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Abstract. The quantum-statistical Clausius-based equation of state is used to describe a system of interact-
ing nucleons. The interaction parameters a, b, and c of the model are fixed by the empirically known nuclear
ground-state properties and nuclear incompressibility modulus. The model is generalized to describe the
baryon-baryon interactions in the hadron resonance gas (HRG). The predictions of such a Clausius-HRG
model are confronted with the lattice QCD data at zero and at small chemical potentials, and are also
contrasted with the standard van der Waals approach. It is found that the behavior of the lattice QCD
observables in a high-temperature hadron gas is sensitive to the nuclear matter properties. An improved
description of the nuclear incompressibility factor correlates with an improved description of the lattice
QCD data in the crossover transition region.

1 Introduction

Systems of particles which interact repulsively at small
distances and attractively at intermediate distances can be
found in many different fields of physics. The well-known
example of a model of the equation of state for such a
systems is the famous van der Waals (vdW) equation [1,
2]. It describes the attractive and repulsive interactions
between particles by the vdW parameters a and b, and
it is the simplest model which predicts a liquid-gas phase
transition with a critical point.

Recently, the classical vdW equation was transformed
to the Grand Canonical Ensemble (GCE) [3], and then
generalized to include the effects of quantum statistics [4,
5]. This quantum van der Waals (QvdW) formulation had
opened up new applications in nuclear/hadronic physics,
where the numbers of different particle species are usually
not conserved, and where the quantum-statistical effects
are often non-negligible. In particular, the basic properties
nuclear matter —a hypothetical infinite system of inter-
acting nucleons— were rather successfully described by
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the QvdW model (see [4]). Unexpectedly strong influence
of the vdW-like interactions on the lattice QCD observ-
ables within the hadron resonance gas (HRG) model were
recently pointed out in ref. [6], where the vdW interactions
between all (anti)baryons were included in the framework
of the QvdW equation.

The simple QvdW model, however, does not give a
good quantitative description of the nuclear matter prop-
erties. In particular, it greatly overestimates the stiffness
of the nuclear equation of state. It yields the nuclear in-
compressibility value of K0

∼= 763MeV, which greatly
overshoots the empirical estimates.

Over the years, many modifications to the original
vdW equation were developed. These modifications con-
cern both the attractive and the repulsive terms in the
equation of state, and the resulting models are normally
referred to as the real gas models. In a recent work [7],
the classical real gas models were augmented with the
quantum-statical effects, and then used to describe the
phase diagram of nuclear matter. Only the vdW-like two-
parameter real gas models were considered in that work.
The present paper extends the study of ref. [7] by using the
quantum-statistical real gas formalism of that work for the
three-parameter quantum-statistical Clausius equation of
state. It allows to obtain a much better description of the
nuclear incompressibility factor, which is consistent with
the available empirical estimates.
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We constrain all parameters of the fermionic Clau-
sius model by the normal nuclear matter properties. The
model is then applied to describe baryonic interactions in a
high-temperature HRG. This is done without introducing
any new parameters which could be adjusted to a known
phenomenology of a hot hadron gas. The predictions of
such Clausius-HRG model are confronted with the lattice
QCD data. Correlations between the nuclear matter prop-
erties and the behavior of the lattice QCD observables are
studied.

The paper is organized as follows. The classical Clau-
sius equation of state and its quantum statistical gener-
alization are elaborated in sect. 2. In sect. 3 the model is
applied to the description of properties of the symmetric
nuclear matter. An extension of the HRG model to in-
clude baryonic interactions in the framework of the Clau-
sius model is described in sect. 4, and a comparison with
the lattice QCD is given in sect. 5. A summary in sect. 6
closes the article.

2 Clausius-based equation of state

2.1 Classical equation of state

A classical equation of state is usually given in terms of
a pressure p as a function of temperature T and particle
number density n = N/V . The Clausius equation of state
can be written as1

p(T, n) =
Tn

1 − bn
− an2

(1 + cn)2
. (1)

At c = 0, the Clausius model reduces to the well known
vdW equation, where the vdW parameters a > 0 and b >
0 describe, respectively, the attractive and the repulsive
interactions between particles. A particular case c ≡ b
was considered in ref. [7]. In the present work we consider
c as a free parameter, which is to be fitted to the empirical
data on nuclear matter properties.

