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Abstract. The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical
source by using the Misner approach. To this end, we have considered the more general charged dissipative
fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to
the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from
such charged cylindrical dissipative source have been coupled with the causal transport equations for
heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the
considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat
coupling coefficients. The results are compared with the previous works in which such coefficients were
excluded and viscosity variables do not satisfy the casual transportation equations.

1 Introduction

An important and renowned aspect of general relativity
can be observed in the gravitational collapse of sufficiently
heavy stars, having mass greater than the mass of the Sun.
This phenomenon occurs due to the positive difference of
gravity and pressure, in the internal nuclear forces of the
massive stars. Oppenheimer and Snyder [1] are innovators
of this field of research. They took an initiative step in
the field of gravitational collapse and discussed a detailed
note on the subject of “On continued gravitational con-
traction”. On the other hand an intellectual and substan-
tial investigation was contributed by Misner and Sharp [2]
in 1964. They considered a perfect fluid inside stars and
formulated dynamical equations for adiabatic relativistic
collapse. Vaidya [3] found the exact model of collapse for
the radiating star and some researchers [4–16] investigated
the gravitational collapse in different situations. Accord-
ing to Rosseland [17] ions are conversion of atoms having
large strength and he explained that in between free par-
ticles, the law of cental force can be detected; he further
addressed that electrical forces have a great effect for a
star which has the mass 1.5MJ (where MJ is mass of
the Sun) and its molecular cloud has a weight of 2.8 units.

Mitra [18] observed that the formation and evolution
of stars is a highly dissipative process, which can be di-
vided into two phases. Phase one is free streaming approx-
imation while the second phase is streaming approxima-
tion. Tewari [19–21] found the solutions of Einstein field
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equations for different models. A lot of work for diffusion
approximation with electromagnetic field, anisotropy, in-
homogeneity and viscosity has been discovered by many
well-known relativists [22–25]. In 1987, it was investigated
from a supernova that the regime of radiation is further
from streaming out limit than the diffusion approxima-
tion [26]. Arnett and Kazanas [27,28] also detected that
the amount of vigor of radiation is directly related to the
temperature gradient. Generally, this detection is strongly
reasonable because the mean free path of particles be-
ing efficient causes for energy transfer is smaller than the
typical objects. Hence for an important progression star
as the Sun, the mean free path of photons at the cen-
ter is of the order of 2 cm. Also the mean free path of
trapped neutrinos in the compact core of densities about
1012 g cm−3 becomes smaller than the size of the stellar
core. Eckart [29] and Landau [30] discussed the transport
equation for shear viscosity and theory of relativistic ir-
reversible thermodynamics. As effects of viscosity play a
vital role in the development of neutron stars, therefore
the coefficient of shear viscosity may attain a value up to
1020 g cm−1 s−1 [31], while the coefficient of bulk viscosity
has a maximum value of 1030 g cm−1 s−1 [32] due to the
Urca reaction in neutron stars and white dwarfs.

Alford and Blaschve [33,34] assumed that the two color
super conducting quark matter may acquire the same or
larger values for crossbreed stars [35]. Recently, Sharif
and his collaborators [36–38] attempted to discuss the dy-
namics of a collapsing cylindrical source. They considered
cylindrical spacetimes which resemble to spherical space-
time. Also, Herrera et al. [39] used the full casual approach
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to investigate the dynamics of a spherical dissipative fluid
with the radial heat flux. This work is very interesting, in-
formative and has a great impact on the study of many re-
alistic astrophysical phenomena. Our present work stands
out in the sense that we have taken the geometry of stars.
In addition to this, we have introduced electromagnetic
field in the energy momentum tensor and discussed its ef-
fects. This work opens a new direction and has different
attractive and meaningful results in the field of dissipative
gravitational collapse.

