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Abstract. Heavy-ion fusion hindrance occurs at extreme sub-barrier energies. This behavior is well repro-
duced with a simple cross section formula, which was developed by Siwek-Wilczynska et al., based on a
single-Gaussian distribution of fusion barrier heights, before the discovery of the hindrance phenomenon.
This expression has not yet been widely used and referenced in the literature. An analysis by using this
simple formula is presented for 29 systems, from 16O + 18O to 64Ni + 124Sn, all being measured down to
less than 10 μb. The agreement with the data is even better than the ones from sophisticated Coupled-
channels calculations. This simple expression also applies to fusion reactions in lighter systems. The three
parameters contained in this formula vary in a relatively smooth fashion over the whole mass range, and
can be used to extrapolate cross sections or to obtain an estimate of the excitation function for systems
which have not been measured. Extensions and restrictions of this method are also discussed.

1 Introduction

Fusion is a complex process between two heavy nuclei. At
energies above the barrier, fusion makes up the dominant
part of the nuclear reaction cross section and is the main
process to produce nuclei outside the valley of beta sta-
bility. At low energies the fusion cross sections decrease
exponentially, even more rapidly than many other reac-
tion channels. This behavior of fusion excitation functions
introduces important ramifications in other fields, such as
astrophysics.

The overall description and understanding of the
heavy-ion fusion excitation function, covering the whole
energy range from high above the Coulomb barrier down
to the extreme sub-barrier region, becomes an important
issue in reaction theory studies.

Measurements and analyses of fusion enhancements [1,
2], angular momentum distributions [3], fusion barrier dis-
tributions [4–7], and recently, the heavy-ion fusion hin-
drance [8–11], have been studied over the last sixty years.
Coupled-Channels (CC) calculations have been developed
as an elaborate and commonly accepted theoretical ap-
proach for describing heavy-ion reactions including fu-
sion [12–14]. Many review articles of fusion reactions can

a e-mail: jiang@phy.anl.gov

be found in the literature. Some recent ones are listed
in [7, 10,11,14], where references to earlier studies can be
found.

There are two simple, analytic expressions of heavy-ion
fusion excitation functions which have been commonly ref-
erenced and used. The black-body model [15] is based on
the assumption that the collision energy must exceed a
single fusion barrier, whereas the Wong formula [16] also
allows for quantum mechanical tunneling through the bar-
rier represented by a simple parabolic shape.

In 2002, Siwek-Wilczynska et al., [17, 18] obtained a
surprisingly simple, but accurate description of the fu-
sion cross section based on a single-Gaussian distribution,
Dg(B), of fusion barrier heights [4, 19]

Dg(B) =
1√

2πWg

exp

⎡
⎣−

(
B − Vg√

2Wg

)2
⎤
⎦ . (1)

with

σ(E) =
πR2

E

∫ E

E0

(E − B)D(B)dB. (2)

Here, Vg is the centroid of the barrier distribution and Wg

the standard deviation of the distribution. The lower in-
tegration limits are E0 = −Q or 0, depending on whether
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the fusion Q value is negative or positive. In this case one
obtaines another simple, analytic function for the cross
section which includes the complementary error function
erfc(Z)

σg(E) =
√

πR2
gWg√

2E

[√
πZ erfc(−Z) + exp(−Z2)

]
, (3)

with Z = (E − Vg)/
√

2Wg and Rg the barrier radius1.
This simple formula can reproduce the heavy-ion fu-

sion excitation functions quite well. In ref. [18] a table was
included for 46 systems heavier than 48Ca+48Ca. The data
analysed in ref. [18] were mostly in the cross section range
from 0.1 to 1000mb. In fact, this formula has not been
widely used and referenced in the literature.

