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Abstract. Chiral effective field theory is utilized for extrapolating results on the ΛcN interaction, obtained
in lattice QCD at unphysical (large) quark masses, to the physical point. The pion-mass dependence of
the components that constitute the ΛcN potential up to next-to-leading order (pion-exchange diagrams
and four-baryon contact terms) is fixed by information from lattice QCD simulations. No recourse to
SU(3) or SU(4) flavor symmetry is made. It is found that the results of the HAL QCD Collaboration
for quark masses corresponding to mπ = 410–570MeV imply a moderately attractive ΛcN interaction at
mπ = 138MeV with scattering lengths of a ≈ −1 fm for the 1S0 as well as the 3S1 partial waves. For such
an interaction the existence of a charmed counterpart of the hypertriton seems unlikely but four- and/or
five-baryons systems with a Λc baryon could be indeed bound.

1 Introduction

The dynamics of hadrons with different flavor degrees of
freedom provides different windows for our understanding
of the underlying theory of strong interaction, quantum
chromodynamics (QCD). With regard to hadrons with
charm, so far spectroscopy has been the most visible and
definitely by far the most interesting branch of research.
Indeed, the large number of structures observed in ex-
periments at energies above the open charm production
threshold provides a challenge for our standard (but ob-
viously naive) picture that mesons are composed out of
quark-antiquark pairs and baryons out of three quarks.
See refs. [1–4] for recent overviews and discussions of these
structures, commonly referred to as X, Y and Z states.

Some proposals for experiments at sites such as J-
PARC [5] and FAIR [6,7] aim at exploring also other as-
pects of charm physics. Specifically, so-called charm fac-
tories would allow the targeted production of charmed
hadrons like the D-meson or the Λc and Σc hyperons and
a study of their interaction with ordinary hadrons. The
expectation of possible experiments in the not so far fu-
ture has triggered a variety of theoretical investigations.
In particular, it has led to a renewed interest in the inter-
action of the Λc with nucleons and with nuclei over the
last few years [8–14]. Those studies join the ranks of a long
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history of speculations about bound nuclear systems in-
volving the Λc, the lightest charmed baryon [15–22] —see
also the recent reviews [23,24]. Indeed, in most of the in-
vestigations so far, the YcN interaction (Yc = Λc, Σc),
derived within the meson-exchange framework [8,15–18]
or in the constituent quark model [12,25], turns out to be
strongly attractive.

Interestingly, quite the opposite picture emerged from
recent (2 + 1)-flavor lattice QCD (LQCD) simulations by
the HAL QCD Collaboration [26–28]. Pertinent calcula-
tions, performed for unphysical quark masses correspond-
ing to pion masses of mπ = 410–700MeV (see footnote1),
suggest that the ΛcN and ΣcN interactions could be much
less attractive than predicted by the phenomenological po-
tentials mentioned above. While initial preliminary stud-
ies [26,27] indicated an extremely weak ΛcN interaction,
the recently published final LQCD results [28] rectify that
conjecture and imply a somewhat stronger, though still
only moderately attractive ΛcN interaction2.

In the present work we provide predictions for the
ΛcN interaction at the physical point based on the LQCD

1 The Gell-Mann–Oakes–Renner relation states that the
squared pion mass is proportional to the average light quark
mass. Therefore, the notions “quark mass” and “pion mass”
are used synonymously.

2 We note that the method employed in these works and also
other methods are presently under discussion in the LQCD
community [29–32].
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simulations by the HAL QCD Collaboration [28]. The
extrapolation of the LQCD results, available for mπ =
410–700MeV, to mπ = 138MeV is performed within the
framework of chiral effective field theory (EFT) [33–35].
Thereby we follow a strategy that has been already em-
ployed by us in the past in the analysis of other LQCD
results on baryon-baryon interactions in the strangeness
sector, notably the ΛΛ [36], ΞΞ [37], and ΩΩ [38] sys-
tems: At first chiral EFT is utilized to establish a ΛcN
potential for baryon and meson masses that correspond
to those in the lattice simulation. In particular, open pa-
rameters are determined by a fit to pertinent LQCD re-
sults (phase shifts, scattering lengths). Then the potential
is extrapolated to the physical point. Thereby the pion-
mass dependence of the ingredients (pseudoscalar-meson
exchange, four-baryon contact terms) is taken into account
explicitly, and in line with chiral EFT.

