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Abstract. The CLAS and Hall A Collaborations at Jefferson Laboratory have recently released new re-
sults for the ep → epγ reaction. We analyze these new data within the Generalized Parton Distribution
formalism. Employing a fitter algorithm introduced and used in earlier works, we are able to extract from
these data new constraints on the kinematical dependence of three Compton Form Factors. Based on
experimental data, we subsequently extract the dependence of the proton charge radius on the quarks’
longitudinal momentum fraction.

1 Introduction

The past two decades have seen an important progress in
the research field of nucleon structure with the emergence
of the Generalized Parton Distribution (GPD) formalism
and its associated experimental program. The GPDs are
the structure functions of the nucleon (and of hadrons,
more generally) which are accessed in the deeply exclusive
leptoproduction of a photon or a meson. They parametrize
the complex non-perturbative QCD (Quantum Chromo-
dynamics) partonic dynamics and structure of the nu-
cleon. In particular, in the light-front frame, where the
nucleon is moving with large momentum, GPDs give ac-
cess concurrently to the spatial distribution of charges in
the plane perpendicular to the average nucleon momen-
tum direction, and to the longitudinal momentum dis-
tribution of the partons in the nucleon. The correlation
between these two distributions is presently still largely
unknown. As a result of these position-momentum inter-
relations, GPDs also provide a way to measure the un-
known orbital momentum contribution of quarks to the
total spin of the nucleon through Ji’s sum rule [1]. We
refer the reader to refs. [1–4] for the original articles on
GPDs and to refs. [5–11] for reviews of the field.

GPDs are most directly accessible in Deeply Virtual
Compton Scattering (DVCS). In this process, an incom-
ing virtual photon, emitted by a high-energy lepton beam,
hits a quark of the nucleon which radiates a final real
photon (fig. 1(left)). We consider here and in the follow-
ing an electron beam and a proton target and we denote
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by e, p and γ∗ (e′, p′, and γ) the four-vectors of the ini-
tial state (final state) electron, proton and photon, respec-
tively. QCD states that in this process there is a factor-
ization between the elementary photon-quark Compton
scattering, which is precisely calculable in perturbative
QCD, and the GPDs, which encode the complex unknown
non-perturbative dynamics of the quarks in the nucleon.
This factorization has been shown to hold for sufficiently
large Q2 = (e − e′)2, the squared momentum transfer be-
tween the final and initial leptons, and sufficiently small
t = (p−p′)2 = (γ∗−γ′)2, the squared momentum transfer
between the final and initial protons (or photons).

In the QCD leading-twist framework, in which this
work is placed, there are four quark helicity-conserving
GPDs, H, E, H̃ and Ẽ, parametrizing the DVCS process.
This reflects the four independent helicity-spin transitions
between the initial and final quark-nucleon systems. The
way to disentangle the contributions of the four GPDs is
to measure unpolarized cross sections and different spin
observables for the ep → epγ reaction. This can be done
by the use of a polarized beam, a polarized target, or a
combination of both.

Over the past few years, the CLAS and Hall A Col-
laborations at Jefferson Lab (JLab), using a ≈ 5.75GeV
electron beam, have released new results for four observ-
ables of the ep → epγ reaction: unpolarized cross sec-
tions and difference of beam-polarized cross sections by
the Hall A [12] and CLAS [13] experiments, as well as
single and double target-spin asymmetries with longitudi-
nally polarized target and polarized beam by the CLAS
experiment [14,15].
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Fig. 1. Left: the DVCS process (there is also a crossed diagram
where the final state photon is emitted from the initial quark).
Right: the BH process (there is also the process where the final
state photon is emitted from the initial electron). The various
variables and quantities are defined in the text.

In this article, we analyze these data and extract new
constraints on GPDs. Furthermore, based on DVCS data,
we will extract the longitudinal momentum dependence
(x-dependence) of the radius of the transverse charge dis-
tribution in a proton. The present article details and ex-
tends our earlier work published in ref. [16], where the
specifics of the techniques used to extract the GPD infor-
mation from the experimental data were not presented.
Furthermore, we extend the analysis of ref. [16], where
results were presented for one GPD observable, to three
GPD observables in the present work. In particular, we
demonstrate the constraints between real and imaginary
parts of the observables involving the GPD H within a
dispersive framework.