At about the same time, heavy-ion fusion hindrance
at extreme sub-barrier energies was discovered [8, 9, 20].
It was observed that the excitation functions for the sys-
tems 60Ni + 89Y [8] and 64Ni + 64Ni [20] at low energies
decrease much faster than the predictions of CC calcula-
tions with standard Woods-Saxon potential. A large num-
ber of refined measurements have been performed since
then, where the measured cross sections have been ex-
tended down to the nb level.

There is an excellent signature of this hindrance phe-
nomenon in the form of a maximum that appears in
the astrophysical S factor at extreme sub-barrier ener-
gies (S(E) = Eσ exp(2πη), where η = Z1Z2e

2/h̄v is the
Sommerfeld parameter). This phenomenon cannot be de-
scribed by the CC calculations with a standard Woods-
Saxon potential. It was soon realized that since the fusion
Q values for fusion reactions in medium-mass or heavy
systems are always negative, there must be an S-factor
maximum due to energy conservation [9]. For fusion in
lighter-mass systems, no such restriction exists since the
fusion Q values are often positive. Whether there is also an
S-factor maximum for these systems becomes an impor-
tant question, since reliable extrapolations of excitation
functions are especially important in nuclear astrophysics,
where in many cases the existing technologies do not allow
measurements of the fusion cross sections at the required
low energies. For a theoretical description, it was found
that the hindrance at low energy can be described by the
saturation property or incompressibility of nuclear mat-
ter, and has been reproduced by refined CC calculations
including a repulsive core [21,22] or a damping of the cou-
pling strength inside the Coulomb barrier [23–25]. There

1 Equation (3) is an approximated form under the assump-
tion that (Vg − E0)/

√
2Wg > 6, which is valid for all cases

of the present study. For very heavy system, the value of
(Vg − E0)/

√
2Wg is smaller but still positive, eq. (3) should

be taken as

σg(E) =
πR2

gWgZ√
2E

[erf(Z) − erf(Z0)]

+

√
πR2

gWg√
2E

ˆ

exp(−Z2) − exp(−Z2
0 )
˜

. (4)

Here Z0 = (E0 − Vg)/
√

2Wg, and erf(Z) is the error function.
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Fig. 1. Fusion cross sections, σ(E), and the corresponding S
factors, S(E) for the systems 16O+208Pb [26,33] (panel a) and
64Ni + 64Ni [20] (panel b). See text for details.

are other suggestions to interpretate the deep sub-barrier
fusion hindrance, in addition to the ones mentioned in
ref. [10], such as the decoherence [26], dissipation [27,28],
Pauli repulsion [29], DCTDHF calculations [30, 31] and
the use of the proximity formalism [32].

2 Comparison with experimental data

Using eq. (3) for σg(E), one can perform a least-squares
fit to the experimental excitation function and obtain the
parameters Rg, Vg and Wg that describe the barrier dis-
tribution and the fusion cross sections.

As a first example, we discuss the system 16O + 208Pb
(shown in fig. 1(a)), where high-precision data measured
in small energy steps and covering cross sections from
10−5 mb to 103 mb are available [26, 33]. The cross sec-
tions and the S factor are shown in fig. 1(a). For this
system a clear maximum in S(E) is observed. The blue
dashed and red dot-dashed lines are the results from the
black-body and the Wong formula, respectively. The lat-
ter shows good agreement with the data down to cross
sections of about 0.1mb, but overpredicts the data at the
lowest energies by more than a factor of 10 and cannot re-
produce the maximum of the S factor. Coupled-channels
calculations with the sudden [21, 22] (magenta curve) or
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Fig. 2. Fusion cross sections, σ(E), and the corresponding S
factors, S(E) for the systems 11B + 197Au [34] (panel a) and
28Si + 64Ni [35] (panel b).

the adiabatic model [23–25] (green curve), which include
coupling to inelastic excitations and transfer reactions, are
both reproducing the S-factor maximum and are in excel-
lent agreement with the data over the whole energy range.
It is interesting to note, however, that the use of the sim-
ple formula eq. (3) (black curve in fig. 1) gives an even
better agreement with the data in a cross section range
covering 8 orders of magnitude, as judged by the χ2 value
defined by