The purpose of the present study is to discuss the
dynamics of charged viscous cylindrical gravitational col-
lapse in the framework of the Misner formalism. The dis-
sipative nature of the source is prescribed by dissipative
variables. The dynamical equations resulting from such
charged cylindrical dissipative source are then coupled
with causal transport equations for heat flux, shear and
bulk viscosity, in the context of the Israel-Steward the-
ory by including the thermodynamics viscous/heat cou-
pling coefficients. Many regarded the inclusion of these
coefficients as much important in the non-uniform stellar
models [40] and viscosity variables satisfy the casual trans-
portation equations. The plan of the paper is as follows: in
the next section, we have presented the dynamical equa-
tions for a charged viscous cylindrical source. In sect. 3,
the causal transport equations are coupled with dynamical
ones. Finally, the results of the paper have been summa-
rized in the last section.

2 Viscous dissipative fluid enclosed by a
cylindrical stellar object

This section deals with the geometry of the stellar object,
charged dissipative source of matter and the equations of
motion. The interior metric in cylindrical coordinates is
given by

ds2
− = −A2dt2 + B2dr2 + R2dθ2 + dz2, (1)

where the constraints on coordinates are the following:
−∞ ≤ t ≤ ∞, −∞ ≤ z ≤ ∞, 0 ≤ r, 0 ≤ θ ≤ 2π and
A = A(r, t), B = B(r, t) and R = R(r, t).

The energy momentum tensor for a charged viscous
dissipative fluid is

Tαβ = (μ + P + Π)VαVβ + (P + Π)gαβ + qαVβ

+qβVα + εlαlβ + παβ

+
1
4π

(
F γ

αFβγ − 1
4
F γδFγδgαβ

)
, (2)

where μ, p, Vα, παβ , Π, ε and qα are energy density,
isotropic pressure, four velocity, shear viscosity, bulk vis-
cosity, radiation density and radial heat flux, respectively.
Also, Fαβ = −φα,β + φβ,α is the electromagnetic tensor
with potential φα. Moreover, lα is a radial null four vector.
The above quantities satisfy the following relations:

lαVα = −1, V αqα = 0, lαlα = 0,

V αVα = −1, V αqα = 0, παβV α = 0.

Further,

V α = A−1δα
0 , qα = qB−1δα

1 , Vα = −Xδ0
α,

lα = A−1δα
0 + B−1δα

1 and

παβ = Ω

(
χαχβ − 1

3
hαβ

)
. (3)

The Maxwell field equations are

Fαβ
;β = 4πJα, F[αβ;γ] = 0, (4)

where Jα is the four-current. We assume the following
form of electromagnetic potential and current:

φα = φδ0
α, Jβ = ζV β .

Here ζ(r, t) and φ(r, t) are charge density and scalar po-
tential, respectively.

The non-zero components of the expansion scalar are

Θ =
1
A

(
2Ḃ
B

+
Ṙ

R

)
, (5)

where ∂t = ·. The field equations for the given source are

8π
(
μ + ε +

π

2
E2

)
A2 =

ḂṘ

BR
+

(
A

B

)2 (
A′R′

AR
− R′′

R

)
,

(6)

8π(q + ε)AB =
Ṙ′

R
− ḂR′

BR
− ṘA′

AR
, (7)

8π

(
p + Π + ε +

2
3
Ω +

π

2
E2

)
B2 =

A′R′

AR

+
(

B

A

)2
(
− R̈

R
+

ȦṘ

AR

)
, (8)

8π

(
p + Π − Ω

3
− π

2
E2

)
R2 =

(
1

AB

)(
ȦḂ

A2
− A′B′

B2
− B̈

A
+

A′′

B

)
, (9)

where ∂r = ′, E = Q̂(r)
2πR and Q̂(r) = 4π

∫ r

0
ζBR dr.

The gravitational energy per specific length (also,
known as C-energy) for cylindrical symmetric spacetime
is given as follows [41,42]:

Ê(r, t) =
(1 − l−2∇αr̃∇αr̃)

8
.

For a cylindrically symmetric model with killing vec-
tors, the circumference radius ρ and specific length l and
areal radius r̃ are defined as follows [41,42]:

ρ2 = ξ(1)αξα
(1), l2 = ξ(2)αξα

(2), r̃ = lρ.