The outline of this paper is as follows. Section 2 of this
article is devoted to a very concise review of earlier works
on the GPD formalism and on the fitting technique that
we use to extract the GPD information from DVCS data.
Section 3 details some of the numerous Monte Carlo stud-
ies that were carried out to demonstrate the reliability of
the fitting procedure. In sect. 4, we apply the method to
the Hall A and CLAS data and extract three (out of eight)
Compton form factors, which parametrize the DVCS pro-
cess at leading twist. In sect. 5, we provide a physical
interpretation of the extracted observables. In particular,
we discuss the longitudinal momentum dependence of the
transverse charge densities in a proton, and show the con-
straints imposed within a dispersive framework. Finally,
we present our conclusions in sect. 6.

2 GPD formalism and fitting technique in
brief

The GPDs are functions of three variables: x, ξ and t
(fig. 1(left)), where x + ξ (x − ξ) represents the longitu-
dinal momentum fraction of the initial (final) quark with
respect to the average nucleon momentum [1], and t is
the conjugate variable of the localization of the quark in
the transverse position space (impact parameter) [17–19].

Thus, an intuitive interpretation of GPDs is that they de-
scribe the amplitude of hitting a quark in the nucleon with
momentum fraction x+ξ and putting it back with a differ-
ent moment fraction x − ξ at a given transverse distance,
relative to the transverse center of mass, in the nucleon.

As we are considering the DVCS process on a proton
target in this work, all GPDs in the following stand for
the quark flavor combination: H(x, ξ, t) = 4/9Hu(x, ξ, t)+
1/9Hd(x, ξ, t)+ 1/9Hs(x, ξ, t), and similarly for the other
GPDs.

One major difficulty in the study of GPDs is that they
appear in the DVCS amplitude as integrals over x. This is
due to the loop in the DVCS diagram of fig. 1(left), which
generates convolution terms of the form:

∫ +1

−1

dx
GPD(x, ξ, t)
x − ξ + iε

+ . . . , (1)

where the denominator arises from the quark propagator.
Using the residue theorem, the following 8 real quantities,
hereafter referred to as Compton Form Factors (CFFs)1,
are directly accessible via DVCS measurements:

HRe(ξ, t) ≡ P
∫ 1

0

dxH+(x, ξ, t)C+(x, ξ), (2)

ERe(ξ, t) ≡ P
∫ 1

0

dxE+(x, ξ, t)C+(x, ξ), (3)

H̃Re(ξ, t) ≡ P
∫ 1

0

dxH̃+(x, ξ, t)C−(x, ξ), (4)

ẼRe(ξ, t) ≡ P
∫ 1

0

dxẼ+(x, ξ, t)C−(x, ξ), (5)

HIm(ξ, t) ≡ H+(ξ, ξ, t), (6)
EIm(ξ, t) ≡ E+(ξ, ξ, t), (7)

H̃Im(ξ, t) ≡ H̃+(ξ, ξ, t), (8)

ẼIm(ξ, t) ≡ Ẽ+(ξ, ξ, t), (9)

where the coefficient functions C± are defined as

C±(x, ξ) =
1

x − ξ
± 1

x + ξ
, (10)

and P denotes the principal value integral. The subscript
“+” on the GPDs denotes their singlet (quark plus anti-
quark) combinations:

H+(x, ξ, t) ≡ H(x, ξ, t) − H(−x, ξ, t), (11)
E+(x, ξ, t) ≡ E(x, ξ, t) − E(−x, ξ, t), (12)

H̃+(x, ξ, t) ≡ H̃(x, ξ, t) + H̃(−x, ξ, t), (13)

Ẽ+(x, ξ, t) ≡ Ẽ(x, ξ, t) + Ẽ(−x, ξ, t). (14)

Thus, the maximum model-independent information
which can be extracted from the ep → epγ reaction at
leading twist are 8 CFFs, which depend on two variables,

1 We point out that the original definition of CFFs is slightly
different. For instance in ref. [20] they are complex quantities,
while, for convenience, we use real quantities in this work.
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ξ and t, at QCD leading order. There is an additional
Q2-dependence in the CFFs (and in the GPDs) if QCD
evolution is taken into account. Given the small Q2 ranges
dealt with in this work and that the Q2-evolution is in
principle calculable (see ref. [21] for a recent review), we
will not consider it in the following.

