, the term involv-
ing 2(mp − mn) is not included in the above equation.

In simulations of core-collapse supernovae, proto-
neutron stars and binary mergers of neutron stars, the
EOS is generally tabulated in terms of the variables
(n, Ye, T ). From a numerical standpoint, it is advanta-
geous to extend the variables to (n, Ye,Xp, T ), where
Xp = npo/n. Eliminating nα from eqs. (11) and (12), one
obtains

no =
2n(1 − 2Ye) + nXp(4 − nvα)

2 − nYevα
,

npo = nXp, nno = no − npo, and xo =
npo

no
. (20)

Thus npo and nno are completely determined by specify-
ing (n, Ye, T ) and providing a guess value for Xp. With
these npo and nno at hand, μpo and μno (needed for the
calculation of nα using eq. (17)) can be obtained by solv-
ing

2
∫

d3p

(2π�)3
1

1 + exp( ei−μi

T )
− ni = 0, (21)

where the spectra ei correspond to the model of choice
for the nucleonic EOS. The value of Xp can then be up-
dated iteratively to satisfy the baryon number conserva-
tion eq. (11). The total pressure, entropy density and en-
ergy density are then

P = Po + Pα + Pe + Pγ ,

s = (1 − nαvα)so + sα + se + sγ S = s/n

ε =
∑

i

μini + Ts − P, E = ε/n, (22)

where S denotes the total entropy per baryon, E the total
energy per baryon and Po = (1−nαvα) po. In utilizing the
thermodynamic relation above to obtain the energy den-
sity, it is necessary to account for the α-particle binding
energy Bα in the total chemical potential of the α, i.e.,
μtot

α = μα − Bα. We defer presentation of the numerical
results of these state variables to a later section.

The excluded volume approach with multiple clusters

The presence of additional light nuclear clusters such as
d, 3H, and 3He gives a lower free energy relative to the
case when only α-particles are considered besides nucle-
ons. The binding energies of these light nuclei are listed
in table 1. In the excluded volume approach, interactions
between the various nuclear species and nucleons can also
be included by treating these nuclei as rigid spheres with
excluded volumes vi = 4

3πR3
i , where the sharp sphere radii

Ri can be inferred from the measured charge or mass rms
radii, the latter not being experimentally available yet.
Values of vi, i = d, 3H, 3He and 4He are also listed in

Table 1. Properties of light nuclei. The symbol for each nu-
cleus used in text is as indicated. The symbol v stands for the
rigid sphere effective excluded volume.

Nucleus Symbol B.E. (MeV) v (fm3)

d d 2.22 40.5
3H τ 8.48 23.2
3He 3 7.72 32.0
4He α 28.3 19.9

table 1. Note that vα differs slightly from that used in
refs. [20,33].

The baryon number conservation equation takes the
form

n = 4nα+(1 − nαvα)
×{3n3 + (1 − n3v3)
× [3nτ + (1 − nτvτ )
× (2nd + no(1 − ndvd))]} . (23)

Note that the order by which the excluded volumes are
nested does not affect the final results for the thermody-
namic state variables as functions of (n, Ye, T ) insofar as
a particular order is used consistently over the course of
the calculation.

The mass fractions are defined as

Xα =
4nα

n
, X3 =

3n3

n
(1 − nαvα),

Xτ =
3nτ

n
(1 − nαvα)(1 − n3v3),

Xd =
2nd

n
(1 − nαvα)(1 − n3v3)(1 − nτvτ ),

Xno =
nno

n

∏
i

(1 − nivi),Xpo =
npo

n

∏
i

(1 − nivi), (24)

with i = d, 3, τ, α. The corresponding charge neutrality
condition requires

nYe = 2nα + (1 − nαvα)
×{2n3 + (1 − n3v3)
× [nτ + (1 − nτvτ )
× (nd + npo(1 − ndvd))]} . (25)

When all of the nuclear species are treated as non-
interacting Boltzmann particles, their densities, chemical
potentials and “bare” (i.e., without excluded volume fac-
tors included) free energy densities are given by

ni = A
3/2
i nQ exp(μi/T ),

μi = T ln

(
ni

A
3/2
i nQ

)
,

fi = ni(μi − Bi − T ) i = d, τ, 3, α, (26)

where Ai are the mass numbers of the light nuclei and
nQ is the quantum concentration of nucleons in eq. (17).
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The pressure, energy density and entropy density of each
species is that of a non-interacting gas as in eq. (18). As
in the previous section, the free energy densities of inter-
acting nucleons outside the nuclei are calculated using the
EOS of APR at finite T [31].

The relationships between the various chemical poten-
tials are obtained by minimizing the total free energy den-
sity

F = Fb + Fe + Fγ

Fb = Fo + Fd + Fτ + F3 + Fα

Fo =
∏

i=d,τ,3,α

(1 − nivi)nofo(no, xo, T )

Fd =
∏

i=τ,3,α

(1 − nivi) fd(nd, T )

Fτ =
∏

i=3,α

(1 − nivi) fτ (nτ , T )

F3 = (1 − nαvα) f3(n3, T )

Fα = fα(nα, T ) (27)

with respect to ni

∂F

∂ni
= 0 ⇒

μd = μno + μpo + Bd − vdpo

μτ = 2μno + μpo + Bτ − vτ (po + ndT )

μ3 = μno + 2μpo + B3 − v3(po + ndT + nτT )

μα = 2(μno + μpo) + Bα − vα(po + ndT + nτT + n3T ),
(28)

where po stands for the pressure of interacting nucleons
in the absence of the light nuclei. The inclusion of addi-
tional clusters increases the number of quantities to be
determined compared to the case when only α-particles
are considered. As in the previous section, the set of vari-
ables (n, Ye,Xp, T ) facilitates numerical evaluations con-
siderably. The nucleon densities outside the nuclei can be
found by eliminating nα from eqs. (23) and (25) and a
guess value of Xp

no =
{[

Q
1

1 − n3v3
− 3nτ

]
1

1 − nτvτ
− 2nd

}
1

1 − ndvd

Q =
(

2n(1 − 2Ye) + R(4 − nvα)
2 − nYevα

− 3n3

)

R = 2n3 + (1 − n3v3)

×{nτ + (1 − nτvτ ) [nd + nXp(1 − ndvd)]}

nno = no − npo, xo =
npo

no
and npo = nXp (29)

using which the outside nucleon chemical potentials can
be determined by utilizing their relations to the nucleon
densities. Equation (28) then provides the various chem-
ical potentials and eq. (26) their corresponding densities.

