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Abstract. Until recently the potential scattering of a charged particle in a laser field received attention
exclusively in atomic physics. The differential cross-section of laser-assisted electron-atom collisions for n
emitted or absorbed photons is provided by a simple law which casts the result as a product between the
field-free value and the square of the Bessel function of order n with its argument containing the effect
of the laser in a non-perturbative way. From the experimental standpoint, laser-assisted electron-atom
collisions are important because they allow the observation of multiphoton effects even at moderate laser
intensities. The aim of this study is to calculate the nucleus-nucleus differential cross section in the field
of a strong laser with wavelengths in the optical domain such that the low-frequency approximation is
fulfilled. We investigate the dependence of the n-photon differential cross-section on the intensity, photon
energy and shape of the pulse for a projectile/target combination at a fixed collision energy which exhibits a
superposition of Fraunhofer and refractive behavior. We also discuss the role of the laser perturbation on the
near and farside decomposition in the angular distribution, an issue never discussed before in the literature.
We apply a standard optical model approach to explain the experimental differential cross-section of the
elastic scattering of 4He on 58Ni at a laboratory energy E = 139MeV and resolve the corresponding
farside/nearside (F/N) decomposition in the field-free case. We give an example of reaction in which
Fraunhofer diffraction and refractive rainbow hump effects are easily recognized in the elastic angular
distribution. Next, we apply the Kroll-Watson theorem, in order to determine the n-photon contributions
to the cross-section for continuous-wave (cw) and modulated pulses. In the elastic scattering of heavy
ions in a radiation field of low intensity, the amplitude drops by orders of magnitude with respect to the
unperturbed case once the exchange of photons is initiated. For intensities approaching I = 1017 W/cm2

multiphoton effects become important. In the case of short laser pulses we conclude that the strength of
n-photon contribution increases with the pulse duration.

1 Introduction

In a manner analogous to the study of laser assisted col-
lisions of atoms with electrons, we expect that nucleus-
nucleus potential scattering in the presence of a strong
electromagnetic field may unravel new classical and quan-
tum features of the collisional dynamics at the nuclear
level. Until now this topic was only scarcely discussed in
the literature. Let us briefly review some of the theoretical
aspects concerning the laser-assisted charge scattering. In
early papers this problem was tackled by considering an
electron moving under the simultaneous action of an elec-
tromagnetic potential and a scattering real potential [1].
This problem, also known under the name of radiative
scattering, proved to be relevant in the practical context
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of plasma heating by intense electromagnetic fields [2], but
also for theoretical predictions since the action of the laser
at various intensities allows the experimental accessibility
to some of the electron-atom scattering parameters that
otherwise are not revealed. Thus, in the above mentioned
paper of Kroll and Watson (K-W) a remarkable theorem
was stated, namely for a linearly polarized laser, the dif-
ferential cross section accompanied by the absorption of
n photons is a simple product of the field-free elastic dif-
ferential cross-section and the square of the Bessel func-
tion of order n which encodes in its argument the field
parameters. The importance of this theorem consists in
providing a sound approximation to multiphoton energy
transfers when the frequency of the laser wave is low or
when the scattering potential is weak.

Multiphoton processes accompanying laser-assisted
electron-atom elastic collisions were observed for the first
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time in an experiment by Weingartshofer et al. (see the
review article [3] and references therein). In this type of
experiment the atomic beam, which impinges perpendic-
ularly to the scattering plane defined by the initial and
final electron momenta, is crossed in coincidence with the
laser and electron beams (three-beam experiment) and the
scattered electrons are recorded. In the range of laser in-
tensities 108–1012 W/cm2, an increase (decrease) of the
final electrons’ kinetic energies corresponding to the ab-
sorption (emission) of several photons was established.

The modification of nuclear reactions rates was only in
a few occasions discussed in the literature. The resonant
scattering of neutrons by nuclei in the field of a strong elec-
tromagnetic wave was investigated in [4] and the possibil-
ity to observe multiphoton effects discussed qualitatively.
In ref. [5] the laser-assisted Coulomb excitation by proton
projectiles was claimed to be enhanced for the intensity
1016 W/cm2, a quite large value for the laser sources avail-
able at the beginning of eighties. Laser-assisted proton
inelastic scattering on nuclei was recently considered for
monochromatic [6] and bichromatic fields [7]. Compared
to the previously mentioned study on Coulomb excita-
tion, nuclear effects are included via an optical potential
with Woods-Saxon (WS) form factors. The calculated one-
and two-photons differential cross-sections are much lower
than the corresponding n = 0 values, and they gradually
decrease with the number of absorbed photons.