The paper is structured as follows: in sect. 2 we pro-
vide an outline of the employed formalism. Results for
ΛcN phase shifts (for the 1S0 and 3S1 partial waves)
are reported in sect. 3, for pion masses corresponding to
those in the LQCD simulation and for the physical value,
mπ = 138MeV. The corresponding scattering lengths are
evaluated too and turn out to be in the order of a ≈ −1 fm.
Finally, consequences of our results for the existence of
bound Λc hypernuclei are discussed. The paper closes with
a short summary.

2 Formalism

The YcN interaction is constructed by using chiral EFT as
guideline. Thereby we follow closely our application of this
scheme to the ΛN and ΣN systems in refs. [39,40] where
corresponding potentials have been obtained up to NLO in
the Weinberg power counting [34,35]. In this framework
the potential is given in terms of pion exchanges and a
series of contact interactions with an increasing number
of derivatives. The latter represent the short-range part
of the baryon-baryon force and are parameterized by low-
energy constants (LECs), that need to be fixed in a fit to
data. Both classes of contributions depend on the quark
mass (or, equivalently, the pion mass). At LO the only
quark-mass dependence of the YcN potential is through
the pion mass that appears in the propagator of the pion-
exchange potential, cf. below. However, at NLO the con-
tact terms as well as the pion coupling constants depend
on the pion mass. For details, we refer to refs. [41–46],
where the quark mass dependence of the NN interaction
has been investigated; see also ref. [47].

Let us start by introducing the contact interaction that
we employ. For the partial waves considered in the present
study (1S0, 3S1-3D1) it is given by

V (1S0) = C̃1S0 + D̃1S0m
2
π + (C1S0 + D1S0m

2
π) (p2 + p′2),

V (3S1) = C̃3S1 + D̃3S1m
2
π + (C3S1 + D3S1m

2
π) (p2 + p′2),

V (3D1 − 3S1) = Cε1 p′2,

V (3S1 − 3D1) = Cε1 p2, (1)

with p = |p| and p′ = |p′| being the initial and final
center-of-mass (c.m.) momenta in the ΛcN or ΣcN sys-
tems. The quantities C̃i, D̃i, Ci, Di are the aforementioned
LECs that need to be fixed by a fit to lattice data (phase
shifts). The ansatz eq. (1) is motivated by the correspond-
ing expression in the standard Weinberg counting up to
NLO [43,47] but differs from it by the terms proportional
to m2

π (p2 +p′2) which are nominally of higher order. Nev-
ertheless, we include these terms because they allow us
to obtain an optimal description of the LQCD results at
mπ = 410MeV as well as at 570MeV and, thereby, enable
us a better constrained extrapolation to lower pion masses.
Contrary to our study of the Y N interaction in refs. [39,
40], here we do not impose SU(3) (or SU(4)) flavor sym-
metry. In any case, given that there is no explicit infor-
mation on the ΣcN channel from LQCD in ref. [28] and
the ΛcN interaction is determined as an effective single-
channel potential, we treat the ΛcN interaction likewise
as an effective single-channel problem.