The correct value of Xp can be determined iteratively by
satisfying the baryon number conservation eq. (23). The
total pressure is then given by

P = Pb + Pe + Pγ

Pb = Po + Pd + Pτ + P3 + Pα

Po =
∏

i=d,τ,3,α

(1 − nivi) po(no, xo, T )

Pd =
∏

i=τ,3,α

(1 − nivi) pd(nd, T )

Pτ =
∏

i=3,α

(1 − nivi) pτ (nτ , T )

P3 = (1 − nαvα) p3(n3, T )

Pα = pα(nα, T )

pi = niT. (30)

Expressions for the entropy and energy densities are sim-
ilar with so and εo taking the place of po, and the various
other pi’s above replaced by si = ni(5/2 − μi/T ) and
εi = ni(3/2T − Bi) for i = d, τ, 3, α, respectively.

The virial approach

The treatment of clusters is also afforded by the virial
expansion approach that includes bound and continuum
states, and provides corrections to the ideal gas results
for thermal variables [37]. When applicable, this approach
is model independent as experimental data (i.e., phase
shifts), where available, are input to theory. In terms of
the partition function Q, the pressure P = (T/V ) logQ,
and is expressed in terms of the fugacities zi = exp(μi/T ),
(i = d, 3H, 3He, 4He etc.) and the 2nd virial coefficients b2

which are simple integrals involving thermal weights and
elastic scattering phase shifts. Unlike in classical statistical
mechanics, a satisfactory treatment of the 3rd and higher
order quantum virial coefficients is yet to be accomplished.

In the context of heavy-ion collisions, this approach
was used to calculate the state variables of a resonance
gas in ref. [38]. For low-density supernova and neutron-
star matter, the EOS for the npα system was calculated
in ref. [25], with the inclusion of other light nuclear clusters
in refs. [39,40] and those with heavy-nuclei also in ref. [41].
The review in ref. [26] provides an extensive list of other
references in which the virial approach and its extensions
have been used to calculate the EOS of low-density matter.

Here we restrict ourselves to the npα system with elec-
trons and photons to make comparisons with the results
of the excluded volume approach, and to point out sim-
ilarities and differences. The results reported here were
obtained precisely in the manner expounded in refs. [25]
and [20] respectively, with APR serving as the underlying
model for the nucleon-nucleon force in the latter case. In
both cases, we have verified that our results shown here
reproduce those of these earlier works.
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Fig. 7. Mass fractions Xα = 4nα/n vs. baryon density at the
indicated temperature T and net electron fractions Ye.

Comparison between the excluded volume and virial ap-
proaches

We begin by showing results for the npα system with lep-
tons and photons. Figure 7 shows a comparison of the
α-particle mass fractions Xα = 4nα/n between the ex-
cluded volume approach using the EOS of APR for nu-
cleons and the virial approach. Unlike in the standard LS
model, Xα’s here lie above the virial results until they
vanish at some density (see fig. 5 and associated discus-
sion in ref. [25]). Clearly, results of the excluded volume
approach depend on the treatment of the nucleon-nucleon
interactions. As noted in refs. [20, 33], the povα term in
eq. (19) decreases the μα and nα as the density increases
causing the disappearance of α’s. Such is not the case in
the virial approach in which for each Ye, Xα’s continue
to increase up to and even beyond ns where the approach
becomes invalid. However, the appearance of heavy-nuclei
at sub-nuclear densities results in diminishing Xα’s in the
virial approach as well [41]. The physical difference be-
tween the two approaches is that only repulsive interac-
tions are incorporated in the excluded volume approach
whereas in the virial approach the α-nucleon interactions
are predominantly attractive. In what follows, we will first
present results from each of these approaches to provide
a comparison and to appreciate their characteristics be-
fore addressing a method in which the limitations of each
method can be avoided.

Figures 8(a) and (b) show the pressure vs. baryon
density in the two approaches at T = 4MeV, and for
Ye = 0.1 and 0.4, respectively. The individual contribu-
tions from the baryons presented in this figure provide a
contrast between results of the excluded volume approach
(solid curves) using the EOS of APR for nucleons and the
virial (dashed curves) approach. Unlike in the virial ap-
proach, the excluded volume pressure due to the outside
nucleons, Po, shows a non-monotonic behavior for both
Ye’s. This difference is due to the disappearance of the
α-particles with growing density in the excluded volume
approach. Particularly noteworthy are the negative values
of Po for Ye = 0.4 characteristic of nearly symmetric nu-
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Fig. 8. Pressure vs. baryon density in the excluded volume and
virial approaches for the indicated temperature and net elec-
tron fractions. Low individual contributions have been multi-
plied by a factor of 2 for clarity.

cleonic matter at the densities shown [31]. This feature is
absent in the virial approach. The sub-dominant contribu-
tions Pα from the α-particles are nearly the same in the
two approaches. For both Ye’s, the contribution from the
leptons, Pe, is dominant over that of the baryons. This
dominance persists for all values of Ye’s except those ap-
proaching that of PNM for which Ye = 0. The contribution
from photons is negligible at the temperature and densi-
ties shown. We note, however, that these results, along
with those of other state variables to be shown below, will
be quantitatively altered when other light nuclear clus-
ters as well as heavy nuclei are included at sub-nuclear
densities.