χ2 =
1

N − M

N∑
i=1

(
(σi − σexp−i)

/
Δσexp−i

)2

. (5)

Here, σi and σexp−i are calculated and experimental cross
sections, Δσexp are the experimental uncertainties, and
N and M are the number of experimental data and ad-
justable parameters, respectively. The corresponding χ2-
values are included in parentheses in fig. 1. The number
of free parameters for the Wong formula and for eq. (3)
is M = 3. For the CC calculations, there are many ad-
justable parameters, related to the optical potential, and
the nuclear structure of the individual channels. For sim-
plicity, we also used M = 3, resulting in a lower limit for
χ2 for these calculations.

Fusion data of 64Ni + 64Ni [20], 11B + 197Au [34] and
28Si+64Ni [35] are shown in fig. 1(b), fig. 2(a) and fig. 2(b),
respectively. These excitation functions all have been mea-
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Fig. 3. Fusion cross sections, σ(E), and the corresponding S
factors, S(E) for the systems 24Mg+ 30Si [36,37] (panel a) and
12C + 30Si [38,39] (panel b).

sured down to the nb level, and clear maxima appear in
the S factor for 64Ni + 64Ni and 28Si + 64Ni. Calculations
with Wong’s formula overpredict the yields at low ener-
gies. Both improved CC calculations (sudden model or
adiabatic model) and fits using the single-Gaussian for-
mula reproduce the S-factor maximium. It is important
to note that the χ2 value obtained by using the single-
Gaussian distribution (S.G.) are always smaller than the
ones obtained by CC calculations, including the adiabatic
and sudden models.

The fusion Q values of the four systems are all nega-
tive: −46.48, −48.80, −5.04 and −8.20MeV, respectively.
As mentioned above, systems with positive fusion Q val-
ues, which are found in the lighter-mass region are of
special interest. Two of them, 24Mg + 30Si [36, 37] and
12C+30Si [38,39], measured recently at Legnaro, in normal
and inverse kinematics, are shown in fig. 3(a) and 3(b), re-
spectively. Their fusion Q values are 17.89 and 14.11MeV.
These results demonstrate that eq. (3) can describe the
light systems as well. It is also important to note that the
S factors for these two positive fusion Q-value systems ap-
pear to develop a maximum at extreme sub-barrier energy
regions although more data points are needed to make a
definite conclusion. Both the simple formula and CC cal-
culations can reproduce the maxima, but the simple for-
mula gives a superior fit to the data.
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3 Logarithmic derivative

Since the hindrance phenomenon results in a steeper fall
off of the excitation function, a representation in terms
of the logarithmic derivative, L(E) = d(Eσ(E))/dE has
been introduced [8, 9]. This representation does not de-
pend on the absolute value of cross sections and is very
sensitive to the shape of the excitation function. It was
found that, an S-factor maximum appears at the cross-
ing energy, Es if the experimental L(E) crosses the curve,
given by the constant S factor, Lcs(E) = πη(E)/E. Em-
pirical formulae, which can describe the heavy-ion fusion
excitation function at low energies and can be used to ex-
trapolate the data to lower energies, have been developed
in refs. [40] and [41]. These formulae are

L(E) = A0 +
B0

E3/2
, when Q > 0, (6)

or
L(E) = A0 +

B0

(E + Q)3/2
, when Q < 0. (7)

Here, A0 and B0 are parameters obtained from least-
squares fits to the experimental data at low energies and
Q is the fusion Q value. The corresponding expressions for
the cross section are

σ(E) = σs
Es

E
exp

(
A0(E − Es)

− 2B0√
Es

[√
Es

E
− 1

] )
, when Q > 0. (8)

or

σ(E) = σs
Es

E
exp

(
A0(E − Es)

− 2B0√
Es + Q

[√
Es + Q

E + Q
− 1

])
, when Q < 0.