The first term in (1) describes the short-range repulsive
interactions by means of the excluded-volume correction
of the vdW type, whereby the system volume is substi-
tuted by the available volume, i.e. V → V − bN . The
parameter b is the excluded-volume parameter. It can be
related to the classical hard-core radius of a particle as
b = 16πr3/3 (see footnote2). The second term describes
the attractive interactions in the mean-field approxima-
tion. In the original version of the Clausius equation the
attraction parameter a is temperature dependent: typi-
cally it is inversely proportional to T . In the present work,
a is treated as a temperature-independent positive pa-
rameter. The parameter c influences the equation of state
starting from the third order in the virial expansion. Up
to the 2nd order, eq. (1) is consistent with the standard
vdW equation.

1 We use the natural units throughout this work, i.e. � =
c = kB = 1.

2 This relation may not work well on the nuclear scale due
to the quantum-mechanical effects, see refs. [7–9] for details.

2.2 Quantum-statistical generalization

The class of the real gas equations of state was general-
ized to include the quantum statistical effects in ref. [7].
Equation (1) falls into this class. Following ref. [7], the free
energy F (T, V,N) in the Clausius model is

F (T, V,N) = F id(T, V − bN,N) − N
an

1 + cn
, (2)

where F id(T, V,N) is the free energy of the corresponding
quantum ideal gas. The free energy F (T, V,N), expressed
in terms of its natural variables temperature T , volume
V , and particle number N , is the thermodynamical po-
tential in the Canonical Ensemble (CE) and it contains
complete thermodynamic information about the system.
All other thermodynamic quantities can be computed us-
ing the standard thermodynamic relations.

For applications to the HRG models one needs the
GCE formulation. It is given by the pressure as the func-
tion of its natural variables, temperature and chemical
potential. One finds (see [7] for details),

p(T, μ) = pid(T, μ∗) − an2

(1 + cn)2
, (3)

where the “shifted” chemical potential μ∗ is obtained as
the solution of the following transcendental equation

μ∗ = μ − b pid(T, μ∗) + an
2 + cn

(1 + cn)2
. (4)

The particle density, n = n(T, μ), in eqs. (3) and (4) is
given by

n(T, μ) = (1 − bn)nid(T, μ∗). (5)

Note that for c = 0, eqs. (3), (4), (5) are reduced to the
standard QvdW model formulation considered in ref. [4].

3 Nuclear matter

In this section, the quantum-statistical Clausius equation
is applied to describe the properties of the symmetric
nuclear matter. The Fermi gas of nucleons (with mass
m ∼= 938MeV and (iso)spin degeneracy d = 4) is con-
sidered. At the same time, the formation of the nucleon
clusters (i.e., ordinary nuclei) is neglected. The interac-
tions between nucleons are described by the parameters
a, b, and c.

A study of nuclear matter is certainly not a new sub-
ject (see, e.g., refs. [10–14]). The thermodynamics of nu-
clear matter and its applications to the production of the
nuclear fragments in heavy-ion collisions were considered
in refs. [15–20] in 1980s (see ref. [21] for a review of these
early developments). Nowadays, the properties of nuclear
matter are described by many different models, particu-
larly by those which employ the relativistic mean-field the-
ory [11,22–25]. Earlier, the excluded-volume corrections
have already been considered in the mean-field models,
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Table 1. The values of the interaction parameters a, b, and c, the values of the resulting nuclear incompressibility, and the
properties of the critical point of nuclear matter. These quantities are listed for two Clausius model parameterizations (see text)
as well as for the quantum van der Waals model. The corresponding empirical estimates are listed as well.

Model a (MeV fm3) b (fm3) c (fm3) K0 (MeV) Tc (MeV) nc (fm−3) pc (MeV/fm3)

QvdW 329 3.42 0 763 19.7 0.072 0.52

Clausius-I 437 2.14 3.51 315 16.8 0.054 0.28

Clausius-II 472 1.73 4.74 250 16.3 0.050 0.24

Experiment [36,37] – – – 250–315 17.9 ± 0.4 0.06 ± 0.01 0.31 ± 0.07

where they were added on top of the repulsive force de-
scribed by the ω meson exchange [26,27], or on top of the
Skyrme-type density-dependent repulsive mean field [28].
In the present work, however, the repulsive forces are de-
scribed solely by the excluded-volume corrections.

Experimentally, the presence of the liquid-gas phase
transition in nuclear matter was first reported in refs. [29–
31] by indirect observations. The direct measurements of
the nuclear caloric curve were first done by the ALADIN
collaboration [32], later followed by other experiments [33,
34].