The entropy per baryon, S = s/n, vs. n is shown in
figs. 9(a) and (b) for the same T and Ye’s as in fig. 8. The
upward trend in the results for So and Se is caused by the
low values of n in their respective definitions. As with the
pressures, the non-monotonic behavior of So at the higher
end of densities in this figure is caused by the disappear-
ance of α-particles in the excluded volume approach. As
nα vanishes faster than n for very low n, Sα → 0 as n → 0.
In contrast to the pressures, the dominant contribution for
Stot arises from the nucleons outside of α-particles.
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Fig. 9. Same as fig. 8, but for the entropy per baryon vs.
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For the same values of T and Ye as in fig. 8, the en-
ergy per baryon, E = ε/n, vs. n is shown in figs. 10(a)
and (b). For both Ye’s, the α-particle energies per baryon,
Eα, in the two approaches are nearly the same at low
densities. They differ from each other at the densities for
which the excluded volume effects become significant. As
nα continues to increase with n in the virial approach, the
magnitude of Eα continues to decrease. Note also that
Eα remains negative until T � 2Bα/3. For Ye = 0.1, the
electron energies supersede those of the nucleons at some
density whereas they are the dominant contributions at
Ye = 0.4 at all n shown. In contrast to the virial approach,
the non-monotonic behavior of the nucleon energies, Eo, at
Ye = 0.1, stemming from the excluded volume approach,
is also noteworthy.

In fig. 11, the α-particle fractions are shown at T =
10MeV for representative Ye’s. In contrast to the results at
T = 4MeV, the dissolution of the α-particles is less abrupt
in the excluded volume approach. The difference with the
results of the virial approach grows as the density increases
for all Ye’s. With more positive charge and baryon num-
ber added with the inclusion of additional light nuclear
clusters and heavy nuclei, these results will also change
correspondingly in both the approaches (see discussion in
subsequent sections).
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Pressures at T = 10MeV are shown in fig. 12. Relative
to the results in fig. 8 at T = 4MeV, the higher thermal
content in the pressure of nucleons Po is evident in this
figure for both Ye’s. Contributions to Po at Ye = 0.4 for
n approaching 0.1 fm−3 in the excluded volume approach
are negative because the temperature is well below the
liquid-gas phase transition temperature of Tc � 17MeV
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for the EOS of APR at this Ye [31]. The virial Po’s remain
positive, albeit very small at Ye = 0.4. Contributions from
leptons are substantial for both Ye’s.

Results for multiple clusters in the excluded volume ap-
proach

In this section, we present and discuss results of the ex-
cluded volume approach when the low-density phase con-
tains d, 3H, 3He and 4He. For related, but slightly dif-
ferent treatment of the excluded volume approach, cf.
refs. [42, 43]. Results in these references are qualitatively
similar to those of ours although small quantitative differ-
ences exist. Put together, these results enable comparisons
with results of the virial approach in refs. [39,40].

The mass fractions from eq. (24) are shown in fig. 13.
In the results shown, the relative fractions of the various
species are determined by a combination of the charge and
baryon number conservation laws as well as values of the
Bi’s, T , Ye, and Po. The density at which an individual
species vanishes is primarily controlled by the excluded
volume vi assigned to it. Note that there is some leeway
in assigning these values instead of the geometrical fac-
tors adopted here. In principle, one could also use ranges
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Fig. 13. Mass fractions of light nuclei vs. baryon density at
the indicated temperature and electron fractions.

of effective interactions in determining the excluded vol-
ume. In addition, the presence of heavy nuclei (to be in-
cluded later) will also alter the relative concentrations.
Our results here are illustrative of the effects of excluded
volumes, but the formalism allows for other values to be
used. These remarks apply for results of the state variables
shown below as well.

Figure 14 shows contributions from light nuclei to the
total pressure. As the light nuclei are treated as non-
interacting gases, their pressures are given by ideal gas
expressions, Pi = niT , modulo the excluded volume fac-
tors in eq. (30) which act significantly only when each of
the nuclear species is disappearing. The temperature being
fixed at T = 4MeV for this figure, the partial pressures
reflect the variation of the individual densities of nuclei
with n. Note that contributions from the electrons begin
to dominate as Ye increases.

The entropies per baryon of light nuclei and their total
are displayed in fig. 15. Note that the predominance of one
or the other light nuclear species varies with increasing
density with nucleons giving a substantial contribution for
both Ye’s shown. Contributions from 3He, d and e are
subdominant for both Ye’s.

For the same temperature and Ye’s as in the previous
figures, contributions from light nuclei for the total energy
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Fig. 14. Contributions from light nuclei to the total pressure
vs. baryon density at the indicated temperature and electron
fractions.

per baryon vs. density are shown in fig. 16. Because the
B.E. of deuterons is small compared to the temperature,
their energies are positive until they disappear. Such is
not the case for 3H, 3He, and α-particles, hence they re-
main negative until they disappear. Note also that the
nucleon energies turn negative as n approaches 0.1 fm−3

for Ye = 0.4. As noted earlier, these results are subject
to modifications in the presence of heavy nuclei to be de-
scribed later.

Limitations of the excluded volume and virial ap-
proaches

The excluded volume approach accounts only for repulsive
interactions which become significant as the density in-
creases. As a consequence, light nuclear species disappear
at varying densities below ∼ 0.1 fm−3. In the (n, Ye, T )
region where heavy nuclei are favored, the relative abun-
dances of the light nuclei are also greatly affected [20,41].
The principal drawback of the excluded volume approach
is the lack of attractive interactions known to be present
from phase shift data, where available. As inclusion of such
effects provides small corrections to the ideal gas state
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Fig. 15. Contributions from light nuclei to the total entropy
per baryon vs. baryon density at the indicated temperature
and electron fractions.

variables, results of the excluded volume approach will
likely not be affected significantly.

Taking guidance from the available phase shift data,
the virial approach, where applicable, includes both at-
tractive and repulsive interactions. In the manner in which
interactions are included in this approach, their effects be-
come predominantly attractive. Consequently, the mass
fractions of light nuclei continue to increase toward and
beyond ns in the regions of (n, Ye, T ) where heavy nuclei
are absent. Although the fugacities of the clusters remain
less than unity, such is not the case for nucleons in a wide
range of T and Ye. An illustration of this feature is pre-
sented for npe matter in fig. 17 where neutron fugacities
zn are shown. With decreasing proton fraction x, the den-
sities at which zn’s exceed unity also decrease. As z  1
is a requirement of the virial approach, caution must be
exercised in its use.