A theoretical approach to the general description of
the quantum dynamics of two reacting nuclei was put for-
ward by one of us (ŞM) and applied to the case of spon-
taneous α-emission from a heavy radioactive nucleus in
order to compute the decay rate [8]. Using this frame-
work we provide in section 2 of the paper a derivation
of the laser-assisted differential cross section formula in
the first-Born approximation based on the S-matrix for-
malism. In the third section we investigate the scattering
of an α-particle beam on a 58Ni target, first in the field-
free case using an optical potential model analysis and
next assisted by laser pulses of various shapes with inten-
sities in the range 109–1017 W/cm2 and photon energies
in the range 1.5–15 eV. In the last section we comment on
the possible experimental conditions necessary to test the
Kroll-Watson theory.

2 Nucleus-nucleus scattering in a strong
electromagnetic field

In this paper we consider a colliding system composed of
two heavy ions of charges Z1,2 and masses A1,2 in the
field of a linearly polarized, monochromatic electromag-
netic field by a vector potential

A(r, t) = A0 cos(ωt − k · r) (1)

corresponding to the angular frequency ω and wave-
length λ = 2πc/ω. In what follows this signal is dubbed
as continuous-wave. Our study concerns lasers of wave-
lengths λ large compared to the size of the irradiated
quantum system and intensities that are not too high.

Consequently it is justified to retain the first term in the
expansion in powers of k · r in eq. (1) and the vector po-
tential can be safely taken as spatially homogeneous, i.e.
A(r, t) ≈ A(t). Then, by choosing its amplitude as

A0 = ε̂
E0

ω
, (2)

where ε̂ is the polarization of the electromagnetic wave,
the electric field in the dipole approximation reads

E(t) = −∂A

∂t
= ε̂E0 sinωt. (3)

We showed in a previous paper [8] that within this approx-
imation, the wave-function of the nucleus-nucleus relative
motion satisfies the time-dependent Schrödinger equation
(TDSE),

ih̄
∂ψ(r, t)

∂t
= [H0 + Hint(t)] ψ(r, t), (4)

where

H0 =
p2

2μ
+ V (r) (5)

is the time-independent Hamiltonian of the two heavy-
ions, of reduced mass μ = mA1A2/(A1 + A2), interacting
via a static potential V (r) in the absence of the laser field
(field-free Hamiltonian), whereas

Hint(t) = − e

m

(
Z1

A1
− Z2

A2

)
p · A +

e2

2m

(
Z2

1

A1
+

Z2
2

A2

)
A2

(6)
is the time-dependent part of the total Hamiltonian, de-
scribing the interaction of the colliding system with the
electromagnetic field. Performing a sequence of two uni-
tary transformations on the wave-function,

ψK-H(r, t) = ÛK-HÛVψ(r, t), (7)

one can simplify the TDSE equation, i.e. remove the terms
∼ A2 and p ·A. The explicit expressions of ÛV and ÛK-H
are given in [8]. In the new representation, named after
Kramers and Henneberger (see [9] and references therein),
the TDSE assumes the form

ih̄
∂ψK-H(r, t)

∂t
=

[
− h̄2

2μ
∇2

r + V (r + α(t))
]

ψK-H(r, t),

(8)
where

α(t) = −eZeff

μ

∫ t

−∞
dt′A(t′) = ε̂α0 sin ωt (9)

is the classical displacement vector of the colliding system
center-of-mass from its oscillation center with amplitude

α0 = −eZeffE0/μω2

induced by the time-varying electric field E(t). As we ar-
gued in [8] this is the quiver motion of a charge

Zeff =
Z1A2 − Z2A1

A1 + A2
.
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Note that in the K-H representation the effect of the elec-
tromagnetic field is completely transferred into the argu-
ment of the scattering potential.

We solve eq. (8) by resorting to the S-matrix formal-
ism [10]. In the absence of the scattering potential the
unperturbed wave-functions are

ψK-H
0 (r, t) = Φk(r)e

i
h̄ Ekt, (10)

where
Φk(r) = (2π)−3/2 exp(ik · r) (11)

are eigenstates of the non-perturbed Hamiltonian H0 =
− h̄2

2μ∇2
r. Next, we switch to the interaction representa-

tion, such that the perturbed wave-function and the time-
dependent scattering potential are transformed to

∣∣∣ψI
K-H

〉
= eiH0t/h̄

∣∣ψK-H〉
, (12)

VI(t) = eiH0t/h̄V (t)e−iH0t/h̄. (13)

Thence the probability amplitude for the transition ki −→
kf during the collision is casted in the form [10]

Cki,kf
(t) = 〈Φkf

|T exp
[
− i

h̄

∫ t

0

dt VI(r + α(t))
]
|Φki

〉,
(14)

where T is the Dyson time-ordering operator. For in-
stance, when acting on the product of two operators which
are function of time, T moves the operator involving an
earlier time to the right. If the limits of integration over
time in eq. (14) are extended to t = −∞ for the initial time
and t = +∞ for the final time, the transition probability
amplitude after the collision is denoted by the matrix el-
ement of the S-matrix

Cki,kf
(∞) = 〈Φkf

|Ŝ|Φki
〉. (15)

A series expansion of the exponential in eq. (14) in powers
of VI(t) provides the Born series. The first Born approxi-
mation reads

SB
fi = S

(0)
fi + S

(1)
fi

= δ(kf − ki) +
1
ih̄

〈Φkf
|
∫ +∞

−∞
dtVI(r + α(t))|Φki

〉.