The contribution of pion exchange to the YcN poten-
tial is given by

V OPE
BN→B′N = −fBB′πfNNπ

(σ1 · q)(σ2 · q)
q 2 + m2

π

IBN→B′N ,

(2)
where B,B′ stand for Λc and/or Σc, q is the transferred
momentum, q = p′ − p, and I is a pertinent isospin fac-
tor [39]. As already mentioned, we do not assume the va-
lidity of SU(4) flavor symmetry in the present study. This
concerns also the coupling constants fBB′π. The ΛcΣcπ
coupling constant can be determined from the experimen-
tally known Σc → Λcπ decay rate, see refs. [48,49]. With
regard to the ΣcΣcπ coupling constant we resort to LQCD
results [50]. Besides their value at the physical point, we
need also the mπ dependence of the ΛcΣcπ and ΣcΣcπ
coupling constants as well as the one for the NNπ vertex,

fBB′π(m2
π) =

gBB′

A (m2
π)

2Fπ(m2
π)

. (3)

LQCD results for the m2
π dependence of the pion decay

constant Fπ are readily available in the literature, e.g.
in ref. [51]. From that reference, one deduces the values
Fπ ≈ 112MeV at mπ = 410MeV, Fπ ≈ 129MeV at mπ =
570MeV, and Fπ ≈ 141MeV at mπ = 700MeV. To obtain
the latter value, a linear m2

π dependence of Fπ has been
assumed, as suggested by fig. 5 in ref. [51]. LQCD results
for the m2

π dependence of the axial-vector strengths gBB
A

can be found in ref. [50] though only up to mπ = 500MeV.
For gΣcΣc

A a rather moderate increase with mπ is suggested
by LQCD [50]. gNN

A is found to be practically indepen-
dent of mπ, though, unfortunately, the lattice results do
not match well with the known value at the physical point.
There is no information on the variation of the ΛcΣcπ ver-
tex with mπ. Because of these reasons we neglect the de-
pendence of the gA’s on mπ in our calculation and assume
that gBB′

A ≡ gBB′

A (mπ = 138MeV). Specifically, we use
gNN

A = 1.27 [52], gΣcΣc

A = 0.71 [50] and gΛcΣc

A = 0.74 [48,
49]. Note that the by far strongest dependence of fBB′π
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on m2
π comes via Fπ(m2

π) [51] and this circumstance is
adequately taken into account in our calculation.

Since fΛcΛcπ ≡ 0 under the assumption that isospin is
conserved, there is no one-pion exchange contribution to
the ΛcN → ΛcN potential. However, we include the cou-
pling of ΛcN to ΣcN via pion exchange, which is known
to play an important role in case of the ΛN and ΣN sys-
tems [40]. The resulting effective two-pion exchange con-
tribution to the ΛcN potential is generated by solving a
coupled-channel Lippmann-Schwinger (LS) equation, see
below. In this context let us note that the pertinent con-
tribution arises anyway at NLO, even in a single-channel
treatment [53]. In principle, at NLO there are further con-
tributions from two-pion exchange [40]. However, in the
present study we omit those for simplicity reasons and as-
sume that they are effectively absorbed into the contact
terms. Furthermore, contributions from η and D-meson
exchanges that would arise under the assumption of SU(3)
(or SU(4)) symmetry, are likewise delegated to the con-
tact interactions.

As already mentioned above, in line with the analy-
sis of the LQCD data in ref. [28], we treat the ΛcN in-
teraction as an effective single-channel problem. Possible
effects from the interaction in the ΣcN → ΣcN chan-
nel are thereby absorbed into the LECs of the ΛcN po-
tential. A further issue that we have ignored is the role
of heavy quark spin symmetry [8,54]. Indeed the ΣcN
and Σ∗

c N thresholds are just about 65MeV apart [52]
so that the coupling between those systems could be im-
portant [8]. However, since already the ΣcN channel is
not explicitly considered, there is no point in including
Σ∗

c N in our analysis. If there are any effects of it, these
are likewise absorbed into the ΛcN LECs. Anyway, since
MΣ∗

c
− MΛc

= 234MeV, there should be less influence
on the ΛcN amplitude. Indeed, because of the larger
mass difference MΣc

− MΛc
≈ 167MeV, as compared to

MΣ − MΛ ≈ 78MeV, one would expect that even the
channel coupling to ΣcN plays a less important role for
the charm sector than in the strangeness sector.