From a theoretical standpoint, the region with light nu-
clear clusters presents the situation of fermion-boson mix-
tures extensively studied in the context of cold atoms [44].
We have developed an approach based on the mean fields
experienced by nucleons and the different light nuclei ac-
counting for both attractive and repulsive hard-core inter-
actions. Results from this approach will be presented in a
separate publication.
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Fig. 16. Contributions from light nuclei to the total energy
per baryon vs. baryon density. Note the large multiplicative
factors used in some cases for the sake of clarity.

Inhomogeneous phase with heavy nuclei

The inhomogeneous phase consisting of heavy nuclei sur-
rounded by a gas of nucleons, light nuclei, leptons and
photons occupies a substantial region (phase II in fig. 5)
at sub-nuclear densities n � 0.1 fm−3. For densities in ex-
cess of 0.1 fm−3, matter is too dense for nuclei of any type
to form and thus consists of uniformly distributed nucle-
ons and leptons (phase III in fig. 5). For the treatment
of heavy nuclei, two main approaches have been adopted
in the literature: the single nucleus approximation [20,33]
and the full ensemble method [41]. The former approach
gives an adequate representation of the thermodynamics
of the system [45], while the latter approach is warranted
for applications involving neutrino-nucleus and electron-
nucleus scattering and absorption processes.

In fig. 18, we show results for the volume fraction u oc-
cupied by nuclei for Ye = 0.5. The results shown here are
for the EOS of APR in the single nucleus approximation
of [20]. Decreasing the electron fraction from Ye = 0.5 re-
duces the fraction of space occupied by nuclei for a given
density n and temperature T . This reduction occurs be-
cause at low Ye’s, nuclei are unable to maintain a mod-
erate proton fraction (xi � 0.3) and thus fewer nuclei
form.
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Fig. 17. Neutron fugacity zn = exp(μn/T ) vs. baryon density
in npe matter from the virial approach. Values of the temper-
ature T and proton fraction x = np/nb are as indicated in the
figure. The intersections of the various curves with the hori-
zontal lines at zn = 1 indicate the densities beyond which the
virial approach loses its validity.

Observe that while the presence of electrons in the
whole system ensures charge neutrality and mechanical
stability, electrons are entirely irrelevant in the calcula-
tion of TA

c which is the temperature above which nuclei of
mass A dissolve into their constituent nucleons. As such,
Tc is a property of matter enclosed in nuclei and can only
depend on the charge fraction xi inside nuclei. In turn,
xi is a function of the ambient conditions (n, Ye, T ) in
which the nuclei are embedded; here Ye is the net elec-
tron fraction of the whole system. For large enough nu-
clei, matter in their interior can be reasonably well ap-
proximated by infinite matter. In this case, Tc is obtained
by solving eq. (9); that is Tc is the liquid-gas phase tran-
sition temperature. Note that, in general, xi < Ye and
therefore TA

c < T∞
c . Similar considerations apply to the

pasta phase; the temperature T p
c above which the pasta

phase disappears is much less than TA
c . Detailed results

for the state variables corresponding to the EOS of APR
will be reported separately [29]. This work adds to the
suite of EOSs based on the Skyrme interaction provided
in ref. [46].
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Fig. 18. Contours of the volume fraction u occupied by nuclei
at sub-nuclear densities in the T -n plane for the EOS of APR.
The net electron fraction Ye = 0.5. Figure courtesy of Brian
Muccioli.

The supra-nuclear equation of state

Structural properties, such as the mass, radius, moment
of inertia, quadrupolar polarizability (or tidal deforma-
bility), etc., of a neutron star depend sensitively on the
supra-nuclear EOS [47]. While the radius of a normal nu-
cleonic neutron star is primarily determined by the EOS
in the region up to n ∼ 2ns, the star’s maximum mass de-
pends on the EOS close to its central density [48]. When
additional components such as hyperons, Bose Conden-
sates or quarks are considered (and present in substantial
amounts), the EOS beyond 2ns can influence both the ra-
dius and the maximum mass. The internal composition
controls the long-term cooling of neutron stars detected
through optical and X-ray thermal emission [49]. For the
manner in which the supra-nuclear EOS influences other
observable properties including gravitational wave emis-
sion, neutrino emission from type-II supernovae, rotation,
magnetic properties, etc., of a neutron star, cf. refs. [47,50]
for an overview.

There are several sweet and sour points concerning the-
oretical attempts to calculate the supra-nuclear EOS. On
the sweet side, developments in effective field theory have
enabled first principle calculations of isospin symmetric
and asymmetric matter with systematic corrections to be
estimated. On the sour side, continuing beyond 2ns to
encompass the central densities of neutron stars is pre-
cluded in these methods because of the perturbative ex-
pansion parameter Λ/p, where Λ is a cut-off in momentum
p, reaching uncomfortable values particularly for PNM for
which the Fermi momentum pF (PNM) = 22/3pF (SNM).
For example, pF (PNM) � 336 (533)MeV/c for ns(2ns),
whereas typically Λ � 600MeV/c. Additionally, the er-
ror estimates depend on the method employed to impose
the cut-off Λ which also affects the unitarity of operators
when a cut-off is used. To access the EOS beyond 2ns

for inferring structural properties of a neutron star, the
approach taken thus far has been to use piece-wise and
causal polytropic EOSs beyond 2ns so that a maximum
mass of � 2M� can be obtained [51]. While this approach

is adequate and useful for cold neutron stars in a para-
metric study, the internal composition, finite temperature
properties and isospin dependence of the EOS cannot be
accessed with polytropic EOSs.

Phenomenological EOSs based on non-relativistic po-
tential model approaches with contact and finite-range in-
teractions have long been used to explore possible conse-
quences in astrophysical applications by varying the high-
density behavior of the EOS. The advantage of these mod-
els is that calculations are relatively easier than the time-
consuming first-principle calculations. However, higher-
than-two-body interactions, found necessary to fit con-
straints offered by laboratory data on nuclei at near-
nuclear densities, render these EOSs acausal at some high
density due to the lack of Lorentz invariance in a non-
relativistic approach. Often, the density at which causal-
ity is violated lies within the central densities of neutron
stars. Although a method to impose causality based on
thermodynamical arguments has been known for a while
for cold stars [52, 53], it is only recently that a similar
method has been devised at finite temperature [54]. A
practical way to avoid this problem is to screen repulsive
contributions from higher-than-two-body interactions (as
they lead to an energy per particle that varies faster than
linearly at high density) as in refs. [55–57]. For any such
nonrelativistic potential model, causality is preserved for
all temperatures/entropies if the inequalities cs(T=0)

c ≤ 1
and 4

9Q2 + 2n
3

dQ
dn ≤ 1 are both satisfied. The quantity Q

is related to the nucleon effective mass m∗ and its den-
sity derivative according to Q = 1 − 3m∗

2n
dm∗

dn . That is, a
full finite-T calculation of the speed of sound is not neces-
sary in order to check whether or not causality is violated.
These remarks are relevant also to all first-principle dense-
matter calculations that use a non-relativistic approach.