(9)

Here σs, the cross section at the energy of S-factor maxi-
mum, Es, is a fit parameter.

From eq. (3), the expression for the logarithmic deriva-
tive of the single-Gaussian formula can be obtained as

Lg(E) =
1√
2Wg

1 + erf(Z)
Z(1 + erf(Z)) + exp(−Z2)/

√
π

, (10)

with Z = (E − Vg)/
√

2Wg. The logarithmic derivative for
the Wong formula is

Lw(E) =
h̄ω

2π

exp(X)
(1 + exp(X)) ln(1 + exp(X))

, (11)

with X = 2π(E − Vw)/h̄ω.
The experimental logarithmic derivatives (symbols),

constant S factor Lcs(E) (green dashed lines) and the
fitted L(E) (black lines) for the systems 16O + 208Pb,
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Fig. 4. Experimental logarithmic derivatives L(E) (symbols)
for the fusion reactions, 16O + 208Pb (a), 64Ni + 64Ni (b) and
12C+30Si (c), in comparison with various calculations (see text
for details).

64Ni + 64Ni and 12C + 30Si are shown in figs. 4(a), 4(b)
and 4(c), respectively. Results from the Wong formula
(blue dash-dotted curves) are also shown. Around the
crossing points between the experimental L(E) and the
constant S-factor curves Lcs(E) at Es, the calculations
of eq. (10) are very similar to the empirical results of
eqs. (8) and (9). The energies Es of the S-factor maxima
obtained from eq. (3) for these three systems are 69.06,
87.70 and 10.54MeV, respectively, and agree well with
the experimentally observed values, 68.4 ± 2.4, 87.5 ± 0.9
and 10.5 ± 0.5MeV. This comparison demonstrates that
the single-Gaussian barrier distribution gives the right be-
havior of the logarithmic derivative at low energies to de-
scribe the hindrance phenomenon in the measured energy
region. The results of the Wong formula, on the contrary,
are quite different; the logarithmic derivatives saturate at
lower values, and fail to reproduce the data at low en-
ergies. The CC calculation result (sudden model) for the
system 16O + 208Pb is also shown in fig. 4. The empirical
extrapolations from eq. (6) for the system 24Mg+ 30Si are
shown as the light-blue curve in fig. 3 for comparison.

4 Systematics of parameters and its
application

The fusion cross sections calculated by eq. (3) give an ex-
cellent description of the data for a variety of systems;
a summary of the fit parameters Rg, Vg and Wg is pre-
sented in table 1 for 29 systems, ranging from 16O + 18O
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Table 1. Parameters Rg, Vg, and Wg obtained by least-squares fits for 29 fusion systems, whose lowest measured cross sections
are less than 0.01 mb. Q is the fusion Q value, N is the number of data points in the fitting, χ2 is the value defined in eq. (5),
EVR and FF are cross sections for fusion-evaporation residues and fusion-fission, V0 and R0 are values obtained from eqs. (12)
and (13), respectively. If different data sets are available for a given system, the most recent one was used for the least-squares
fit.

System Q Type N data range χ2 Rg Vg Wg V0 R0 ref.

MeV mb–mb fm MeV MeV MeV fm
16O + 18O 24.41 EVR 21 0.006–224 0.38 7.95±0.28 9.89±0.07 0.873±0.019 12.45 7.40 [42]
12C + 30Si 14.11 EVR 22 0.0027–815 1.08 7.79±0.19 13.31±0.07 0.962±0.023 15.57 7.77 [38,39]