Kinematically, the ep → e′p′γ reaction depends, for a
given electron beam energy, on four independent variables.
The most appropriate ones for a GPD analysis are: ξ, t,
Q2 and φ. We already defined Q2 and t. The variable ξ is
related to the standard xB variable from inclusive Deep
Inelastic Scattering:

ξ =
xB

2 − xB
, (15)

with xB = Q2

2mp(Ee−Ee′ )
, where mp is the proton mass,

Ee the incident beam energy, and Ee′ the scattered elec-
tron energy. The angle φ is the azimuthal angle between
the electron scattering plane and the hadronic production
plane.

A further complexity in studying GPDs via DVCS is
that there is an additional significant mechanism con-
tributing to the epγ final state, the Bethe-Heitler (BH)
process. In this process (fig. 1(right)) the final state pho-
ton is radiated by the incoming or scattered electron, and
not by a quark of the nucleon. The BH and DVCS mech-
anisms interfere at the amplitude level. However, the BH
amplitude is precisely calculable theoretically. The only
non-QED inputs in the calculation are the nucleon elastic
form factors F1(t) and F2(t) and these are well known at
the small momentum transfers t considered in this work.
Consequently, the only unknown theoretical quantities en-
tering the computation of the ep → epγ observables are
therefore the eight CFFs.

In refs. [22–26], we proposed and applied a method to
extract CFFs in a quasi–model-independent way. It con-
sists in taking the 8 CFFs as free parameters and, knowing
the well-established BH and DVCS leading-twist ampli-
tudes, to fit, at a fixed (xB , t) kinematics, simultaneously
the φ-distributions of several ep → epγ experimental ob-
servables. If the range of variation of the CFFs is lim-
ited, the dominant CFFs contributing to the observables
which are fitted are obtained from the fit procedure with
finite error bars. These error bars are mainly due to the
correlations between the CFFs. Rather than the error on
the experimental data, they reflect the influence of the
other subdominant CFFs, as we shall see in the following.
The approach of fitting CFFs at fixed (xB , t) kinematics
is called “local fitting”. Aside from the limits imposed on
the variation of the CFFs, which will be discussed in the
following sections, it has the merit of being mostly model-
independent as there is no need to assume and hypothe-
size any functional shape for the CFFs. The method has
also its drawbacks, in particular it only makes use of the
data available at a particular (xB , t) kinematics, without
exploiting potentially useful neighbouring data. Neverthe-
less, with this local fitting method, in our earlier works,
we managed to derive limits and constraints for the HIm,
H̃Im and HRe CFFs, with an average 40% relative un-

certainty for HIm, at JLab [22, 24] and HERMES [23, 25]
kinematics.

In the following, we analyze with this fitting tech-
nique the new CLAS and Hall A DVCS data. We will
denote the unpolarized cross sections, difference of beam-
polarized cross sections, longitudinally polarized target
single spin asymmetries and beam-longitudinally polar-
ized target double spin asymmetries, respectively, as σ,
ΔσLU , AUL and ALL. The two indices refer, respec-
tively, to the polarization of the beam and of the tar-
get (U for unpolarized and L for longitudinally polar-
ized). The Hall A Collaboration has measured the φ dis-
tribution of σ and ΔσLU for 20 (xB , Q2, t) bins in the
phase space 0.34 � xB � 0.40, 1.98 � Q2 � 2.36GeV2,
0.15 � −t � 0.40GeV2. The CLAS Collaboration has
measured the φ distribution of σ and ΔσLU for more than
100 (xB , Q2, t) bins in the phase space 0.12 � xB � 0.50,
1.11 � Q2 � 3.90GeV2, 0.12 � −t � 0.45GeV2, and the
φ distribution of AUL and ALL for 20 (xB , Q2, t) bins in
approximately the same phase space.