Relativistic Dirac-Brueckner-Hartree-Fock [58,59] and
mean field-theoretical [60] models and their extensions
are inherently Lorentz invariant and thus preserve causal-
ity. While the former approach is based on nucleon-
nucleon scattering data, in the latter, nucleon-boson cou-
pling strengths are calibrated in medium at ns to repro-
duce empirical properties of nuclear matter and nuclei.
As with their non-relativistic counterparts, several adjust-
ments of many-body forces in medium have been required
to obtain 2M� neutron stars with reasonable radii for
∼ 1.4M� stars for which observational constraints are
beginning to emerge. These approaches, however, do not
suffer from the cut-off issues that non-relativistic effective
field-theoretical approaches do.

Establishing or ruling out the presence of non-
nucleonic degrees of freedom in neutron-star matter has
proved difficult on both observational and theoretical
fronts. Observationally, a compelling evidence for the pres-
ence of exotica in the form of hyperons, Bose condensates
or quarks is lacking. On the theoretical side, many stud-
ies including the presence of exotica in one form or the
other have been conducted. Most of these studies have
been revised with ad hoc adjustments concerning strong
interactions at high density in view of the discovery of
2M� neutron stars. The consensus since then has been
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Table 2. Effects of finite entropy on the structure of neutron
stars. Results taken from Prakash et al. [57]. The various sym-
bols are: S, entropy per baryon, Mmax, the maximum mass,
R, the radius of the maximum mass configuration, nc/n0, the
core density in units of the nuclear equilibrium density, Pc, the
core pressure, Tc, the core temperature, λ, percentage change
in Mmax, and I, the moment of inertia corresponding to Mmax.
Model designations are as in ref. [57] (see also text).

Model S Mmax
M�

R nc
n0

Pc Tc 102λ

(km) ( MeV
fm−3 ) (MeV)

BPAL32 0 1.93 10.1 7.7 590.2 0

2 1.97 10.9 6.9 482.8 71.5 0.53

SL32 0 2.1 10.6 6.8 689.9 0

2 2.2 11.6 5.8 532.2 103.2 1.11

MRHA 0 1.86 10.6 7.3 484.9 0

2 1.9 11.2 6.6 419.6 58.8 0.56

GM 0 2.0 10.9 7.1 545.8 0

2 2.04 11.6 6.4 458.2 62.6 0.47

that a large amount of exotica in neutron star interiors is
untenable [61]. In the case of quarks, the overarching con-
cern is the lack of a non-perturbative treatment of quark
matter interactions. This conundrum is likely to remain
unless breakthroughs occur on both observational and the-
oretical fronts.

3 Thermal effects on the structure of neutron
stars

As figs. 1 and 2 imply, the entropy and temperature of the
post-merger remnant in the merger of binary neutron stars
change with the spatial location as well as with time. Con-
sequently, the enclosed mass and the radius of the remnant
also change with time. In reality, such changes are brought
about by several physical effects such as thermal effects,
neutrino trapping, rotation and magnetic fields etc. all
acting at the same time. To gain a qualitative or semi-
quantitative understanding of how each of these effects af-
fect the masses and radii at a given time, we can study the
role of one physical effect at a time while freezing the oth-
ers. A full dynamical simulation is, however, required for
a complete understanding when all of the physical mech-
anisms act in concert.

We therefore begin with the role of thermal effects on
the structure of a neutron star. As most of the enclosed
mass is accumulated from regions above ns in the star, an
analysis based on nearly degenerate matter offers some in-
sight. Under such conditions, the maximum gravitational
mass at finite constant entropy per baryon (throughout
the star) can be expressed as [57]

Mmax(S) = Mmax(0) [1 + λS2 + · · · ], (31)

where the coefficient λ is EOS dependent. Table 2 presents
physical properties of the maximum mass (gravitational)
nucleonic stars for the EOSs chosen in ref. [57]. The EOSs
labelled BPAL32 and SL32 are non-relativistic potential
models, and MRHA and GM are from mean field theoreti-
cal models. The values of λ given in table 2 are quite small,
∼ 10−2. We note that the results in this table correspond
to the case when only regions above n � 0.08 fm−3 con-
tained thermal effects, but not the surface regions below
that density. We have verified that the increasing trend
in the maximum mass at finite S is not affected by this
omission, but the radius would be larger when the sur-
face regions are also subject to thermal effects. Results
for EOSs including that of APR in which the entire star
is heated will be reported in a subsequent publication [29].

As in the case of nucleonic stars, thermal effects pro-
vide positive pressure at a given baryon density in stars
containing hyperons, Bose condensates or quarks as well,
and therefore the maximum gravitational mass increases
slightly at finite entropy relative to that at zero temper-
ature [57]. As will be discussed in later sections, other
physical effects increase the maximum mass substantially
more than thermal effects.