24Mg + 30Si 17.89 EVR 20 0.0080–332 0.59 8.19±0.14 24.05±0.06 1.05±0.02 28.04 8.63 [36,37]
6Li + 198Pt 8.53 EVR 10 0.00017–348 45.7 7.89±0.34 27.43±0.24 1.75±0.09 30.61 11.01 [43]
7Li + 198Pt 8.82 EVR 11 0.0002–1004 5.93 9.71±0.12 28.04±0.08 1.65±0.02 30.23 11.15 [44]
28Si + 28Si 10.92 EVR 21 0.00063–453 0.99 9.11±0.61 29.54±0.25 1.50±0.07 32.27 8.75 [45]
28Si + 30Si 14.30 EVR 17 0.0044–500 0.97 7.92±0.32 28.13±0.12 1.16±0.04 31.90 8.85 [45,46]
27Al + 45Sc 9.63 EVR 16 0.00031–596 0.68 7.11±0.31 37.68±0.15 1.42±0.04 41.64 9.44 [47]
32S + 48Ca 7.66 EVR 21 0.0008–490 8.63 8.55±0.13 42.82±0.12 1.64±0.05 47.00 9.81 [48]
36S + 48Ca 7.55 EVR 25 0.0006–973 3.26 10.00±0.06 41.97±0.05 1.11±0.02 46.13 9.99 [49]

11B + 197Au −5.00 EVR+FF 17 0.0003–770 18.8 10.56±0.21 46.81±0.13 1.78±0.06 49.11 11.58 [34]
12C + 198Pt −13.96 EVR+FF 20 0.0001–670 12.5 10.89±0.27 55.38±0.13 1.81±0.04 57.65 11.69 [44]
40Ca + 40Ca −14.18 EVR 21 0.0027–531 5.23 9.93±0.15 53.10±0.08 1.15±0.04 58.48 9.85 [50]
40Ca + 48Ca 4.56 EVR 23 0.0013–463 6.30 8.31±0.10 51.86±0.10 1.64±0.05 56.70 10.16 [51]
48Ca + 48Ca −2.99 EVR 27 0.0006–506 7.43 9.87±0.10 51.17±0.05 1.08±0.03 55.03 10.47 [52,53]
28Si + 64Ni −1.79 EVR 16 0.00003–506 0.58 8.05±0.26 50.45±0.11 1.40±0.03 55.71 10.13 [35]

16O + 208Pb −46.48 EVR+FF 38 0.000016–1133 106 10.43±0.08 73.59±0.05 1.57±0.02 77.68 12.16 [26,33]
54Fe + 58Ni −5.40 EVR 25 0.0011–433 24.2 9.13±0.15 91.51±0.14 1.76±0.07 95.16 11.02 [54]
64Ni + 64Ni −48.80 EVR 16 0.00002–442 0.71 8.86±0.21 92.62±0.11 1.45±0.03 98.00 11.52 [20]
40Ca + 96Zr −41.09 EVR 62 0.0027–474 5.67 9.63±0.37 94.15±0.05 2.95±0.03 100.01 11.52 [55]
40Ar + 112Sn −77.20 EVR+FF 15 0.0084–478 4.16 9.19±0.18 104.40±0.18 2.45±0.08 109.22 11.87 [56]
40Ar + 116Sn −73.11 EVR+FF 14 0.0038–512 9.75 8.99±0.35 103.84±0.27 2.44±0.10 108.47 11.95 [56]
40Ar + 122Sn −64.96 EVR+FF 17 0.0018–661 8.97 9.90±0.24 103.79±0.21 2.66±0.08 107.40 12.07 [56]
40Ar + 144Sm −105.77 EVR+FF 11 0.0016–322 6.85 8.20±0.43 124.49±0.31 2.29±0.10 128.85 12.47 [56]
40Ar + 148Sm −96.37 EVR+FF 12 0.0008–353 7.26 9.16±0.59 125.60±0.53 3.51±0.16 128.14 12.54 [56]
40Ar + 154Sm −83.10 EVR+FF 15 0.0016–407 24.4 8.38±0.60 122.80±0.73 4.17±0.24 127.11 12.64 [56]
86Kr + 76Ge −90.14 EVR 15 0.0068–347 14.6 8.08±0.31 129.95±0.39 2.94±0.17 133.18 12.46 [57]
58Ni + 124Sn −112.30 EVR+FF 15 0.00046–570 1.05 8.51±0.34 156.92±0.38 3.45±0.12 158.06 12.76 [58,59]
64Ni + 124Sn −117.51 EVR+FF 17 0.0008–605 1.71 7.86±0.47 154.02±0.47 2.59±0.15 155.79 12.94 [58,59]