3 Monte Carlo studies

We present in this section some examples of the simula-
tions that we have carried out in order to test and demon-
strate the reliability and robustness of our fitting method.
We consider the least constrained and most challenging
case, having at our disposal only two observables: the
unpolarized cross section σ and the difference of beam-
polarized cross sections ΔσLU . Additional observables can
of course only improve the situation, as will be shown with
real data in the next section.

Each DVCS observable receives contributions from
several CFFs, which are strongly correlated. Thus, the ex-
traction of 8 CFFs from only two observables, with finite
experimental uncertainties, is an underconstrained prob-
lem. However, some observables are dominated by and
mostly sensitive to one or two CFFs compared to the oth-
ers. For instance, it is well known [20] that ΔσLU is domi-
nated by the HIm CFF and that AUL is strongly sensitive
to H̃Im. Other CFFs contribute to these two observables,
but they are kinematically suppressed, all the more in
comparison to the experimental uncertainties. Therefore,
in order to progress from the unconstrained problem it
was decided to limit, in a conservative and educated way,
the range of variation of the CFFs, especially the sub-
dominant ones. While keeping the 8 CFFs in the fit, this
effectively and essentially reduces the problem to fitting
the one or two dominant CFFs to the one or two exper-
imental observables. The influence of the sub-dominant
CFFs, over the domain in which they are allowed to vary,
is then reflected in the resulting uncertainty on the domi-
nant CFFs extracted. The only model-dependent input in
this approach is the definition of the range of variation of
the CFFs. We illustrate and clarify the approach in the
following sub-sections.
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3.1 Pseudo-data generation

In a first stage, we generate, for a given (xB , Q2, t) kine-
matic bin and a given beam energy, the unpolarized cross
sections and the difference of beam-polarized cross sec-
tions of the ep → epγ process as a function of φ, based
on the leading-twist and leading-order DVCS+BH ampli-
tude.

For our first example, we take the particular kinemat-
ics (xB , Q2, t) = (0.126, 1.1114,−0.1078) with a 5.75GeV
beam energy. This corresponds to a kinematic bin mea-
sured by the CLAS experiment. We generate 24 φ points
like for the experimental data. Then, the only inputs
needed to generate the cross sections are the 8 CFFs en-
tering the DVCS amplitude. We shall generate them ran-
domly. In order to keep the problem realistic, we pick them
in a bounded 8-fold hypervolume, whose limits are de-
fined as ±5 times the CFFs predicted by the VGG model.
VGG [5, 27–29] is a well-known and widely used GPD
model which obeys most of the model-independent GPD
normalization constraints and which reproduces the gen-
eral trends of the existing DVCS data (see refs. [13–15] for
instance). Centering the 8-CFF hypervolume around the
VGG model and limiting it to a ±5 factor prevents the
fitter from exploring too unlikely cases.

For obvious symmetry reasons due to this definition
of the 8-CFF hypervolume, it was chosen not to generate
the CFF values themselves but rather their “multipliers”,
i.e. their deviations from the VGG CFFs. In other words,
we generate 8 random numbers between −5 and +5. The
CFFs entering the DVCS amplitude are then the product
of these multipliers by the VGG reference CFFs. As an
illustration, for this first example, we list here the 8 ran-
domly generated CFFs multipliers that have been gener-
ated, which are denoted as a(CFF ):

a(HRe) = 3.191610, a(ERe) = 2.378950,

a(H̃Re) = 3.167072, a(ẼRe) = 3.091025,

a(HIm) = 3.124754, a(EIm) = −2.095427,

a(H̃Im) = 1.641959, a(ẼIm) = −3.279582. (16)