4 Effects of trapped neutrinos on the
structure of neutron stars

Elusive as they are, the weakly interacting neutrinos can
be trapped in matter, albeit transiently, in several as-
trophysical circumstances. The physical sites of inter-
est include the early universe, core-collapse supernovae,
newly born neutron stars, and mergers of binary neutron
stars [62]. For example, the supernova center mean free
path for neutrino scattering is λ ≈ 2×105 (MeV/Eν)2 cm,
where Eν is the neutron energy in MeV. Thus, neutri-
nos with energy 1MeV or more would be trapped during
the evolution of a core-collapse supernova. Furthermore,
at early times in a proto-neutron star’s evolution, neu-
trinos would be trapped in matter as well, being unable
to propagate on dynamical timescales. Electron capture
reactions, which proceeded due to the increasing density
and electron chemical potential, effectively halt as the
trapped neutrinos settle into a degenerate Fermi sea and
contribute their own Fermi pressure to the system. Be-
cause neutrinos interact weakly, all of their thermal char-
acteristics are taken as their ideal Fermi gas contributions.
The chemical potential of the electron neutrinos, μνe

is re-
lated to the net electron-neutrino number per baryon Yνe

by μ3
νe

= 6π2nYνe
(the neutrino mass here being negligi-

ble compared to μνe
). Similar considerations apply to the

other flavors of neutrinos as well.
It is interesting to make some observations regarding

the effect of trapped neutrinos on the mass of the star itself
to which we turn now. Under conditions when neutrinos
of lepton flavor  = e, μ and τ are trapped in the system,
the beta equilibrium condition becomes

μi = biμn − qi(μl − μν�
), (32)
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Table 3. Effects of trapped neutrinos on the structure of nucle-
onic stars. Results taken from Prakash et al. [57]. The various
symbols are as in table 2.

Model S Mmax
M�

R nc
n0

Pc Tc 102λ

(km) ( MeV
fm−3 ) (MeV)

BPAL32 0 1.86 10.1 7.6 609.6 0

2 1.91 10.8 6.7 503.7 63.7 0.63

MRHA 0 1.78 10.3 7.5 514.1 0

2 1.84 10.9 6.8 448.3 54.6 0.75

GM 0 1.94 10.5 7.4 595.8 0

2 1.98 11.2 6.7 496.6 59.0 0.58

where μi is the chemical potential of baryon i, bi is its
baryon number and qi is the charge. The chemical poten-
tial of the neutron, lepton  and neutrino ν� are denoted
by μn, μ� and μν�

, respectively. For example, equilibrium
under the electron capture reaction p + e− ↔ n + νe es-
tablishes the relation

μ̂ ≡ μn − μp = μe − μνe
, (33)

allowing the proton chemical potential to be expressed in
terms of three independent chemical potentials as

μp = μn − (μe − μνe
). (34)

Analogous relations involving other neutrino flavors, hy-
perons, kaons, quarks, etc. can be found in ref. [34].

Because of trapping, the numbers of leptons of each
flavor of neutrino

YL� = Y� + Yν�
(35)

are conserved on dynamical time scales. In the context of
core-collapse supernovae, the constraint YLμ = Yμ+Yνμ

=
0 can be imposed because no muons are thought to be
present when neutrinos become trapped in the gravita-
tional collapse of the white-dwarf core of massive stars.
The electron lepton number YLe = Ye + Yνe

� 0.4, the
precise value depending on the efficiency of electron cap-
ture reactions during the initial collapse stage. Note, how-
ever, that in mergers of binary neutron stars, YLμ 
= 0, as
cold catalyzed neutron stars prior to merger would contain
some muons above ∼ ns.

Since neutrinos do not carry any charge, the charge
neutrality condition remains unaltered from the case in
which neutrinos are not trapped.

The results presented in table 3 for nucleonic stars cor-
respond to the case when YLe = 0.4 and YLμ = 0, i.e.,
relevant more for core-collapse supernovae and the ini-
tial stages of proto-neutron stars than for the post-merger
remnants (in which YLμ 
= 0) of the coalescence of binary
neutron stars. The EOS designations are as in table 2.
Comparing results in tables 3 and 2, one notices a reduc-
tion in the maximum mass of ∼ (0.06–0.08)M� depend-
ing on the EOS for both S = 0 and 2 when neutrinos are

trapped. This reduction is caused by the electron chem-
ical potential μe being larger in this instance relative to
the case of neutrino-free stars. This increase is required
by the conservation of YLe in eq. (35) in the presence of
neutrinos. Consequently, nucleonic matter becomes more
proton rich to maintain charge neutrality, which in turn
causes the EOS to become softer relative to the neutrino-
free case.

For the manner in which the maximum mass varies in
the case of neutrino-trapped stars containing strangeness-
bearing components such as hyperons, kaon condensates
or quarks, we refer the reader to ref. [57] in which pathways
of subsidence of such stars to black holes after deleptoniza-
tion is described. We note that such pathways would exist
only for cases in which a substantial amount of exotica
are present (fulfilling, of course, the current constraint of
2M� cold catalyzed stars).

As neutrinos diffuse through matter, the lepton num-
bers will change. The precise manner in which neutrinos
diffuse through the star in time is beyond the scope of this
work; see, however, refs. [63–68] for detailed accounts.

5 Magnetic effects on neutron star structure

When magnetic fields have sufficient strength, they influ-
ence both the EOS and the structure (through changes in
the relevant metric functions) of neutron stars in an inter-
mingled manner. The magnetic field strength needed to
dramatically affect neutron structure can be estimated by
a dimensional analysis equating the magnetic filed energy
EB ∼ (4πR3/3)(B2/8π) with the gravitational binding
energy EB.E. ∼ 3GM2/(5R), yielding the so-called virial
limit

B ∼ 1.4 × 1018

(
M

1.4M�

) (
R

10 km

)−2

Gauss, (36)

where M and R are, respectively, the neutron star mass
and radius. Magnetic fields quantize the orbital motion
(Landau quantization) of charged particles such as elec-
trons, muons and protons in charge neutral and beta-
equilibrated matter of neutron stars. The importance of
relativistic effects is gauged by the equality of the parti-
cle’s cyclotron energy e�B/(mc) to its rest mass energy.
Although there is nothing critical about this, the magni-
tudes of the so-called critical fields for the electron, muon
and proton are

Be
c = (�c/e)λ−2

e = 4.414 × 1013 Gauss,
Bμ

c = (mμ/me)2Be
c = 1.755 × 1018 Gauss,

Bp
c = (mp/me)2Be

c = 1.487 × 1020 Gauss, (37)

where λe = �/(mec) � 386 fm is the reduced Compton
wavelength of the electron. When the Fermi energy of the
proton becomes significantly affected by B, the compo-
sition and hence the EOS of matter in beta equilibrium
becomes significantly affected, and in general leads to a
softening of the EOS for B∗ ≡ B/Be

c ∼ 105 [69].
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The energy density and pressure from the electromag-
netic field are

εf = Pf =
B2

8π
= 4.814 × 10−8 B∗ MeV fm−3. (38)

Thus, to obtain a nominal εf = Pf = 1MeV fm−3, a mag-
netic field strength of B∗ = 4.56 × 103 or B � 2 × 1014

Gauss is required. These values may be contrasted with
the pressure of matter in non-magnetic neutron stars
that range from 2–4MeV fm−3 at nuclear density to 400–
1000MeV fm−3 at the central densities of maximum mass
neutron stars depending on the EOS. Thus, the field con-
tributions dominate the matter pressure only for B∗ > 104

at nuclear densities and for B∗ > 105 at the central den-
sities of neutron stars.