to 64Ni + 124Sn, whose lowest measured cross sections are
below 10μb, and covering a cross section range of at least
five orders of magnitude. The fusion Q value, the lowest
and highest cross sections of the data set, and the χ2 value
are also listed. For fusion between heavy nuclei only those
systems are included, where cross sections for the forma-
tion of evaporation residues (EVR) as well as for fusion
fissions (FF) are available.

The parameters Rg, Vg and Wg obtained from the
single-Gaussian analysis exhibit smooth behaviors when
they are plotted in fig. 5 as a function of the Coulomb
barrier calculated by

ZP ZT e2/
[
1.44

(
A

1/3
P + A

1/3
T

)]
(MeV). (12)

Here ZP , AP and ZT , AT are nuclear charge and mass
number for projectile and target, respectively. The barrier
radius parameter Rg is shown in fig. 5(a), normalized to
the value

1.44
(
A

1/3
P + A

1/3
T

)
(fm). (13)

Figures 5(b) and 5(c) give the results of the average bar-
rier height Vg and the barrier distribution width param-
eter Wg, normalized to the respective Coulomb barrier
(eq. (12)). These parameters follow a general trend with
superimposed fluctuations due to nuclear structure effects.
This systematics may be used to make first-order predic-
tions of fusion cross sections for unmeasured systems.
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order to reduce the strong system-dependence, the parameters
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1/3
1 + A

1/3
2 ) (fm) (eq. (12))

and Z1Z2e
2/[1.44(A

1/3
1 + A

1/3
2 )] (MeV) (eq. (13)). See text for

details.

As an example, we have chosen the fusion of 12C +
24Mg. Experiments of fusion for 12C+24Mg have been per-
formed by Daneshvar et al., [60] and Gary et al., [61], in
the cross section range of 250–1200mb and 500–1000mb,
respectively. This range is insufficient to obtain values
for all three parameters of eq. (3). The cross sections
and S factors measured for two neighboring systems
16O+18O [42] and 12C+30Si [38,39] are shown in figs. 6(a)
and 6(c). The solid lines are the result of least-squares fits
using eq. (3) with the parameters tabulated in table 1.
While for 16O + 18O, no maximum in the S factor can
be seen yet in the measured energy range, there are in-
dications of an S factor maximum for 12C + 30Si at a
c.m. energy of about 11MeV. The interpolated values for
the 12C + 24Mg system are Rg = 7.88, Vg = 11.50 and
Wg = 0.91, with the predicted cross sections shown by
the red dashed lines in fig. 6. It should be noted that, sim-
ilar to the 12C + 30Si case, a maximum of the S factor is
predicted to occur at a c.m. energy of about 9MeV.

5 Extension and limitation

While the single-Gaussian barrier distribution (eq. (1))
provides an analytic formula (eq. (3)), which describes
the experimental excitation functions for many systems,
one may consider, whether there are other barrier distri-
butions which can lead to even better results. Possible
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Fig. 6. Comparison for cross sections (mb) and S factors (ar-
bitrary units) for fusion reactions 12C+30Si (a), 12C+24Mg (b)
and 16O + 18O (c). The curve for 12C + 24Mg are predictions,
while other curves are results of least-squares fits.

improvements for the barrier distribution given in eq. (1)
include distributions with different widths on the high or
low energy sides, a modification of the exponent in the
Gaussian distribution or multi-component distributions.
Test calculations show that this can lead to a consider-
able improvement in the calculated χ2 values.