The CFFs used for the cross section calculations are
then the result of the product of these multipliers by
the VGG reference CFFs which are, at the (xB , Q2, t) =
(0.126, 1.1114GeV2,−0.1078GeV2) kinematics:

HRe = 3.30098, ERe = 2.69182,

H̃Re = 0.116259, ẼRe = −263.284537,

HIm = 5.09888, EIm = 1.01539,

H̃Im = 0.590312, ẼIm = −263.28453. (17)

Some of the multipliers in eq. (16) are very far from 1.
They correspond probably to quite unrealistic CFFs. For
instance, a(HIm) = 3.124754 means that the generated
HIm CFF is more than 3 times the VGG value. Given that
GPDs have to fulfill a certain number of normalization
constraints [5–11], such a strong deviation from the VGG
reference value is quite unlikely. We consider however that
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Fig. 2. Pseudo-data, generated from 8 randomly generated
CFFs (see eqs. (16) and (17)) for the kinematics (xB , Q2, t) =
(0.126, 1.1114 GeV2,−0.1078 GeV2) corresponding to one bin
measured by the CLAS experiment. The unpolarized cross
section (top) and the difference of beam-polarized cross sec-
tion (bottom) are shown unsmeared (left) and smeared (right).
The solid lines show the originally generated distribution. The
dashed line show the results of the fits (see text for details).

exploring and scanning such a large range of values should
make our case all the more robust and convincing.

The goal of this study is to find out if, by fitting the
generated φ pseudo-data distribution, we are able to re-
trieve, or constrain, the 8 original randomly generated
CFFs multipliers, or at least some of them, under real-
istic experimental conditions. For the latter, we smear the
theoretically calculated cross sections according to the ex-
perimental uncertainties of the Hall A and CLAS experi-
ments. Figure 2 shows the φ-dependence of the ep → epγ
unpolarized cross section and difference of beam-polarized
cross sections (top and bottom panels, respectively), un-
smeared and smeared (left and right panels, respectively),
generated with the 8 random CFFs multipliers of eq. (16),
multiplied by the 8 VGG CFFs of eq. (17).

In fig. 2, the 24 φ points superimposed on the theo-
retical curves are equidistant. This corresponds approx-
imately to the φ binning of the experimental data. We
added on those points the error bars corresponding to the
published experimental uncertainties of the CLAS data.
For this particular bin, they range from ≈ 5% to ≈ 9%
for the unpolarized cross section and from ≈ 20% to more
than 100% for the difference of beam-polarized cross sec-
tion. On the left panels of fig. 2, the three lowest φ and
the three largest φ points have no error bar. This means
that these φ regions were actually not measured experi-
mentally, likely for detector acceptance issues. Thus, these
6 φ do not appear on the right panels of fig. 2, which are
meant to mimic real data with the use of smearing (we
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however recall that the cross sections in fig. 2 are not the
measured ones since they have been generated with ran-
dom CFFs here). The error bar values and the accessible
φ regions vary for each (xB , Q2, t) bin, and differ for the
Hall A and CLAS experiments.

The smearing of the points of the right part of fig. 2
has been done via a Gaussian distribution, centered at the
theoretically computed value, with a standard deviation
corresponding to the experimental uncertainties (i.e. the
error bars of the points of the left part of the figure). Each
φ point was smeared independently of the other φ points.
The right part of fig. 2 shows one particular instance of
such a series of smearings. In the following, we will carry
out our studies for several random smearings so that we
are not biased by one particular smearing. Under these
conditions, we deem that in the following we will perform
our fits in rather realistic conditions, taking into account
the φ-coverage of the data, their dispersion and their un-
certaintities.

3.2 Pseudo-data fitting

The second stage of the study consists in fitting the gen-
erated φ distributions leaving the 8 CFFs as free param-
eters. This should be done, ideally, in “blind” conditions,
i.e. not making use of the knowledge of the originally gen-
erated CFF values. However, as was mentioned earlier, the
condition for the fitting procedure to converge is to limit
the hyperspace in which the 8 CFFs are allowed to vary.
The choice of the values of these boundaries is the only
model-dependent input in our approach. We take the same
hyperspace in which the 8 CFFs were originally generated,
i.e. ±5 times the VGG CFFs. Like for the generation of
the CFFs, we take as the free parameters of the fit, rather
than the absolute CFFs themselves, the relative deviations
from the reference VGG CFFs. We will therefore fit in the
following the multipliers of the VGG CFFs, with the goal
to recover the originally generated ones.