The C-energy in the total interior region with the elec-
tromagnetic field [43] is given by

m(r, t) = lÊ(r, t) =
l

8

⎡
⎣1 +

(
Ṙ

A

)2

−
(

R′

B

)2
⎤
⎦ +

l2Q̂2

2R
.

(10)
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The collapsing fluid resides inside the non-static met-
ric (1), therefore it must be matched to a suitable exterior.
If heat leaves the fluid across the boundary surface then
the exterior region of the collapsing star will not be vac-
uum, but the outgoing Vaidya-like spacetime which mod-
els the radiation and has metric [44]

ds2
+ = −

(
−2M(ν)

R
+

q̃2(ν)
R2

)
dν2 − 2 dν dR

+R2(dθ2 + λ2dφ2), (11)

where M(ν) and q̃(ν) are mass and charge, respectively;
these both are measured in units of length (as we have
used the relativistic units in our calculations). Also, λ is an
arbitrary constant having the units of a length. It has been
introduced to balance the units in the metric. Using the
continuity of extrinsic curvature of the spacetimes given
in eq. (1) and eq. (11), we get

M(ν) =
R

2

[(
Ṙ

A

)
−

(
R′

B

)]
+

q̃

2R
, (12)

E′ − M =Σ 1
8

, p + Π +
2
3
Ω =Σ q, (13)

where s =Σ q̃ has been used. These are the conditions for
the smooth matching of two regions. Here, p+Π + 2

3Ω =Σ

q implies that the effective pressure on the boundary of the
cylinder is non-zero and it is equal to the radial heat flux
which provides the possibility of gravitational radiation
produced by the collapsing fluid.

3 Dynamical equations

By using the Misner and Sharp[2,45] concept, we may be
able to observe the dynamical behavior of field equations.
So, we define Dt as the proper time derivative of the fol-
lowing form:

Dt =
1
A

∂

∂t
. (14)

The velocity U is U = DtB < 0 (collapse).
Also from eq. (10), we have

R′

B
=

(
1 + U2 − 8m

l
+

4Q̂2l

R

) 1
2

= Ê. (15)

The proper time derivative of the mass function is

Dtm = l

(
ṘR̈

4A3
− Ṙ2Ȧ

BA4
− R′Ṙ′

4B2A
+

R′2Ḃ

4AB3

)
− ṘQ̂2l2

2AR2
.

(16)
Using eq. (6), eq. (7) and the value of E = Q̂

2πR then the
above equation takes the form

Dtm = −2πl

(
Ê(q + ε)B + U(p + Π + ε +

2
3
Ω)

)
R.

(17)

The above relation leads us to the variation rate of en-
ergy in the cylinder of radius R and the right-hand side
of this equation describes the increment in energy in the
interior region of radius R. The term (p + Π + 2

3Ω) is the
effective radial pressure while ε denotes the pressure of
radiation. The standard thermodynamical relation is παβ

in the static phase and the first term in the R.H.S of the
above equation shows the energy of the source, which is
leaving the cylindrical surface.

The dynamics of the collapsing system can be observed
through the proper radial derivative DR, which is defined
as follows:

DR =
1
R′

∂

∂r
. (18)

Substituting eq. (17) in eq. (9), we have

DRm =
l

R′

[
ṘṘ′

4A2
− Ṙ2A′

4A3
− R′R′′

4B2
+

B′R′2

4B3

+
lQ̂Q̂′

R
− lQ̂2R′

2R2

]
. (19)

Substituting eq. (5) and eq. (6) in eq. (17), we have

DRm=2πRl

(
4(μ + ε) +

U

Ê
(q + ε)B

)
+

l2Q̂Q̂′

RR′ − l2Q̂2

R2
.