The reaction amplitudes are obtained from the solu-
tion of a coupled-channel LS equation for the interaction
potentials, which is given in partial-wave projected form
by

T ν′ν,J
ρ′ρ (p′, p;

√
s) = V ν′ν,J

ρ′ρ (p′, p)

+
∑

ρ′′,ν′′

∫ ∞

0

dp′′p′′2

(2π)3
V ν′ν′′,J

ρ′ρ′′ (p′, p′′)

× 2μρ′′

p2
ρ − p′′2 + iη

T ν′′ν,J
ρ′′ρ (p′′, p;

√
s). (4)

Here, the label ρ indicates the particle channels and the
label ν the partial wave. μρ is the pertinent reduced mass.
The on-shell momentum in the intermediate state, pρ, is

defined by
√

s =
√

m2
B1,ρ

+ p2
ρ +

√
m2

B2,ρ
+ p2

ρ. Following

the practice of the HAL QCD Collaboration [28], phase
shifts will be given as functions of the kinetic energy in
the ΛcN c.m. frame, E =

√
s − MΛc

− MN .

For baryon-baryon potentials constructed along the
lines of chiral EFT (cf. eqs. (1) and (2)) a regularization is
required when solving the LS equation (4) [33,35]. Ideally,
the resulting reaction amplitude T should be completely
independent of the employed regularization scheme. In
practise, there is still a dispute about how regularization
should be done in the application of chiral EFT to NN
scattering (and accordingly in the Y N or YcN case) to
satisfy all formal aspects from a field theory point of view
and there is no generally accepted scheme, cf. refs. [33,35]
and references therein. A commonly accepted procedure is
the introduction of a cutoff into the Lippmann-Schwinger
equation or (equivalently) to the potential. The contro-
versial issue is, however, how one should then proceed in
detail in order to achieve the desired cutoff independence
of the results see, e.g. [55–61].

In the present work we refrain from elaborating on
this still open question. Rather we follow strictly the pro-
cedure used in the application of chiral EFT to NN scat-
tering by Epelbaum and collaborators [56] and in our
Y N studies [40], where the potentials in the LS equa-
tion are cut off in momentum space by multiplication
with a regulator function, f(p′, p) = exp[−(p′4 + p4)/Λ4],
so that the high-momentum components of the baryon
and pseudoscalar meson fields are removed. The cutoff
parameter Λ in the regulator is typically in the order of
Λ ≈ 500MeV [34,35]. It is kept finite in the calculation.
Approximate cutoff independence is achieved by going to
higher orders in the perturbative expansion of the poten-
tial where the sucessively arising contact terms allow one
to absorb/remove the cutoff dependence more and more
efficiently [60]. The actual values we employ for the cut-off
are Λ = 500–600MeV, in line with the range that yielded
optimal and stable results in our NLO study of the ΛN
and ΣN interactions [40]. The variations of the results
with the cutoff, i.e. the residual cutoff dependence, reflect
uncertainties that will be indicated by bands in the plots
we show in the next section.

In the analysis of the LQCD simulations we follow
closely the strategy of our previous works in refs. [36–38]:
i) the LECs, i.e. the only free parameters in the potential,
are determined by a fit to LQCD results (phase shifts)
employing the inherent baryon and meson masses of the
lattice simulation; ii) results at the physical point are ob-
tained via a calculation in which the pertinent physical
masses of the mesons are substituted in the evaluation
of the potential and those of the baryons in the baryon-
baryon propagators appearing in the LS equation. The
baryon masses corresponding to the LQCD simulations at
mπ = 410 and 570MeV are taken from ref. [28]. For the
calculation at the physical point we use the masses from
the PDG [52], i.e. MΛc

= 2286.5MeV, MΣc
= 2455MeV.

Alternative ways to implement the quark mass depen-
dence of the nuclear forces can be found in refs. [45,62].

3 Results

LQCD results for phase shifts are available for the ΛcN
1S0

and 3S1 partial waves for mπ = 410, 570, 700MeV [28]. We
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Table 1. Low-energy constants employed in the present work. C̃1S0 ≡ C̃1S0 + D̃1S0m2
π at the specified pion mass, etc., see

eq. (1). The values for C̃ are in 104 GeV−2, those for C in 104 GeV−4.