For the minimization we use the least squares method.
We minimize χ2, defined as follows:

χ2 =
n∑

i=1

(σtheo
i − σdata

i )2

(δσexp
i )2

+
(Δσtheo

i − Δσdata
i )2

(δ(Δσdata
i ))2

. (18)

In eq. (18), σtheo (Δσtheo) is the theoretical
DVCS+BH cross section (difference of beam-polarized
cross section), which depend on the CFFs multipliers,
which are the free parameters of the fit. The quantities
σdata, δσdata, and Δσdata, δΔσdata, are, respectively, the
values and the uncertainties of the pseudo- or experimen-
tal data. The index i runs over all the available φ-points
for a given (xB , Q2, t) bin. We use the well-known MI-
NUIT code from CERN [30] with the MINOS option. With
this option, MINUIT calculates χ2 at multiple points of
the multi-dimensional hyperspace of the free parameters.
Thus, step by step, the full phase space of the free param-
eters is explored. This method is costly in terms of com-
puting power and time but it allows, numerical precision

10
-5

10
-4

a(HRe)

χ2 m
in

a(ERe) a(H
~

Re) a(E
~

Re)

10
-5

10
-4

-4 0 4

a(HIm)

-4 0 4

a(EIm)

-4 0 4

a(H
~

Im)

-4 0 4

a(E
~

Im)

Fig. 3. Results of a series of fits, differing by their randomly
generated starting values, of the σ and ΔσLU pseudo-data of
the left part of fig. 2, i.e. without smearing. The red dots show
for each fit, on the x-axis, the values of the CFFs multipli-
ers which minimize the problem and, on the y-axis, the cor-
responding χ2

min value. The blue bars indicate the 1-σ un-
certainty corresponding to χ2

min + 1. The non-finite error bars
observed for the CFFs other than HIm mean that the χ2

min +1
value lies out of the ±5 times VGG CFF range. The red vertical
lines indicate the CFF-multiplier values used for the generation
of the pseudo-data (see eq. (16)).

and step-size issues aside, to find the global minimum (or
minima) of the problem, reducing the risk of falling into
local minima. In parallel, it allows to determine the errors
on the fitting parameters. The 1-σ uncertainty on a given
parameter corresponds to the value of this parameter for
Δχ2 = +1 above χ2

min, the minimum χ2 value. When the
problem is not linear and when the χ2 shape is not a sim-
ple parabola or a simple function, as in our case, this is
the only way to determine this error.

3.2.1 Non-smeared pseudo-data

We start from the simplest case: fitting the pseudo-data
of the left part of fig. 2, σ and ΔσLU , without smearing. It
is important to make sure that the result of the fit is not
dependent on the particular starting values of the 8 CFFs.
Indeed, by selecting or favoring specific starting points in
the 8-dimensional CFF hypervolume, one can end up in a
particular local minimum. We therefore carried out the fits
several hundreds of times with arbitrary starting points,
randomly selected in the ±5 times VGG CFF hypervol-
ume. Figure 3 shows with the red dots the results of the
fits for the 8 CFFs (or rather their multipliers) as a func-
tion of χ2

min, for a random sample of hundreds of starting
points. The blue bars indicate the 1-σ uncertainty corre-
sponding to χ2

min +1. The χ2
min values of the fits are very

low, of the order of 10−5. We recall that in this first ex-
ercise no smearing was applied to the pseudo-data. Thus,
all the fits go exactly through the data points. Therefore,
the precise χ2

min values and their dispersion are not very
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meaningful in this case (incidentally, note that the plot-
ted χ2

min values here are not normalized, i.e. they are not
divided by the number of degrees of freedom).