(16)

The above matrix element can be worked out by intro-
ducing the Fourier transform of the scattering potential
in the K-H representation, i.e.

V (r + α(t)) =
∫

dqṼ (q) exp[−iq · (r + α(t))] (17)

and the generating function of the Bessel function of in-
teger order [11]

e−iΔq·α(t) =
∞∑

n=−∞
Jn(Δq · ε̂α0)e−inωt. (18)

We obtain after some mathematical manipulations the
first-order matrix element

S
(1)
fi ≡〈Φkf

|
∫ +∞

−∞
dt VI(r + α(t))|Φki

〉

=−2πiṼ (q)
∞∑

n=−∞
Jn(Δq · ε̂α0)δ(Ekf

−Eki
−nh̄ω).

(19)

In the above formulas ki,f are the initial and final mo-
menta of the colliding system in the C.M. Their absolute
values are

ki =
(

2μ

h̄2 Eki

)1/2

, kf =
(

2μ

h̄2 (Eki
+ nh̄ω)

)1/2

.

(20)
We introduced also the momentum transfer during the
collision

Δq = ki − kf . (21)

The corresponding energy balance is encoded in the delta
function δ(Ekf

− Eki
− nh̄ω) appearing in eq. (19)

Ekf
= Eki

+ nh̄ω, (22)

with n = 0,±1,±2, . . .. Positive values (n > 0)
signify absorption (stimulated bremsstrahlung), thus
Ekf

> Eki
, whereas negative values (n < 0) emission

(bremsstrahlung). In this last case the number of emitted
photons in the presence of the laser field has a limiting
value, i.e.,

−n ≤ Eki

h̄ω
. (23)

Within the conventional scattering theory [12] the S-
matrix is related to the transition (T ) matrix element

Ŝ = Î − 2πiT̂ . (24)

We therefore introduce the Born approximation for the
T -matrix of the scattering process accompanied by the
exchange of n photons

TB
fi(n) = Jn(Δq · ε̂α0)Ṽ (q). (25)

Then, in a manner completely analogous to the field-
free case [12], the elastic differential cross section for the
nucleus-nucleus scattering, accompanied by the absorp-
tion (emission) of n photons, is given by

dσn

dΩ
=

kf

ki

(
μ

2πh̄2

)2 ∣∣TB
fi(n)

∣∣2 . (26)

Consequently the differential cross section for laser-
assisted nucleus-nucleus scattering is given in the first-
Born approximation (derived in this form for the first time
by Bunkin and Fedorov [2]) by

dσn

dΩ
=

kf

ki
J2

n(Δq · α0)
(

dσ

dΩ

)
B1

(Δq), (27)
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Table 1. Unique solution with WS1 and WS2 form factors for the reaction 4He + 58Ni at 139 MeV. Standard notations for the
optical potential parameters are used. In our analysis the best χ2 is calculated with 10% error at all experimental points.

V W rV rW rc aV aW χ2 σR JV RV JW RW

MeV MeV fm fm fm fm fm mb MeV · fm3 fm MeV · fm3 fm

WS1 111. 20.16 0.9200 1.1700 1.0 0.7830 0.5350 1.53 1664. 315. 4.8580 101. 5.3314

WS2 158. 19.90 0.9464 1.2620 1.0 1.4078 1.0909 1.47 1722. 284. 4.7198 86. 5.4376

where (
dσ

dΩ

)
B1

(Δq) =
(

μ

2πh̄2

)2 ∣∣∣Ṽ (q)
∣∣∣2 (28)

is the field-free elastic scattering differential cross section
in the first Born approximation. As can be seen in eq. (27)
the differential cross section depends, via the argument of
the Bessel function, on the orientation of the polarization
vector ε̂ relative to Δq. Thus, the effect of the laser fields
enters the expression (27) via the square of the Bessel
function J2

n(Δq · α0).
It is worthwhile to comment on the case when there

is a huge discrepancy in magnitude between the collision
energy and the energy of exchanged photons, i.e. Eki

�
nh̄ω. Since in this case kf ≈ ki, summing eq. (27) after the
photon number, such that always kf ≥ 0, and using the
addition theorem for the Bessel function of integer order
(9.1.76 of [11])

1 =
∑

n

J2
n(Δq · α0) (29)

the following sum rule is fulfilled:

∑
n

dσn

dΩ
≈

(
dσ

dΩ

)
B1

. (30)

A last comment that we would like to make in this
section concerns the range of applicability of eq. (27).
Although this issue was never rigorously investigated, as
mentioned in ref. [2], a condition leading to eq. (27) is that
the laser frequency is small compared to the bombarding
energy, i.e.

ξ =
h̄ω

2Eki


 1. (31)

At the highest photon energy considered in this paper,
ξ ≈ 5 × 10−8.