(20)
The above equation on integration yields

m =
∫ R

0

πRl

(
4(μ + ε) +

U

Ê
(q + ε)B

)
dR +

l2Q̂2

2R

− l2

2

∫ R

0

Q̂2

R2
dR. (21)

Here, m(0) = 0 has been used. Now we obtain the accel-
eration DtU as

DtU =
1
A

∂

∂t

(
Ṙ

A

)
⇒ DtU =

R̈

A2
− ṘȦ

A3
. (22)

Now from eqs. (8), (10) and (22), we get

DtU = −
[

m

R2
+ 8π

(
p + Π + ε +

2
3
Ω

)
R

]
+

A′Ê

AB

+
Q̂2

R

(
l2

2R2
− 1

)
+

l

8R2

(
1 + U2 − Ê2

)
. (23)

Using the conservation law, we get the following dynami-
cal equations:

Tμν
;ν Vμ = − 1

A

(
μ̇ + ε̇ − πĖE

)
− 1

B
(q′ + ε′)

− Ṙ

AR

(
μ + p + Π + ε − Ω

3
− π

2
E2

)

− Ḃ

AB

(
μ+p+Π+2ε+

2
3
Ω

)
−2

(ABR)
AB2R

′
(q + ε)

(24)
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and

Tμν
;ν χμ =

1
A

(q̇ + ε̇) +
2
A

(BR)̇
BR

(q + ε)

+
1
B

(
p′ + Π ′ + ε′ − (2Ω)′

3
− 2πEE′

)

+
1
B

A′

A

(
μ + p + Π + 2ε+

2
3
Ω

)
+

2
B

R′

R
(ε + Ω).

(25)

Using the value of A′

A from eq. (23) into eq. (25) and con-
sidering eqs. (6)–(9), we get the main dynamical equation

(
μ + p + Π + 2ε +

2
3
Ω

)
DtU =

−
(

μ + p + Π + 2ε +
2
3
Ω

)

×
[

m

R2
+ 8πR

(
p + Π + ε +

2
3
Ω

)

− Q̂2

R

(
l2

2R2
− 1

)
− l

8R2
(1 + U2)

]

−Ê2

[
DR

(
p + Π + 2ε +

2
3
Ω +

Q̂Q̂′

4π2R

)

+
Q̂2

4πR3
+

2
R

(ε + Ω)

]

−Ê

[
Dtq + Dtε + 2(q + ε)

U

R
+

2Ḃ
AB

(q + ε)

]
. (26)

Here, we can analyze that the factor (μ+p+Π +2ε+ 2
3Ω)

appears on the left side and in the first term on the right
side: this is the effective inertial mass, and according to the
equivalence principle it is also known as passive gravita-
tional mass. On the right side, in the first term the square
bracket factor explains the effects of dissipative variables
on the active gravitational mass of the collapsing cylinder;
this fact has been notified firstly by Herrera et al.[39]. In
the second square bracket there are the gradient of the
total effective pressure which is influenced by dissipative
variables, radiation density and electromagnetic field. The
last square bracket contains different contributions due to
the dissipation nature of the system. The third term in
this factor is positive (U < 0) implying that the outflow
of q > 0 and ε > 0 reduces the integrated energy of the
contracting source, which decreases the rate of collapse.

4 The transport equation

The objective of this article is to discuss a full causal ap-
proach for the viscous dissipative gravitational collapse of
stellar objects along with heat conduction. This implies
that all dissipative variables must satisfy the transport
equations obtained from causal thermodynamics. Conse-
quently, we use the transport equations for heat, bulk and

shear viscosity from the Muller-Israel-Stewart theory [46–
48] for a dissipative material. These transport equations
for heat, bulk and shear viscosity [39] are

τ0Π;αV α + Π = −ξΘ + α0ξq
α
;α − 1

2
ξT

(
τ0

ξT
V α

)
;α

Π,

(27)

τ1h
β
αqβ;μV μ + qα = −κ

[
hβ

αT,β(1 + α0Π) + α1π
μ
α

×hβ
μT,β + T (α0 − α0Π;α − α1π

μ
α;μ)

]

−1
2
κT 2

( τ

κT 2
V β

)
;β

qα, (28)