On the other hand, from previous studies of barrier
distributions [7], it was found that some systems require
a more complicated structure. The prime example for a
multi-barrier distribution is the system 16O+154Sm. Since
154Sm is deformed, there should be a range of Coulomb
barriers depending on whether 16O approaches 154Sm at
the long or the short axis [5, 6, 62–65]. The neighboring
system 16O + 144Sm was also found to require an addi-
tional barrier at higher energies whose origin in a coupled-
channels description was assigned to the excitation of a 3−
state in 144Sm [5, 6, 64]. These results are rather different
from the spectrum of the single-Gaussian distribution.

We have therefore investigated the choice of a multi-
component barrier distributions to study the relation be-
tween structure and the improvements in χ2 for the sys-
tems 16O + 154Sm and 16O + 144Sm.

The results of a CC description of fusion reactions be-
tween 16O and the deformed nucleus 154Sm [64, 65] are
shown by the green dashed lines in fig. 7(a) (cross sections)
and fig. 7(b) (barrier distribution). When compared to the
single-Gaussian distribution (S.G., black curves), the CC
results clearly shows two additional barrier components
at the low-energy side of the main peak, which originate
from different points of contact between 16O and 154Sm
nuclei as discussed in ref. [5, 6, 64].
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Fig. 7. Panel (a): cross sections (mb) and S(E) factors (arbi-
trary units) for the fusion reaction 16O + 154Sm [5,6] are com-
pared with theoretical predictions. The numbers in parentheses
give the χ2 values defined in eq. (5). Panel (b): comparison of
the barrier distributions B(E) = πR2D(E) used for describing
the same fusion reaction.

Hagino et al. have recently developed a new method for
obtaining the barrier distributions [66] by assuming that
the excitation function is a sum of several components,
each described by the Wong formula. The barrier distri-
bution is then obtained by the second-derivative method
(with ΔE = 1.8MeV) with the parameters optimized by
a least-squares fit to the experimental barrier distribution
Bexp(E). For the system 16O + 154Sm, they obtained a
5-component distribution, shown by the cyan dashed line
in fig. 7(b).

Least-squares fits with barrier distributions consisting
of two- or three-Gaussian components (with 6 or 9 free
parameters) are shown in fig. 7(b) by the blue dashed
(2G) and magenta dashed (3G) lines. It is interesting to
note that the three various barrier distributions given by
the blue (two-Gaussians), cyan (Hagino) and green (CC)
curves are quite different, especially on the high energy
side, but result in similar excitation functions which are
all close to the experimental data although with different
χ2 values.

Another example for a multi-barrier distribution can
be found in the neighboring system 16O + 144Sm which is
shown in fig. 8. A comparison of the different fusion bar-
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Fig. 8. Panel (a): cross sections (mb) and S(E) factors (arbi-
trary units) for the fusion reaction 16O + 144Sm [5,6] are com-
pared with theoretical predictions. The numbers in parentheses
give the χ2 values defined in eq. (5). Panel (b): comparison of
the barrier distributions B(E) = πR2D(E) used for describing
the same fusion reaction.