In strong magnetic fields, anomalous magnetic mo-
ments of the baryons interact with the magnetic field op-
posing the softening of the EOS due to Landau quantiza-
tion [69,70]. For nucleons,

κp = μN

(gp

2
− 1

)
for p, and,

κn = μN

(gn

2
− 1

)
for n, (39)

where μN is the nuclear magneton, and gp = 5.58 and
gn = −3.82 are the Lande g-factors for the proton and
neutron, respectively. The energy

|κn + κp|B � 1.67 × 10−5 MeV (40)

measures the changes in the field-free beta equilibrium
condition and to the baryon Fermi energies with contri-
butions from the anomalous magnetic moments becoming
significant for B∗ > 105. In fact, complete spin polariza-
tion of the neutrons occurs when

|κn|B ∼ (6π2nn)2/3

4mn
, (41)

which at nuclear density leads to B∗ � 1.6 × 105 or
B � 7.1 × 1018 Gauss. Such spin polarization results in
an overall stiffening of the EOS (due to the increased de-
generacy pressure of neutrons) that counters the soften-
ing induced by Landau quantization [69]. The net effect
is to render the effective EOS very close to that of field-
free matter. For a summary of additional effects, for fields
close to or exceeding Bp

c , such as vacuum polarization ef-
fects [71] and compositeness of baryons, see ref. [50].

Studies conducted with assumed frozen-in fields, see,
e.g., refs. [72–74] and references therein, offer some in-
sight into the effects of magnetic fields on the structure
of neutron stars. Figure 19 shows results from ref. [72]
(for the EOS of APR) in which the limits of hydrostatic
equilibrium for axially symmetric magnetic fields in gen-
eral relativistic configurations were analyzed assuming a
constant current function. Axially symmetric magnetic
fields provide a centrifugal-like contribution to the total
stress-energy tensor, which flattens an otherwise spheri-
cal star. Large enough fields decrease the central (energy)
density as the mass is increased eventually compromising

Fig. 19. Mass-equatorial radius plot showing converged solu-
tions attainable with a constant current function for the EOS
of APR [24]. The lower heavy curve represents spherical, non
magnetized configuration, and the upper heavy curve repre-
sents the boundary beyond which solutions appear not to exist.
Lighter solid curves are sequences of constant baryon mass (in
M�), while dotted curves are sequences of constant magnetic
moment M (in units of M∗ = 1035 Gaussian). The cross de-
notes the maximum mass configuration attainable by uniform
rotation. Figure from Cardall, Prakash and Lattimer [72], re-
produced by permission of the AAS.

the star’s stability. As with rotation, magnetic fields allow
neutron stars with a particular EOS and baryon number
to have larger masses and equatorial radii compared to
the field-free case. The maximum mass attainable with a
magnetic field governed by a constant current function is
noticeably larger than that attained by rotation.

In fig. 19, hydrostatically stable configurations (some
of which may not be stable to dynamical perturbations)
are contained between the heavy solid curves. The lower
heavy solid curve is the usual field-free, spherical result for
the mass-radius relation. The upper heavy solid curve rep-
resents the largest possible stable mass for a given equa-
torial radius as the internal magnetic field strength is in-
creased. Large axially symmetric fields tend to yield flat-
tened configurations, and if large enough, shift the maxi-
mum densities off-center resulting in toroidal shapes.

The lighter solid curves in fig. 19 represent constant
baryon mass sequences of interest as potential evolution-
ary paths. Note, however, that such paths represent re-
ality only if the current function stays constant over the
timescales of magnetic field decay due to Hall drift and
ambipolar diffusion. As there is no such guarantee, per-
haps the study of several different current functions could
shed light on probable evolutionary sequences. The lighter
dotted curves in this figure display sequences of constant
magnetic moment M. Unlike for baryon number or mass,
there is no principle of “conservation of magnetic mo-
ment”, but over the slow timescales of magnetic field de-
cay, this procedure seems like a plausible opening explo-
ration.

In the context of simulations of merging neutron stars,
several additional caveats apply. The post-merger remnant
would be differentially rotating till the time rigid rotation
takes over due to effects of poorly understood (artificial)
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viscosity. The generation and evolution of magnetic fields
in the rotating remnant itself is a subject beset with con-
siderable uncertainty and is worthy of further studies.

6 Rotational effects on neutron star structure

Rigid rotation increases the maximum mass of a neu-
tron star due to the positive pressure support provided
by centrifugal forces. With increasing angular momentum
J , mass-shedding at the equator occurs, limiting the max-
imum angular momentum, Jmax, a star can support. Gen-
eral relativistic instabilities occur slightly before the Kep-
lerian limit, but the latter generally gives a good estimate
of rotational instabilities. For uniform rotation, studies in,
e.g., ref. [75] have shown that the increase in the maximum
gravitational mass can amount to ∼ 20%. In what follows,
we summarize the results of ref. [76] (see also references
to earlier works there, and also ref. [77]) in which the be-
havior of maximum baryon and gravitational masses with
respect to the Kerr parameter a = cJ/(GM2) was stud-
ied using a wide class of EOSs and a few select laws for
differential rotation. In summary, ref. [76] finds

MB

M∗
B

= 1 + 0.51
(

cJ

GM∗2
B

)2

− 0.28
(

cJ

GM∗2
B

)4

(42)

MB

M∗
B

= 0.93
MG

M∗
G

+ 0.07 (43)

MG

M∗
G

= 1 + 0.29
(

cJ

GM∗2
G

)2

− 0.10
(

cJ

M∗2
G

)4

. (44)

The notation above is M∗
G := MTOV

G,max, M∗
B := MTOV

B,max
are maximum gravitational and baryon masses for non-
rotating models with J = 0, and MG and MB are for
rotating models with J 
= 0.