3 Elastic scattering of 4He + 58Ni at 139MeV

3.1 Field-free scattering

The reaction 4He + 58Ni at 139MeV has been measured
by Goldberg et al. [13] in an effort to clarify the problem
of discrete ambiguities which for long time hampered the
heavy-ion elastic scattering studies at low energies. Be-
sides the strong evidence for refractive effects, the analy-
sis of this reaction showed a way to eliminate most of the
discrete potentials. The authors conjectured that phase
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Fig. 1. F/N decomposition with WS1 and WS2 form factors for
the typical rainbow scattering of 4He on 58Ni at a laboratory
energy E = 139MeV.

equivalence of discrete potentials disappear if and only if
the incident energy is high enough such that a rainbow de-
velops and there are sufficient measured data points in the
dark side of the rainbow. The critical energy is defined as
the incident energy for which the effective potential has an
inflection point instead of a pocket for a specific angular
momentum. The conjecture was checked substantially for
reactions on light and medium mass nuclei at 104MeV [14]
and in the Nickel region at 172.5MeV [15].

Since the finding of the optical potential is the royal
route to wave functions and nuclear structure, we describe
below in some details a standard optical model analysis in
an effort to reveal the reaction mechanism governing the
reaction and to guide the reader for future laser assisted
experiments. A grid search using standard Woods-Saxon
(WS1 and WS2) form-factors including volume absorp-
tion and supplemented with hard sphere Coulomb poten-
tials revealed a unique solution (see table 1 and fig. 1).
These solutions have moderate values for imaginary vol-
ume integrals and real volume integrals close to the critical
value JV ≈ 300MeV fm3, which ensures strong refractive
effects. The calculated angular distributions displayed in
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fig. 1 show a typical rainbow pattern with large amplitude
diffractive Fraunhofer oscillations at forward angles fol-
lowed by a rainbow hump and exponential decay at large
angles. The dominating farside component (F) shows a
hint of an Airy oscillation forward to the rainbow hump
while the nearside component (N) exponentially decays
after the Fraunhofer crossover. The uniqueness of the so-
lution is guaranteed by the huge parameter space which
has been explored in the search procedure.

The ability of semi-microscopic folding potentials to
describe rainbow scattering was tested by many authors,
see e.g. [15]. We use here a scaling procedure initially in-
troduced by Mahaux et al. [16] which ensures a high flexi-
bility of the folding form factors. In the folding model, the
spin-isospin independent form factor of the optical poten-
tial is given by the integral

Vfold(R) =
∫

dr1dr2ρ1(r1)ρ2(r2)veff(s), (32)

where veff stands for a density dependent G-matrix inter-
action, ρ1,2 are the Hartree-Fock single-particle spherical
densities of the projectile and target, and s = r1+R−r2 is
the NN (nucleon-nucleon) separation distance in a stan-
dard double folding geometry. We use the well known D1N
parametrization of the Gogny [17] effective interaction as
well as the nuclear matter approach of Jeukenne, Lejeune
and Mahaux (JLM) [16] which incorporates a complex
energy and density dependent parametrization of the NN
interaction obtained in a Brueckner-Hartree-Fock approx-
imation from the Reid soft core NN potential. We note
that the nonlocal knock-on exchange kernel of the Gogny
interaction is localized using the lowest order of the Perey-
Saxon approximation [18]. We keep the number of fitting
parameters at the minimum level and take the optical po-
tential in the form

U(R) = NV V (R, tV ) + iNW V (R, tW ), (33)

where NV,W are normalization constants and tV,W are
range parameters defined by the scaling transformation,

V (R, t) → t3Vfold(tR). (34)

This transformation conserves the volume integral of the
folding potential and modifies the radius as

〈R2〉V =
1
t2
〈R2〉fold. (35)

Thus the strength of the form factor is controlled by the
normalization parameters NV,W . The effective mass cor-
rection [19], μ∗/μ = 1−∂U/∂E is of the order of a few per-
cent for our system and is absorbed in the renormalization
parameter NW . Note that the transformation in eq. (34)
ensures that only the rms radius of the bare folding poten-
tial is changed. This is in line with the original prescription
of [16] which proposed a smearing procedure in terms of
a normalized Gaussian function. We found that the trans-
formation in eq. (34) is more efficient and less time con-
suming. Based on eq. (35) one may estimate in an average

way the importance of the dynamic polarization poten-
tial (DPP) and finite range effects. In the present analysis
we use single particle densities obtained from a spherical
Hartree-Fock (HF+BCS) calculation based on the den-
sity functional of Beiner and Lombard [20] for which the
real range parameter of the folding potential requires only
a few-percent correction. The obtained rms charge radii
are very close to the experimental values [21]. The effec-
tive interactions are density dependent and therefore two
approximations were used for the overlap density,

ρ =
√

ρ1(r1)ρ2(r2) (36)

and
ρ =

1
2
(ρ1(r1) + ρ2(r2)). (37)

Though both approximations lead to the same volume
and rms radii, the first one, i.e. (36) has the advantage
over (37) in that it insures the vanishing of the overlap
density once one of the interacting nucleons is far from
the bulk. In eq. (37) a factor 1/2 was introduced such
that the overlap density does not exceeds the equilibrium
density for normal nuclear matter. At large density over-
laps, the fusion and other inelastic processes are dominant
and the elastic scattering amplitude is negligible small.