rier distributions used to describe this system is given in
fig. 8(b). Contrary to the 154Sm nucleus, where the defor-
mation led to additional barrier components at low ener-
gies, the closed-shell nucleus 144Sm requires an additional
barrier at higher energies, whose origin was assigned to the
excitation of a 3− state in 144Sm [5, 6, 64, 65]. This addi-
tional peak at higher energies is also present in the analysis
by Hagino et al. [66] with the method mentioned above,
using three Wong components (cyan line in fig. 8(b)). It
should also be mentioned that the additional high-energy
peak in the barrier distribution calculated from the fusion
excitation function is not observed in an analysis using
the quasi-elastic scattering measurement (see ref. [11] and
references therein). This was attributed to a reduced sen-
sitivity of the quasi-elastic excitation functions at energies
above the Coulomb barrier. The blue curve is again the
result of a barrier distribution using two-Gaussians (2G)
which also predicts an additional peak at higher energies.
This peak in the distribution improves the χ2 in the least-
squares fits to the excitation function from 25 to 5, when
compared to a single-Gaussian description. Using a three-
Gaussian distribution improves the χ2 only slightly and
has not been included in the plot.
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It should be noted that the S factors for the system
16O + 154Sm and 16O + 144Sm do not yet show a maxi-
mum in the energy region studied in the experiment. The
lowest cross section measured in these two experiments is
about 0.15mb. Since the fusion Q values of the reaction
16O + 144,154Sm are negative, there has to be an S-factor
maximum in the extreme sub-barrier region. Fits with a
two-Gaussian distribution for 16O + 154Sm and a single-
and two-Gaussian distribution for 16O+ 144Sm predict an
S-factor maximum at low energy as shown in figs. 7(a)
and 8(a).

While the single-Gaussian parameterization is quite
successful in describing a large number of fusion cross sec-
tions, it should also be emphasized that this formula as
well as the method using the barrier distribution Dtest(E)
(eq. (2)) cannot be applied to all fusion systems. From the
definition of eq. (2), one can see that the excitation func-
tion is always a monotonic rising function. Thus, eqs. (1)
and (2) cannot be used for a description of fusion reactions
at higher energies, where deep-inelastic scattering and in-
complete fusion can lead to a decrease of the fusion cross
section. The same holds for lighter systems (e.g. 16O+16O,
12C+16O, 12C+12C etc.) where oscillations and resonance
structures appear in the excitation functions.

Another limitation of this description originates from
the use of the classical approximation (black body model,
see refs. [4, 19]) which requires that R/λ � 1. Here R
is the size of the fusion system and λ = λ/2π with λ
being the DeBroglie wavelength. Taking the values of R
from fig. 5(a) and the λ from the energy Vg − 6(

√
2Wg)

(the low end of the effective energy region), one obtaines
R/λ values for the systems listed in table 1, of about 11
and 8 for 12C + 30Si and 16O + 18O, and between 25–170
for others. Thus the lightest system included in table 1
is the 16O + 18O. For the system 12C + 30Si (shown in
fig. 3(b)) we observe an increase in the calculated S factor
for energies below 5MeV. This behavior is also seen for
28Si + 64Ni if one expands the X-scale to very low energy.
These may render the application and the extrapolation
to low energies using the present prescription unreliable
for systems lighter than 16O + 18O.

6 Summary

The simple formula for describing fusion excitation func-
tions based on the single-Gaussian barrier distribution has
been used to reproduce the heavy-ion fusion hindrance at
extreme sub-barrier energies. A quantitaive comparison
with experimental data shows that the χ2 values obtained
with this formula are often smaller than the ones obtained
by CC calculations (including the sudden model and the
adiabatic model) or the Wong formula.

A study of 29 colliding systems, whose excitation func-
tions have all been measured down to the 10μb level, has
been presented. The barrier distribution parameters, Rg,
Vg and Wg for these systems show smooth trends super-
imposed with fluctuations caused by nuclear structure ef-
fects.

Better agreement with the data can be obtained by
choosing a more elaborate formula for the barrier distri-
bution, which, however, comes at the expense of additional
adjustable parameters. A restriction for the application of
the formula has also been noted.

The success of the present formula with a single Gaus-
sian, together with the systematics of the parameters Rg,
Vg and Wg, offer the possibity to use this formula to ex-
trapolate cross sections, and to obtain an estimate of the
excitation function for systems which have not yet been
measured. An example has been shown for the system
12C + 24Mg.
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21. S. Mişicu, H. Esbensen, Phys. Rev. Lett. 96, 112701

(2006).
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