τ2h
μ

απμν ;ρV
ρ + παβ = −2ησαβ + 2ηα1q〈β;α〉

−ηT

(
τ2

2ηT
V ν

)
;ν

παβ , (29)

q〈β;α〉 = hμ
αhν

β

(
1
2
(qμ;ν + qν ;mu) − 1

3
qσ ;κhσκ

)
, (30)

where relaxation times have the following values:

τ0 = ξβ0 τ1 = κTβ1 τ2 = 2ηβ2, (31)

where β1, β2 are thermodynamic coefficients for different
contributions to entropy density, α0, α1 are thermody-
namics viscous/heat coupling coefficients, ξ and η are co-
efficients of bulk and shear viscosity. Equations (27)–(30),
with the help of the given interior metric take the follow-
ing form:

τ0Π̇ = −
(

ξ +
τ0Π

2

)
AΘ +

A

B
α0ξ

[
q′ + q

(
A′

A
+

2R′

R

)]

−Π

[
ξT

2

(
τ0

ξT

)
˙+ A

]
, (32)

τ1q̇ =
A

B
κT ′

(
1 + α0Π +

2
3
α1Ω

)
+ T

[
A′

A
− α0Π

′

− 2
3
α1

(
Ω′ +

(
A′

A
+ 3

R′

R

)
Ω

)]

−q

[
κT 2

2

( τ0

κT 2

)
˙+

τ1

2
ΘA + A

]
, (33)

τ1Ω̇ = −2ησ + 2ηα1
A

B

(
q′ − q

R′

R

)

−Ω

[
ηT

(
τ2

2ηT

)
˙+

τ2

2
ΘA + A

]
. (34)

Now, to observe the influence of various dissipative vari-
ables on the cylindrical collapsing source, we substitute
eq. (33) in eq. (26) and after some rearrangements, we
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obtain
(

μ + p + 2ε +
2
3
Ω

)
(1 − Λ)DtU = (1 − Λ)Fgrav + Fhyd

+
κ

τ1
Ê2

[
DRT

(
1 + α0Π +

2
3
α1Ω

)]

− κ

τ1
Ê2T

[(
α0DRΠ +

2
3
α1 +

(
DRΩ +

3
R

Ω

))]

−Ê

[
2Ḃ
AB

(q + ε) − q

τ1
− 2(q + ε)

U

R

]

+Ê

[
κ, T

2τ1Dt

( τ1

κT 2
− Dtε

)
+ A

τ1

2
Θ

]
, (35)

where Fgrav, Fhyd and Λ are defined by

Fgrav =−
(

μ + p + Π + 2ε +
2
3
Ω

)[
m

R2
+ 8πR

(
p + Π

+ε +
2
3
Ω

)
− Q̂2

R

(
l2

2R2
− 1

)
− l

8R2
(1 + U2)

]
,

Fhyd =−Ê2

[
DR

(
p + Π + ε +

2
3
Ω+

Q̂2

4π2R2
− Q̂

2π2R2

)

+
Q̂2

2π2R3
+

2
3R

(ε + Ω)

]
,

Λ=
κT

τ1

(
μ + p + 2ε +

2
3
Ω

)−1 (
1 − 2

3
α1Ω

)
. (36)

Taking the value of Θ from eq. (27) and using eq. (35), we
have the following resulting equation:

(
μ + p + 2ε +

2
3
Ω

)
(1 − Λ + Δ)DtU =

(1 − Λ + Δ)Fgrav + Fhyd

+
κ

τ1
Ê2

[
DRT

(
1 + α0Π +

2
3
α1Ω

)]

− κ

τ1
Ê2T

[(
α0DRΠ +

2
3
α1

(
DRΩ +

3
R

Ω

))]

−Ê2

(
μ + p + 2ε +

2
3
Ω

)
Δ

(
DRq

q
− 4q

R

)

−Ê

[
2Ḃ
AB

(q + ε) − q

τ1
− 2(q + ε)

U

R

]

+Ê

[
κT 2q

2τ1
Dt

( τ1

κT 2

)
− Dtε

]

+Ê

(
μ + p + 2ε +

2
3
Ω

)
Δ

2α0κq

×
(

1 + 2ξTDt

(
τ0

ξT

)
Π +

τ0

A
DtΠ

)
, (37)

where

Δ = α0ξq

(
3q + 4ε

2ξ + τ0Π

) (
μ + p + Π + 2ε +

2
3
Ω

)−1

.