The calculated OM potentials are dubbed GOGNY1
(corresponding to approximation (36)) and GOGNY3
(for (37)) and similarly for the JLM interaction: JLM1 and
JLM3. Both definitions represent crude approximations of
the overlap density but are widely used in the estimation
of the density dependence effects in the folding model.
The bulk parameters collected in table 2 (volume inte-
grals, rms radii and total reaction cross section), which are
the most pertinent physical observables which can be ex-
tracted from elastic angular distributions show that there
is little difference between eqs. (36) and (37) since both
lead to almost identical values. We mention that we first
introduced the interaction GOGNY1 in refs. [22,23] where
we described consistently the hindrance in sub-barrier fu-
sion of several reacting systems with 40,48Ca projectiles.

A unique solution is also obtained with the folding
model (see table 2). The calculated angular distribu-
tions (normalized to the Rutherford cross section), sup-
plemented by a standard farside/nearside (F/N) decom-
position are shown in fig. 2. The calculation is completely
consistent with the previous Woods-Saxon (WS) calcula-
tion, showing a well defined Fraunhofer sector followed by
a rainbow hump and an exponential decay at large angles.
The bulk observables (volume integral, rms radii and total
reaction cross section) are also consistent.

We should note that the farside dominance in our an-
gular distribution suggests strong refractive effects such as
rainbows, but the F/N decomposition is not sufficient to
completely clarify the reaction mechanism. The reason for
such a behavior is that the F/N method does not perform
a dynamic decomposition of the scattering function, but
merely decomposes the scattering amplitude into traveling
waves. A useful dynamic decomposition of the S-matrix
can be obtained with the semiclassical method of Brink
and Takigawa [24]. This method uses classical ingredients
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Table 2. Unique solutions with folding form factors for the reaction 4He + 58Ni at 139 MeV.

NV NW tV tW χ2 σR JV RV JW RW

mb MeV · fm3 fm MeV · fm3 fm

GOGNY1 0.545 0.2059 1.0030 0.8943 2.91 1743. 274.24 4.674 102.98 5.235

GOGNY3 0.725 0.2794 1.0203 0.9174 3.82 1731. 275.70 4.679 105.65 5.197

JLM1 0.620 0.6752 0.9430 0.8577 1.94 1745. 277.98 4.670 100.16 5.270

JLM3 0.665 0.7665 0.9387 0.8558 2.09 1752. 276.60 4.684 99.43 5.297
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Fig. 2. Same as in fig. 1 with GOGNY form factors (left panel) and with JLM form factors (right panel).

such as complex turning points, action integrals and po-
tential poles to decompose the scattering amplitude into
barrier and internal barrier subcomponents. The barrier
(B) component accounts for the particle flux reflected at
the most external barrier complex turning point, while the
internal barrier (I) component describes the waves pene-
trating the barrier, suffering multiple reflexions between
the internal turning points and thus exploring the poten-
tial in the interior sector. When this latter component is
large, a palette of exotic phenomena may appear in heavy
ion elastic angular distribution such as nuclear orbiting
and rainbows.

3.2 Scattering in a linearly polarized radiation field

3.2.1 Continuous-wave signals

We consider the simplest possible charged particle scatter-
ing experiment in the presence of a spatially homogeneous
laser field and polarization ε̂ along the beam direction

(ε̂ ‖ ki) and for an infinite pulse duration

E(t) = ε̂E0 sinωt. (38)

In other words, the above Ansatz is justified for a gedanken
experiment of field-assisted potential scattering, where the
projectile-target reaction takes place in a domain with lin-
ear size 
 λ.

We consider the reaction 4He + 58Ni at 139MeV and
assume that the theory outlined in refs. [1,2], whose main
result was given in eq. (27), can be applied in this case.
We note that the sum rule, written above, e.g. (30), in
the first Born approximation, was proven by Kroll and
Watson to be valid to all orders within the low-frequency
approximation (LFA) [1].