570 MeV 410MeV 138 MeV

Λ = 500 MeV C̃ C C̃ C C̃ C

1S0 −0.008576 −0.006105 −0.01758 −0.01362 −0.02615 −0.02077

3S1 0.03917 0.04569 0.1409 0.1270 0.2377 0.2043

3D-3S1 −0.1136 −0.1136 −0.1136

Λ = 600 MeV C̃ C C̃ C C̃ C

1S0 −0.008026 0.001564 −0.01393 −0.002252 −0.01954 −0.005879

3S1 0.04304 0.07553 0.1619 0.1688 0.2749 0.2574

3D-3S1 −0.1344 −0.1344 −0.1344
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Fig. 1. Results for the ΛcN
1S0 partial wave. Left: phase shifts of the HAL QCD Collaboration [28] at mπ = 570MeV (blue

open circles) and 410 MeV (green filled circles), as a function of the c.m. kinetic energy, together with our fits (lines/bands).
The broader (red) band is the prediction for mπ = 138 MeV. Right: dependence of the 1S0 scattering length on the pion mass.
The bands represent the cutoff variation Λ = 500–600MeV, see text.

determine the LECs of the contact interaction, cf. eq. (1),
by a fit to the lattice data at the two lower pion masses.
Specifically, the pion-mass dependence exhibited by the
LQCD simulation is exploited to determine the LECs D̃i

and Di that encode the pion-mass dependence of the con-
tact interaction. The fits are done to the phase shifts, gen-
erated from the parameterized version of the ΛcN poten-
tials provided in ref. [28], for energies up to 30MeV. Alter-
native fits taking into account the HAL QCD results up
to 50MeV were performed too. In this context it should
be noted that applications of chiral EFT to NN scatter-
ing and specifically to the 1S0 np state reveal that NLO
interactions are expected to provide quantitative results
up to roughly 50MeV [34,35]. The actual values of the
LECs at the fitted pion masses and at the physical value
are summarized in table 1.

Results for the 1S0 partial wave are presented in fig. 1.
The phase shifts for pion masses 570, 410 and 138MeV are
shown on the left side while the dependence of the scatter-
ing length on the pion mass is depicted on the right side.
The bands represent the dependence of the results on vari-
ations of the cutoff Λ. One can see that the lattice results
at mπ = 410MeV are reproduced quantitatively by our
potential up to c.m. kinetic energies of around 40MeV, as

expected for an NLO interaction, while those at 570MeV
are remarkably well described over the whole energy range
shown. In both cases the cutoff dependence is negligibly
small at low energies so that the bands are hardly visi-
ble. The phase shift obtained from our interaction when
extrapolated to the physical point (red bands) do exhibit
a noticeable but still rather moderate cutoff dependence.
A maximum of around 20 degrees of the 1S0 phase shift
is predicted in this case. The pion-mass dependence of
the 1S0 scattering length, shown on the right-hand side
of fig. 1, is fairly smooth and almost linear in mπ. Only
close to the physical point a somewhat stronger mπ de-
pendence is visible. The value predicted at 138MeV is
a = −0.85 · · · − 1.0 fm.

Results for the 3S1 partial wave are presented in fig. 2.
Again phase shifts as well as the pion-mass dependence
of the scattering length are shown. Those are very similar
to the ones of the 1S0 state, even on a quantitative level.
Indeed, it was already noted by the HAL QCD Collabora-
tion that the corresponding (1S0 and 3S1) potentials they
extracted are almost identical at 410 MeV as well as at
570 MeV [28] and we see that this characteristic feature
persists even in our extrapolation to the physical point.
This is certainly a remarkable feature in view of the fact
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Fig. 2. Results for the ΛcN
3S1 partial wave. Left: phase shifts of the HAL QCD Collaboration [28] at mπ = 570MeV (blue

open circles) and 410 MeV (green filled circles), as a function of the c.m. kinetic energy, together with our fits (lines/bands).
The broader (red) band is the prediction for mπ = 138 MeV. Right: dependence of the 3S1 scattering length on the pion mass.
The bands represent the cutoff variation Λ = 500–600MeV, see text.