(38)
Hence, by taking into account the casual transportation
equations and their coupling with the dynamical equa-
tions, we find that the factor (Δ − Λ + 1) affects signifi-
cantly the internal energy and passive gravitational mass
density. This result is in agreement with [39]. We would
like to mention that we have considered the charged dis-
sipative viscous fluid, but no terms appear in the relevant
equations which couple the electromagnetic field and dis-
sipative variables. Therefore the role of electromagnetic
field on the dynamical process is the same as in the ab-
sence of shear viscosity already discussed in [49].

5 Conclusion

Immediately after the Einstein theory of gravity in the
early 20th century, the study of cylindrically symmetric
systems was started by Weyl [50] and Levi-Civita [51].
After the complete study of spherical objects, theoretical
physicists were interested to explore the properties of as-
trophysical compact stars that have axially symmetry. The
relativistic fluids involving heat flux and viscosity are very
important for studying the evolution of compact stars. So,
it is important to include the dissipative variables in grav-
itational collapse.

In this paper, we have constructed the dynamical equa-
tions which deal significantly with the structure and evo-
lutionary phases of a charged gravitating viscous cylin-
drical source. In order to see the effects of dissipation on
the dynamical evolution of a gravitating source, we have
assumed the convenient form of the dissipative variables
which satisfy the transportation equations of heat, bulk
and shear viscosity resulting from the casual thermody-
namics. Furthermore, the dissipative coefficients due to
viscosity and heat flux have been included in the discus-
sion of dynamical equations. In a very broad sense, we
are mainly interested in time scales whose order may be
smaller or equal to the radiation time. During the study
of transport equations for dissipative variables, we have
preferred to use the hyperbolic theory of dissipation be-
cause this theory is more reliable and has less difficulties
than parabolic theory [8,48,52,53].

A full casual approach has been adopted in [39] to
explore the effects of dissipative variables on the spher-
ical collapse; this study provides the meaningful results
which have significant implications in astronomy. The ap-
plication of these results to some stellar system implies
that in a pre-supernovae event, the thermal conductivity
of the dissipative source might be large enough to pro-
duce an observable reduction in the gravitational force of
the system that results in the expansion of the gravitating
source instead of collapse. It is quite relevant to mention
that thermodynamics viscous/heat coupling coefficients
have been taken as non-vanishing because this assump-
tion provides the significant basis for the modeling of a
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non-uniform stellar system. In a recent investigation [49],
we have considered a non-casual (irreversible thermody-
namics) approach to discuss the dynamics of the charged
bulk viscous cylindrical collapse by neglecting the thermo-
dynamics viscous/heat coupling coefficients in the trans-
portation equations. So, our present analysis is the exten-
sion of our previous study with non-casual approach [49].
But it is important to note that this analysis with cylin-
drical symmetry is analogous to the full casual approach
adopted by Herrera et al. [39] for spherical stellar objects.

As a consequence of a full casual approach to the dy-
namics of charged dissipative cylindrical collapse, we ob-
tain a dynamical equation (37), which explains how the
value of effective inertial mass is influenced by the dissipa-
tive variables and thermodynamics viscous/heat coupling
coefficients. All the dissipative variables have a great ef-
fect in a pre-supernovae event, for example a large enough
value of heat conductivity κ can produce a rapid decrease
in the force of gravity, thereby resulting in the reversal of
collapse [39]. A numerical model predicting this type of
bouncing behavior has been presented Herrera et al. [11].
It is to be noted that such numerical estimations in the
present case are beyond the scope of this work. Here we
just want to ensure that during the dissipative gravita-
tional collapse, thermodynamics viscous/heat coupling co-
efficients must not be excluded a priori in the transporta-
tion equations. In the future, we are interested to extend
these results in modified f(R), f(R, T ) and f(G) theories
of gravity.
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