∑
n

dσn = dσel. (39)

In view of the huge discrepancy between the laser photon
energy h̄ω and the collision energy E, we expect this ap-
proximation to be valid. Since for the geometry assumed
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Fig. 3. Elastic scattering 4He + 58Ni at 139MeV assisted by a laser field with photon energy h̄ω = 1.5 eV for two intensities:
I = 1011 W/cm2 (top panels) and I = 1013 W/cm2 (bottom panels). dσn/dσR is calculated for n = 0, n = 1 and n = 2 absorbed
photons. The F/N decomposition is figured by the short-dashed curve (farside) and the long-dashed curve (nearside).

above Δq · ε̂ = 2ki sin2 θc.m./2, where θc.m. is the center
of mass scattering angle, the differential cross-section (27)
for non-relativistic laser-assisted ion-ion scattering, corre-
sponding to the emission or absorption of n photons in
the case analyzed in this section, is rewritten as

(
dσ±n

dΩ

)
LFA

=
kf (±n)

ki
J2

n(ζi(θ))
(

dσ

dΩ

)
el

, (40)

where ζi = 2α0ki sin2(θc.m./2).
We note in passing that the relation between the elec-

tric field strength E0 and the laser intensity I0 = 1
2cε0E2

0

can be recasted for practical purposes as [25]

E0[V/cm] = 27.44
{

I0[W/cm2]
}1/2

.

It is expected that the 2 lasers of ELI-NP, each endowed
with a power of 10 PW power, will produce a maximum
intensity I0 ≈ 1023 W/cm2 [26]. The corresponding elec-
tric field is E0 ≈ 8.7 × 1012 V/cm or, in nuclear units, us-
ing the amplitude of the electric force on the elementary
charge +e

eE0 ≈ 8.7 × 10−7 MeV/fm.

For the numerical examples presented below we take val-
ues that do not exceed eE0 ≈ 8.7×10−10 MeV/fm. First we
consider the case of Ti:sapphire laser beam h̄ω = 1.5 eV

impinging on the projectile beam and the target, as well
as higher photon energies that are currently unavailable,
just for the sake of assessing the role played by the photon
frequency.

In fig. 3 we display the laser-assisted cross-section in
ratio to Rutherford cross section (dσn/dσR) as well as its
F/N decomposition (total, far- and nearside) in the pho-
tonless case (n = 0) and for the absorption of n = 1
and n = 2 photons for two moderate intensities (I = 1011

and 1013 W/cm2). The unperturbed cross section is calcu-
lated with a strongly refractive WS1 solution. Large am-
plitude oscillations are superimposed on the rainbow ex-
ponential decay of the cross section at the larger intensity.
The Fraunhofer characteristic oscillations are still visible
in the forward angle sector, despite the behavior of the
Bessel function for small arguments. At large angles, both
farside and nearside components of the cross-section dis-
play strong oscillations for the higher intensity. Instead, at
the lower intensity the same quantity for n = 0 resembles
the unperturbed case. By symmetry, the case of photon
emission by heavy ions is identical to the absorption case.

One of the most stringent effects produced by the ex-
change of photons between the projectile-target system
and the electromagnetic fields is manifested by the drasti-
cally depletion of the cross section for small angles when
n �= 0. By comparing with fig. 2 we see that the near-
side component suffers a dramatic change in behavior for
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Fig. 4. Elastic scattering 4He + 58Ni at 139MeV assisted by a laser field with photon energies h̄ω = 1.5 eV, 5 eV, 10 eV and
for two intensities: I = 1011 W/cm2 (top panels) and I = 1013 W/cm2 (bottom panels). dσn/dσR is calculated for n = 0, n = 1
and n = 2 absorbed photons.

small angles. Instead, the farside component, though it
also shrinks in the forward direction, preserves its mono-
tonically increasing shape in this region. The rainbow
hump is damped by several orders of magnitude at the
lower intensity for n �= 0. However, when passing from the
lower to the higher intensity, the broad rainbow hump in
the field-free case displays a fragmentation in several oscil-
lations with decreasing amplitude and is shifted towards
larger angles with increasing n. On the other hand, the
slope of the cross-section at the higher intensity is nearly
the same for n = 0, 1 and 2 exchanged photons.

We also turned our attention to lasers of lower wave-
length that are in the upper range of the ultraviolet radi-
ation. The numerical experiments that we performed for
higher photon energies and displayed in fig. 4 are pointing
to a drop of the cross-section by orders of magnitude with
the number of exchanged photons n and for increasing
photon energy h̄ω at the lowest intensity. This suppresion
is related to the behavior of the Bessel function for small
values of the argument, i.e. Jn(x) ∼ (x/2)n/n! [11]. In
the absence of photon exchange the cross-section for the
two higher photon energies barely change with increasing
intensity. For the real laser (h̄ω = 1.5 eV) the argument
of the Bessel function J0 is larger by a factor of 11.1 and
44.4 respectively compared to the other two higher fre-
quencies! It is transparent from this discussion that at
higher photon energies the argument of the Bessel func-

tion decreases ∼ 1/ω2 which has the effect to compensate
the linear increase in the field strength (compare for ex-
ample the h̄ω = 5 eV curve at higher intensity with the
h̄ω = 1.5 eV at the lower intensity for n = 0 in fig. 4).