The Clausius model contains three interaction param-
eters: a, b, and c. The values of these parameters need to
be fixed. In molecular systems these parameters are usu-
ally fixed in order to reproduce the experimentally known
properties of the critical point. For the nuclear matter a
different strategy is employed: the parameters a, b, and
c are fixed to reproduce the known properties of nuclear
matter at zero temperature. For the nuclear ground state
one has the following: at T = 0 and n = n0

∼= 0.16 fm−3

one has p = 0 and ε/n = m + E/A ∼= 922MeV (see, e.g.,
ref. [35]). Here E/A ∼= −16MeV denotes the binding en-
ergy per nucleon. This gives two constraints. The third
constraint can be obtained from the nuclear incompress-
ibility modulus K0 at the nuclear saturation point. This
quantity is defined as

K0 = 9
(

∂p

∂n

)∣∣∣∣
T=0,n=n0

(6)

and its recent empirical estimate [36] is K0 =
250–315MeV. We fix the parameters a, b, and c in order
to reproduce the properties of the nuclear ground state
as well as the lower and higher limits of the empirical
range for K0. Once the parameters a, b, and c are fixed,
the location of the critical point of the nuclear liquid-gas
transition becomes a prediction of the model, which can
be compared to the experimental estimates. This location
is found by the numerical solution to the system of equa-
tions, (∂p/∂n)T = 0 and (∂2p/∂n2)T = 0, in the CE,
which allows to determine the values of the critical tem-
perature Tc and the critical density nc [1].

The values of the interaction parameters a, b, and
c, the values of the resulting nuclear incompressibility,
and the properties of the critical point of nuclear mat-
ter are listed in table 1. These quantities are listed for
two Clausius model parameterizations. The Clausius-I

Fig. 1. The nucleon number density dependence of the bind-
ing energy per nucleon E/A in the symmetric nuclear matter
at T = 0 calculated within QvdW (dash-dotted blue line),
Clausius-I (dotted red line), and Clausius-II (solid black line)
models.

parametrization gives the nuclear incompressibility K0 =
315MeV while the Clausius-II parametrization yields
K0 = 250MeV. These correspond, respectively, to the
higher and to the lower limit of the empirical range of
ref. [36]. Both parameterizations reproduce the properties
of the nuclear ground state. For completeness, the results
obtained with the standard QvdW model (c = 0) are also
listed in table 1. In this case the K0 was not used to con-
strain the vdW parameters a and b. The experimental es-
timates for K0 [36] and for the critical parameters [37] are
also shown in table 1. The density dependence of the bind-
ing energy per nucleon E/A at zero temperature is shown
in fig. 1 for QvdW (dash-dotted blue line), Clausius-I (dot-
ted red line), and Clausius-II (solid black line) models. It
illustrates the difference in stiffness of the different equa-
tions of state.

4 Baryonic interactions in the hadron
resonance gas model

The Clausius model describes the basic properties of the
symmetric nuclear matter fairly well. The simplicity of
the approach, of course, does no justice to the enormous
complexity of the many-body nucleon interactions. On the
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Fig. 2. Temperature dependencies of the scaled pressure p/T 4 (a), and the net baryon number susceptibilities χB
2 (b), χB

4 /χB
2

(c) and χB
6 /χB

2 (d). Calculations are done within the Ideal HRG model (dashed grey lines), the QvdW-HRG model (dash-dotted
blue lines), the Clausius-HRG-I model (dotted red lines), and the Clausius-HRG-II model (solid black lines). The parameters a,
b, and c are listed in table 1. The recent lattice QCD results of the Wuppertal-Budapest [39,41,42] and the HotQCD/Bielefeld-
BNL-CCNU [40,43] collaborations are shown, respectively, by symbols and green bands.

other hand, this approach permits a relatively straight-
forward generalization to a multi-component hadron gas.
This opens new applications in the physics of heavy-ion
collisions and QCD equation of state.

In this section we consider a simple generalization
of the ideal HRG model which allows to include the
vdW-like interactions between baryons in the framework
of the Clausius equation. Following ref. [6], it is as-
sumed that the parameters of the baryon-baryon and
antibaryon-antibaryon interactions are the same as for
the nucleon-nucleon interaction, which were already fixed
by the nuclear matter properties (table 1). At the same
time, the baryon-antibaryon, meson-baryon, and meson-
meson vdW-type interactions are omitted3. One could ar-
gue whether parameters which describe properties of the
cold nuclear matter are appropriate for describing the
hadronic interactions in a hot hadronic matter. We retain
the nuclear-matter based parametrization in the present
work because it has one important advantage: since all
interaction parameters are fixed by the nuclear matter

3 Note that HRG already contains by construction interac-
tions which result in the formation of narrow resonances.

properties, no new parameters which could be adjusted
to the known phenomenology of the equation of state of
hot hadronic matter are introduced into the HRG model.
Technical details of the generalization can be found in
ref. [7].