Table 2. ΛcN scattering lengths in the 1S0 (as) and 3S1 (at) partial waves (in fm) for different pion masses. Predictions for the
corresponding effective range parameters r (in fm) at the physical point are likewise given.

mπ 700MeV 570 MeV 410 MeV 138MeV

as HAL QCD [28] −0.13 ± 0.11 −0.24 ± 0.13 −0.49 ± 0.18 –

our results −0.04 · · · − 0.13 −0.21 −0.45 −0.85 · · · − 1.00

rs 2.88 · · · 2.61

at HAL QCD [28] −0.17 ± 0.10 −0.29 ± 0.16 −0.51 ± 0.20 –

our results −0.09 · · · − 0.15 −0.25 · · · − 0.26 −0.46 · · · − 0.47 −0.81 · · · − 0.98

rt 3.50 · · · 3.15

that in case of the 3S1 partial wave there is a coupling to
the 3D1 induced by the tensor force, and this coupling is
taken into account in our analysis.

For completeness we have summarized the results for
the 1S0 and 3S1 scattering lengths, as and at, in table 2.
From those numbers one can see that the variation in
the extrapolated values due to the employed regulariza-
tion scheme is in the order of 0.2 fm. Additional fits to
the phase shifts where the considered energy range was
extended up to 50MeV led to changes in the scatter-
ing lengths at the physical point of around 0.1 fm, with
a clear tendency to smaller values. Further exploratory
fits carried out by us indicate that variations in the scat-
tering length of ±0.05 fm at mπ = 410MeV amount to
differences of about ±0.10 fm at mπ = 138MeV. Com-
bining these observations with the uncertainty of ±0.2 fm
given by the HAL QCD Collaboration for their result at
mπ = 410MeV suggests that the scattering lengths at
the physical point could be about 0.3 fm larger, i.e. as
large as −1.3 fm. Finally, for estimating possible effects
from the ΣcN channel we performed calculations with
the pion-exchange contribution (2) to the ΣcN poten-
tial included. Adding its contribution within a coupled-
channel framework (4) has a negligible influence on the
results at mπ = 410MeV and 570MeV, but leads to no-
ticeable variations in the predictions for mπ = 138MeV

that amount to roughly 0.3 fm in the scattering lengths.
Of course, a complete calculation has to include also a
contact term in the ΣcN channel, which could facilitate a
reduction of the effect. Obviously, additional information
on the ΣcN phase shifts, as had been provided in the pre-
liminary study of the HAL QCD Collaboration [27], and
promised in ref. [28] for the future, would be helpful for re-
ducing the uncertainty in the extrapolation. In any case,
a more quantitative estimate of the overall uncertainty
should be attempted, once lattice data with better statis-
tics are available and/or results for pion masses closer to
the physical point.

Clearly, and in line with the LQCD results for larger
pion masses, we do not get any ΛcN bound states. How-
ever, what are the consequences of the results presented
in the preceding paragraphs for the possible existence
of bound Λc nuclei? Let us look at the strangeness sec-
tor and, specifically, at the lightest Λ nucleus that is
experimentally observed, namely the hypertriton 3

ΛH.
The experimental value for the 3

ΛH binding energy is
(−2.354 ± 0.050)MeV, which implies a separation energy
for the Λ of only (0.13±0.05)MeV. Faddeev calculations of
the coupled ΛNN -ΣNN three-body systems for realistic
Y N potentials have been reported in refs. [63–65]. Those
suggest that, for Y N interactions which provide sufficient
attraction so that the hypertriton is bound, the ΛN scat-
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tering lengths are in the order of −2.9 to −2.6 fm for the
1S0 state and −1.5 to −1.7 fm for 3S1.