In fig. 5 we investigate the effect of large numbers of
absorbed photon, for increasing laser intensity and a se-
lection of 4 photon energies. For the lowest intensity only
the photonless events contribute to the cross-section in the
course of the reciprocal diffraction laser-heavy ions. For
the highest intensity the contribution of n �= 0 strengths
is dramatically pushed up. As we already remarked in the
previous figure, the exchange of numerous photons is fa-
vored for the lowest photon energy! At the highest in-
tensity the maximum of the strength distribution lays at
n = 4.

3.2.2 Pulsed signals

For shorter laser pulses (ultra-short pulses lasting few
optical cycles), the electromagnetic wave can be formed
by superimposing monochromatic plane waves. For non-
dispersive, linearly polarized laser pulses, the vector po-
tential is casted in the form [27]

A(r, t) = −ε̂E0

∫ t

−∞
F (t′ − k · r/ω) sin(ωt′ − k · r)dt′,

(41)
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Fig. 5. The n-photon differential cross section as a function
of the number of absorbed photons for three laser intensities
(I = 109, 1013 and 1017 W/cm2) and fixed scattering angle
(θ = 5◦). For each intensity we represent the strength at four
photon energies (h̄ω = 1.5, 5, 10 and 15 eV). The scattering
angle has been chosen arbitrarily at θ = 5◦ in the Fraunhofer
sector of the field-free scattering.

where ε̂ is the polarization vector, E0 = ωA0 is the am-
plitude of the electric field and F is a non-negative func-
tion that describes the shape (envelope) of the pulse. In
the dipole approximation the vector potential satisfies the
Coulomb gauge, ∇ · A = 0, and with no sources present,
the electric field of the laser pulse is

E = −∂A

∂t
= ε̂E0F (t − k · r/ω) sin(ωt − k · r). (42)

In the dipole approximation the electric field of a linearly
polarized laser pulse is

E(t) = ε̂E0F (t) sin(ωt). (43)

In this paper we introduce the pulse duration τp as the
full width at half maximum of the intensity profile |E(t)|2.
Further, we consider three types of envelopes that are com-
monly encountered in the literature [28] with the following
profiles:

rectangular (step function)

F (t) = Θ(τp − t), (44)

sine-squared

F (t) = sin2

(
πt

τp

)
Θ(τp − t), (45)

and Gaussian

F (t) = exp
[
−4π2t2/τ2

p

]
Θ(τp − t). (46)

The pulse duration is taken in our study as an integer
multiple of the laser period, i.e. τp = NT . Although for
these pulses the minimum N is about a few dozens of
cycles, we find instructive for our study to consider pulse
lengths of a few cycles.

In order to adapt the K-W theorem (27) to the case
of laser pulses of finite duration we appeal to a suggestion
made long time ago by Krüger and Jung [29]. It is as-
sumed that the shape function F (t) varies so slowly with
t, that for time intervals long compared to 1/ω, it can be
approximated piecewise to a good accuracy by the sum

F (t) =
N∑

p=1

fp[Θ(Tp − t) − Θ(Tp−1 − t)], (47)

where

fp = F

(
Tp−1 + Tp

2

)
. (48)

Then the differential cross section for n-photons ex-
changed is obtained as a time average over the interval
[T0, TN ] of length τp = TN − T0

dσ̄n

dΩ
=

1
τp

∫ TN

T0

dt
dσn(F (t))

dΩ
, (49)

where (dσn(F (t))/dΩ) is calculated for F (t) = fp. In
other words,

dσ̄n

dΩ
≈ kf

ki

(
dσ

dΩ

)
elast

1
τp

∫ Tn

T0

dtJ2
n(k · α0(t)) (50)

where

α0(t) = −eZefffpE0

μω2
[Θ(t − Tp−1) − Θ(Tp − t)]. (51)

In fig. 6 the strengths (50) are displayed for the three
modulated signals discussed above with pulse duration
τp = 2π/ω and the highest intensity used in the present
study. The dependence of the strengths on the shape of
the chosen modulated pulse is striking. For the Gaussian
pulse, the strength drops fast with n and consequently the
“multiphoton” contributions are manifest for the square
pulse up to n = 4. The strengths for the sine-squared pulse
display a behavior closer to the rectangular pulse.

In fig. 7 we plot the same quantity like in fig. 6, this
time only for the Gaussian pulse and for finite pulse dura-
tions (τp = T, 3T and 5T ). By increasing τp, the exchange
of photons is enhanced.

4 Summary and outlook

In this study we considered the elastic scattering of two
nuclei in the presence of a monochromatic laser field.
This is one of the few elementary processes where the
description of the assisting radiation field may be non-
perturbatively incorporated into the theory. This opens
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Fig. 6. The time-average of the n-photon differential cross
section (49) over the pulse duration τp as a function of the
number of absorbed photons for three envelopes of the electric
field F (t) (square, Gaussian and sine-squared), laser pulse in-
tensity I = 1017 W/cm2 and fixed scattering angle (θ = 5◦)
for the Ti:sapphire laser. The duration of the pulse is one light
period T .
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Fig. 7. The time-average of the n-photon differential cross
section (49) over the pulse duration τp as a function of the
number of absorbed photons, for a Gaussian envelope and in-
tensity I = 1017 W/cm2 at fixed scattering angle (θ = 5◦) for
the Ti:sapphire laser. We take three pulse durations: τp = T, 3T
and 5T .

the possibility of studying in a rather simple way strong-
field effects and multiphoton processes in nuclear systems.