The resulting model consists of three independent sub-
systems: Non-interacting mesons, interacting baryons, and
interacting antibaryons. The total pressure reads

p(T,μ) = pM (T,μ) + pB(T,μ) + pB̄(T,μ), (7)

with

pM (T,μ) =
∑
j∈M

pid
j (T, μj), (8)

pB(T,μ) =
∑
j∈B

pid
j (T, μB∗

j ) − an2
B

(1 + cnB)2
, (9)

pB̄(T,μ) =
∑
j∈B̄

pid
j (T, μB̄∗

j ) − an2
B

(1 + cnB̄)2
, (10)

where M stands for mesons, B for baryons, and B̄ for
antibaryons, pid

j is the Fermi or Bose ideal gas pressure,
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Fig. 3. Temperature dependencies of the scaled net baryon density ρB/T 3 at (a) μB/T = 1 and (b) μB/T = 2. Calculations
are done within the Ideal HRG model (dashed grey lines), the QvdW-HRG model (dash-dotted blue lines), the Clausius-HRG-I
model (dotted red lines), and the Clausius-HRG-II model (solid black lines). The parameters a, b, and c are listed in table 1.
The lattice QCD results of the Bielefeld-BNL-CCNU [40,43] collaboration are shown by the green bands.

μ = (μB , μS , μQ) are the chemical potentials which reg-
ulate the average values of the net baryon number B,
strangeness S, electric charge Q. nB and nB̄ are, re-
spectively, the total densities of all baryons and all an-
tibaryons, i.e. nB(B̄) ≡

∑
i∈B(B̄) ni. The total density of

baryons nB satisfies the equation

nB = (1 − b nB)
∑
i∈B

nid
i (T, μB∗

i ) (11)

and the shifted chemical potentials, μB∗
i , are given by

μB∗
i = μi −

∑
j∈B

pid
j (T, μB∗

j ) + anB
2 + c nB

(1 + cnB)2
. (12)

Expressions for nB̄ and μB̄∗
i are analogous to (11)

and (12).
The numerical solution to eq. (12) allows to obtain

the μB∗
i . All other quantities in the baryon subsystem can

then be calculated straightforwardly. The same procedure
is applied for the antibaryon subsystem. Calculations in
the mesonic sector are straightforward.

The list of hadrons included in the HRG model in-
cludes all strange and non-strange hadrons which are
listed in the Particle Data Tables [38], and have a con-
firmed status there. The finite widths of the resonances are
included by means of the additional mass integration over
their Breit-Wigner shapes (see [6] for more details about
the HRG setup). The HRG models based on Clausius-
I and Clausius-II parameterizations are denoted, respec-
tively, as Clausius-HRG-I and Clausius-HRG-II. The cal-
culations within the QvdW equation are also considered
for completeness. These are denoted as QvdW-HRG.

5 Comparison with lattice QCD data

The model calculations are confronted with the lattice
QCD data. The temperature dependence of the scaled

pressure p/T 4 is shown in fig. 2(a). The calculations
are performed at zero chemical potentials, i.e. μB =
μQ = μS = 0. These results are compared to the lat-
tice QCD data of the Wuppertal-Budapest [39] and of the
HotQCD [40] collaborations. The inclusion of the baryon-
baryon interaction terms leads to a modest suppression
of the pressure and of the energy density at high tem-
peratures T � 175MeV. The result is quite similar in
both, QvdW-HRG and Clausius-HRG models. Note that
the pressure and the energy density are not very sensitive
to the details of baryon-baryon interactions, especially at
the lower temperatures. This is not surprising as HRG
matter is meson-dominated at μB = 0, and the mesonic
contributions dominate over the baryonic ones for these
two observables.

In addition to the thermodynamical functions, the
HRG models allow us to calculate the fluctuations of con-
served charges:

χBSQ
lmn =

∂l+m+np/T 4

∂(μB/T )l∂(μS/T )m∂(μQ/T )n
. (13)