Self-bound strange quark stars deviate from the above
trend yielding

MB

M∗
B

= 1 + 0.87
(

cJ

GM∗2
B

)2

− 0.60
(

cJ

GM∗2
B

)4

. (45)

The conclusion that emerges from these static studies
is that uniform (differential) rotation can increase the
maximum allowed mass (before mass shedding) by up to
∼ 20% (≥ 50%). Similar conclusions have been reached in
refs. [78–80], albeit with slightly differing numbers in the
case of differentially rotating stars with different rotation
laws. As noted in ref. [76], further analysis by extracting
realistic rotation laws from dynamical simulations (includ-
ing magnetic effects) is warranted.

7 Conclusions

Simulations of the merger of binary neutron stars require
the EOS of dense matter over wider ranges of density and
temperature than do those of core-collapse supernovae and
protoneutron stars. This requirement stems mainly from

the compression and mass of the post-merger remnant
achieved in a merger event which are larger than those
in the latter cases. Although advances have been made
in dense matter theory, many sore points remain some
of which have been pointed out in this work. The gravi-
tational and baryon masses of the post-merger remnants
are also influenced by effects of composition, temperature,
neutrino trapping, magnetic fields and rotation, the latter
differential for short times and rigid thereafter. To gain
physical insights, we have provided brief reviews of earlier
works studying these effects considering each of them to
act separately. In dynamical simulations of mergers, how-
ever, all of these effects would be acting simultaneously
and evolving with time.

New elements of our work here are 1) a comparison of
excluded volume and virial approaches for the npα system
using the EOS of APR for interacting nucleons, and, 2)
extension of the excluded volume approach to include ad-
ditional light nuclei such as d, 3H, and 3He at sub-nuclear
densities along the lines of refs. [20,33].

The principal difference between the excluded volume
and virial approaches for the npα system is that the mass
fraction of the α-particle vanishes for n � 0.1 fm−3 in the
former case (due to excluded volume effects) whereas it
continues to rise for the latter up to and beyond nuclear
densities. As a result, the excluded volume total pressure
exhibits a non-monotonic behavior with density for all
electron fractions unlike in the virial approach. For the
same reason, similar features are also seen in the total en-
ergy per baryon. In both cases, the dominant contribution
to the entropy per baryon comes from nucleons outside of
α-particles for all electron fractions. The origin of the dif-
ferences between the two approaches is that the excluded
volume approach accounts only for repulsive interactions
whereas interactions in the virial approach are predomi-
nantly attractive. In addition, the requirement that fugac-
ities be less than unity is not met for nucleonic matter;
the density at which the violation occurs decreasing with
proton fraction. For densities, temperatures and electron
fractions for which heavy nuclei would be present, results
from both approaches are similar although quantitative
differences exist.

Results from our extension of the excluded volume ap-
proach to include light nuclei in addition to the α-particle
enable comparisons to be made with related, but slightly
different approach of refs. [42,43]. We defer such a compar-
ison to a future work. We find that variation of an order
in magnitude in the excluded volumes does not result in a
big variation of results when multiple clusters are present.
What, in fact, determines the relative mass fractions of
light nuclei are the respective binding energies and, to a
lesser extent, the charge fraction at which the calculation
is performed; for example, in neutron rich matter, the con-
centrations of 3H and 3He will be somewhat enhanced in
comparison to the symmetric nuclear matter case. The
EOS in this density region would also be relevant to inter-
mediate energy heavy-ion collisions in which abundances
of these nuclei are measured. One must note, however, the
contributions from electrons, present in astrophysical sit-
uations, would be absent in this case. A worthwhile future
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task would be analyses of fermion-boson mixtures at sub-
nuclear densities using effective field theoretical (EFT)
techniques.

EFT approaches have enabled first-principle calcu-
lations of isospin symmetric and asymmetric nucleonic
matter put to ∼ 2ns with systematic error estimates
associated with perturbation theory, the treatment of
three-body interactions and dependencies on cut-off pro-
cedures. For densities beyond ∼ 2ns, extrapolations us-
ing causal polytropic EOSs have been used to examine
the ranges of masses and radii consistent with the re-
quirement of obtaining 2M� neutron stars. This latter
procedure precludes extension of the EOS to finite tem-
peratures; furthermore, knowledge of the compositional
dependence of the EOS required in dynamical simula-
tions is lost. Other approaches, including phenomenologi-
cal EOSs based on non-relativistic potential models, rela-
tivistic Dirac-Brueckner-Hartree-Fock and mean field the-
oretical models (and its extensions) do not suffer from
cut-off issues. However, several adjustments to many-body
forces in such treatments have been required since the
discovery of 2M� neutron stars. Concerning the possi-
ble presence of exotica (hyperons, Bose condensates and
quarks) in neutron star interiors, the 2M� constraint
places restrictions in that a significant amount of such
matter is disfavored.

Studies of static configurations in which thermal ef-
fects, neutrino trapping, assumed magnetic fields and ro-
tation are present on an individual basis have revealed
that the maximum gravitational and baryon masses are af-
fected to varying degrees. The maximum increase in these
masses occurs for rotation nearing the mass-shedding (Ke-
plerian) limit. For rigid (differential) rotation, the increase
in the maximum can amount to 20% (� 50%). Magnetic
fields have a comparable effect only for fields close to or
in excess of 1018 Gauss. In both of these cases, the star
would be deformed. Changes in maximum masses due to
thermal effects are comparatively smaller, of order a per
cent, which is also the case when neutrinos are trapped.
To better understand results of dynamical simulations in
which all of these effects would be acting concurrently,
study of static configurations in which these effects are
combined one after the other with a wider choice of mag-
netic fields and differential rotation laws than employed
so far would be greatly helpful.
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