The scattering lengths for the ΛcN system at the phys-
ical point, deduced from the LQCD simulations of the
HAL QCD Collaboration, are −0.8 to −1.0 fm for the 1S0

as well as the 3S1 states. Thus, in the case of the 1S0 partial
wave the value is considerably smaller than its counterpart
in the strangeness sector while for the 3S1 channel the dif-
ference is less dramatic. Since the average ΛN (or ΛcN)
potential that is relevant for the hypertriton is dominated
by the spin-singlet channel, i.e. VΛN (VΛcN ) ∝ 3

4Vs + 1
4Vt,

see ref. [66] for details, it seems rather unlikely that an
only moderately attractive singlet ΛcN interaction can
support the existence of a 3

Λc
H bound state. Even effects

due to a reduction of the kinetic energy associated with
the Λc induced by the larger mass of the Λc as compared to
the Λ, emphasized in several works in the past [11,15,18],
cannot compensate for this large difference in the strength.
Actually, in ref. [18] an estimate for the binding energy of
charmed three- and four-body systems is provided based
on an exact solution of corresponding scattering equations.
Interestingly, Model 4 considered in that work yields scat-
tering lengths very similar to the ones of our analysis,
namely as = −1.075 fm and at = −0.828 fm (cf. table I in
that work). For this interaction no bound state is found
for the 3

Λc
H nucleus. However, the 4-body systems 4

Λc
He

and 4
Λc

Li could be already bound, though possibly only
weakly, even when considering the additional repulsive ef-
fect from the Coulomb force due to the charge of the Λ+

c

as discussed in ref. [18].
With regard to recent few-body calculations, the YcN

interaction employed in ref. [12] is strongly attractive and
leads already to ΛcN bound states. The binding energies
for ΛcNN are then in the order of 20MeV. Those results
do not allow us to draw any conclusions about what would
happen for significantly less attractive YcN interactions
like the one we deduce from the analysis of the LQCD
simulations by the HAL QCD Collaboration. In case of the
three-body calculation presented in ref. [11], a charmed
hypertriton with J = 3/2 (and total isospin I = 0) is
predicted. For that state the ΛcN spin-triplet interaction
is dominant [67]. However, since there is no information on
the scattering length and effective range parameters of the
ΛcN potential employed in ref. [11], a proper assessment
of that result is difficult.

4 Summary

In the present work, we have used the framework of chi-
ral effective field theory to extrapolate lattice QCD re-
sults for the ΛcN interaction at mπ = 410–570MeV by
the HAL QCD Collaboration [28] to the physical point.
Thereby, we have followed a strategy employed previously
in the strangeness sector [36–38]. However, contrary to
the calculations performed in those works, no recourse to
SU(3) or SU(4) flavor symmetry has been made in the
present study. Furthermore, in the present work the pion-
mass dependence of all components that constitute the

ΛcN potential up to next-to-leading order (pion-exchange
diagrams and four-baryon contact terms) are taken into
account. Information from lattice QCD simulations is uti-
lized to implement these features.

Our analysis of the HAL QCD results points to a mod-
erately attractive ΛcN interaction at the physical point
with scattering lengths of a ≈ −1 fm for the 1S0 as well
as for the 3S1 partial waves. Such an interaction leads to
the possibility of bound four- and/or five-baryons systems
with a Λc baryon and presumably of heavier Λc hyper-
nuclei. On the other hand, two-body (ΛcN) bound states
as advocated in some recent investigations based on phe-
nomenological potentials [8,12] can be definitely excluded,
even if one considers uncertainties in the extrapolation of
the lattice results. Also, the existence of a hypertriton-
like ΛcNN three-body bound state (with J = 1/2) seems
rather unlikely if one takes past investigations [18] as
benchmark.

Work partially supported by Conselho Nacional de De-
senvolvimento Cient́ıfico e Tecnológico (CNPq), Grant No.
305894/2009-9 (GK) and Grant No. 464898/2014-5 (GK)
(INCT F́ısica Nuclear e Applicações), Fundação de Amparo
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