We have chosen as an example a typical heavy-
ion reaction, where the field-free cross-section displays
a superposition of diffractive Fraunhofer and refractive
(rainbow) scattering regimes. Using the standard optical
model framework, accompanied by a detailed semiclassi-
cal (WKB) analysis, we clarified the reaction mechanism
before embarking to a detailed investigation of the depen-
dence of the shape and amplitude of the cross-section. The

numerical experiments were performed for several param-
eters of the laser field impinging on the heavy ions, i.e.
intensity I, photon frequency ω, as well as the role of
multiphoton processes, shape and duration of modulating
laser pulses.

Along with the optical Ti:sapphire laser (λ = 800 nm)
we also assumed photons of lower wavelengths produced
by a fictitious laser, though not far beyond the techni-
cal possibilities foreseen in the near future. Already laser
facilities around the globe are able to produce beams of
ultraviolet and X-ray lasers. By no means we intended to
venture in the realm of speculations and academic exer-
cises, rather we aimed to validate possible paths of re-
search in laser assisted nuclear reactions.

The diffraction pattern of heavy ions in the laser field
accompanied by the exchange of one or more photons is
characterized by a drastic reduction of the quantum scat-
tering flux in the forward direction.

Multiphoton effects seem to be favored provided a rel-
atively moderate laser intensity I = 1017 W/cm2 is at-
tained. However, the possibility to observe such events is
severely hampered by the corresponding reduction of the
cross-section.

On the other hand there are still many questions not
discussed in this paper. We considered the scattering of
two nuclei in the field of a linearly polarized, monochro-
matic, homogeneous laser field (see eq. (38)). In a more
realistic treatment the colliding nuclei are found in regions
of different field strengths. In this case one has to take into
account the effects of an intensity variation of the field not
only in time, but also in space. The laser beam can be de-
scribed by a plane-wave of the type given in eq. (1) mod-
ulated by a slowly space varying function [30]. In prepar-
ing an experiment there are several facts that need to be
taken into account. The effective range of the nucleus-
nucleus of the potential, despite its Coulomb nature, is
small compared to the laser wavelength and therefore also
small compared to the spatial variations of the intensity.
However, due to the extension of the target, as discussed
above, the spatial variations of the field across the target
have to be accounted for. In practice each space-time point
(r, t) should be weighted by n(r, t), the density of nucleus-
nucleus collision events. Consequently the detector count-
ing these events in an experiment carried out with a space
and time-dependent field intensity will eventually provide
a total number of observed events proportional to the dif-
ferential cross-section (40) multiplied by n(r, t) and inte-
grated over the macroscopic interaction volume, where the
laser-assisted nuclear reactions takes place, and the time
interval when the collision events are recorded [31]. Thus,
the estimation of the weighting function, that could be the
subject of another study, is important in optimizing the
experimental conditions. On the other hand, in the realm
of high intensity experiments it is known that the limits
of focusability and therefore the attainable intensity are
dependent on the quality of the beam profile. Therefore
we shall contain ourselves to recommend as experimental
feature only the condition to ensure a laser intensity of
at most 1017 W/cm2 in the interaction volume. We could
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consider either a circular or an eliptical shape of the beam
in the interaction area, we could play with a “in-focus” or
“out of focus” positioning, but the geometry of an ex-
periment of this kind should also imply data about the
heavy ion sources. Therefore we shall not insist here on
proposing experimental conditions for a highly efficient
interaction. Instead we could comment on the possibility
to identify a facility in order to validate some of the predic-
tions made in the present work. A possible laser-assisted
heavy-ion scattering (LAHIS) experiment could be shel-
tered at the NESR storage ring in the framework of the
FAIR project (GSI-Darmstadt). This facility is dedicated
to light-ion induced reactions in inverse kinematics [32].
In this type of experiment, a beam of light-ions emerging
from the storage ring can be scattered on a high-density
gas jet of α’s, or other light nuclei, and next the reac-
tion products are recorded by a detector in the forward
direction. The laser beam could access the volume where
nuclear collisions take place, via an aperture operated on
the recoil detector and could be supplied by a tabletop
laser. A favorable feature is that the gaseous targets have
small dimensions and by adjusting the laser pulse duration
one optimizes the matter-radiation interaction.

Before ending we mention that it would be also mean-
ingful to extend the present analysis to an arbitrary po-
larization and to establish how the elliptic polarization of
the highly collimated light pulse perturbs the collision in
comparison to the linear polarization. Such experimental
endeavors are currently carried out [33,34] and are nicely
confirming the robustness of the K-W approach.
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6. I.F. Barna, S. Varró, Laser Part. Beams 33, 299 (2015).
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