The second-order baryonic number susceptibility χB
2 is

shown in fig. 2(b), and the fourth- and sixth-order mo-
mentum of the baryonic fluctuations in (c) and (d), re-
spectively. For comparison, the results for several ver-
sions of the HRG are presented: Ideal-HRG, QvdW-
HRG, Clausius-HRG-I, and Clausius-HRG-II. Compared
to Ideal-HRG model, the inclusion of the interactions be-
tween baryons and antibaryons leads to an essentially
better agreement of the fluctuation observables with the
lattice data in the crossover temperature region T =
140–190MeV. Note also that the Clausius-HRG models,
which yield values of K0 consistent with the empirical
data, agree better with the lattice QCD data than the
QvdW-HRG model which yields a too high value of K0.
A similar conclusion was reported previously in ref. [7].
Unlike present work, however, all models in [7] yield K0

values which are higher than the upper empirical estimate
of K0 � 315MeV.
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Figure 3 depicts the scaled net baryon density ρB/T 3

as a function of temperature at μB/T = 1 (a) and μB/T =
2 (b), respectively. The net baryon density is calculated
as ρB = nB −nB̄ . Lattice results are compared to various
HRG model calculations. Again, one observes clear effects
of (anti)baryon interactions, and a better agreement of the
Clausius-based HRG models with the lattice as compared
to the QvdW-HRG and Ideal-HRG models.

It is seen from figs. 2 and 3, that at temperatures above
T ∼ 170MeV, none of the considered models describe well
the higher-order net baryon fluctuation measures at μ = 0
and the net baryon density at a finite μB . These discrep-
ancies restrict the validity range of the present models for
these observables to lower temperatures. The appearance
of the deviations from the lattice data may be attributed
to the onset of deconfinement, or to the emergence of more
elaborate effects of hadronic interactions, which cannot
anymore be adequately treated within the simple frame-
work employed in the present work.

Constraining interaction parameters to the proper-
ties of the cold nuclear matter is only one possibility to
improve modeling of hadronic interactions in the HRG
model. One may also consider a realistic possibility that
the vdW interaction parameters for baryon pairs involv-
ing strange baryons are different from those involving only
non-strange ones. Such a modification was considered re-
cently in ref. [44] in the framework of a multi-component
QvdW-HRG model, where the vdW parameters of baryon-
baryon interactions involving strange baryons were signif-
icantly reduced compared to the non-strange ones. This
lead to a decreased overall effect of the net repulsion be-
tween baryons, and to an improved description of the lat-
tice data regarding the net baryon susceptibilities and es-
pecially the strangeness-related susceptibilities.

In the present work we assumed that baryonic interac-
tions are the same for all stable baryons and for all bary-
onic resonances, irrespective of their mass or width. The
latter assumption may be relaxed. For example, one can
consider a scenario where only the ground-state baryons
interact with other baryons. Such a scenario was recently
considered in ref. [45]. In this case an overall effect of the
repulsive baryonic interactions will be decreased due to
a smaller number of the baryon-baryon pairs which are in-
teracting. This may also improve the description of some
lattice observables.

6 Summary

The nuclear matter equation of state is considered within
the three-parameter Clausius model. Compared to the
standard van der Waals model, which contains two pa-
rameters a > 0 and b > 0, an additional parameter c > 0
is introduced in the Clausius model. Both Clausius and
van der Waals models are used to describe the attractive
and repulsive interactions between nucleons. Fermi sta-
tistical effects are incorporated, and the grand canonical
ensemble formulation is obtained. The description of the
symmetric nuclear matter is considered within these two

models. Model parameters are constrained by the prop-
erties at T = 0: nucleon density n0 = 0.16 fm−3 and
binding energy per nucleon −16MeV. This gives two con-
straints on the model parameters. As the result the van
der Waals model has no additional freedom and leads to
a very stiff nuclear matter equation of state, with large
value of the incompressibility parameter K0 = 763MeV.
The Clausius equation of state has three free parame-
ters. This allows to additionally fit the empirical values
of K0 = 250–315MeV, and, thus, obtain a softer nuclear
matter equation of state, which is in line with the present
empirical knowledge.

The extension of the Ideal-HRG model, which includes
interactions between all baryons (and all antibaryons), is
also considered. The baryonic interactions are modeled
with the van der Waals and the Clausius equations of
state. It is assumed that the interaction parameters a, b,
and c are identical for all baryons. For both Clausius and
van der Waals models, the properties of the ground state
of symmetric nuclear matter are used to fix the parame-
ters. For the Clausius model, the empirical values for the
incompressibility parameter K0 are additionally used.

It is found that the behavior of the baryon-related
lattice QCD observables in the crossover region T =
140–190MeV is sensitive to the nuclear matter properties.
Remarkably, a better description of the nuclear incom-
pressibility factor correlates with an improved description
of the lattice QCD data in the crossover transition region.

We dedicate this paper to Walter Greiner. For two of us (MIG
and HSt) scientific discussions with Walter were really stimu-
lating and guided our studies during the last three decades.

References

1. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon,
Oxford, 1975).

2. W. Greiner, L. Neise, H. Stöcker, Thermodynamics and
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