What is apparent in fig. 3 is that, out of the eight
CFFs, only HIm emerges from the fit with a quite
well-nailed minimum and finite error bars (of the or-
der of ≈ 20%). This happens systematically and invari-
ably, whichever the starting point in the 8-dimensional
CFF-multiplier hypervolume. All HIm minima lie very
closely to the originally generated a(HIm) = 3.124754
(see eq. (16)), which is indicated by the vertical red line
in fig. 3. One can also note that, in most cases, the er-
ror bars of a(HIm) appear asymmetric. We will encounter
such asymmetric errors often in the following. This is the
signature of a non-parabolic χ2 profile and of a non-linear
problem. This is expected as CFFs contribute in a bilin-
ear way to the unpolarized cross section (although in a
linear way to the beam-polarized cross section) [20]. The
non-finite error bars observed for the other seven CFFs
mean that the χ2

min + 1 value lies out of the ±5 times
VGG CFF range. Some partial information can neverthe-
less be extracted for HRe as, while the positive error bar
is infinite, the negative one appears to be finite. Also, the
minimum χ2

min values for HRe lie, with some dispersion,
around the originally generated value. This is not the case
for the remaining six CFFs which have both negative and
positive error bars non-finite, and for which the values of
a(), which minimize the problem, are essentially randomly
distributed between −5 and +5. There is in some cases a
tendency for some of these non-converging CFFs to have
their multipliers clustering near the edges of the allowed
domain, i.e. −5 and +5. We will come back to this point
further down.

In summary, these first results show that σ and ΔσLU

are dominantly sensitive to the HIm and HRe CFFs and
that these two CFFs seem, in the present ideal (i.e. un-
smeared) conditions, to be recoverable, albeit only par-
tially for HRe, from the simultaneous fit of σ and ΔσLU .

3.2.2 Smeared pseudo-data

Figure 4 shows the result of the same kind of study on
smeared pseudo-data, such as those in the right part of
fig. 2. For this particular smearing of the data, we also
performed the fits with many starting points in the 8-
dimensional CFF hypervolume. Figure 4 shows that all
fits led to the same set of 8-CFFs solution. Indeed, com-
pared to fig. 3, there is here no dispersion of the solutions
for the non-dominant CFFs. We tend to attribute the dis-
persion of the solutions that was observed in fig. 3 to the
very low χ2

min values, which were, we recall, of the order of
10−5. Such low values reflect the ill-nature of the problem
of fitting data points which are not smeared. Then χ2

min
values, at the limit of the numerical precision of the mini-
mizing algorithms, have little significance. In fig. 4, which
correspond to fits of smeared data, the unnormalized-χ2

values are indeed now of the order of 25. This is consistent
with the observation that there are 30 data points which
are fitted in the right part of fig. 2. In this latter figure,
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Fig. 4. Results of a series of fits, differing by their randomly
generated starting values, of the σ and ΔσLU pseudo-data of
the right part of fig. 2, i.e. with smearing. The figure shows, for
each fit, on the x-axis the values of the CFFs multipliers which
minimize the problem, and on the y-axis the corresponding
χ2

min value. The red vertical lines indicate the CFF-multiplier
values used for the generation of the pseudo-data (see eq. (16)).

the dashed curves on the smeared data (right part of the
figure) actually show the results of the fits with the values
of the 8-CFFs multipliers extracted from fig. 4.

Regarding the results for the HIm and HRe CFFs, from
fig. 4 we reach conclusions which are almost similar to the
previous case, with the unsmeared pseudo-data. Namely,
all the fits, independently of their starting values, allow
to recover the originally generated value of HIm (at the
≈ 20% level) and partially that of HRe, with its finite
negative error bar. For most of the other (non-dominant)
CFFs, the fits find values on the edge of the allowed CFF
range, i.e. ±5. We will come back to this point further
down.

A closer look at fig. 4 reveals that the values of a(HIm)
and a(HRe) corresponding to χ2

min (red points in fig. 4)
are not exactly centered on the originally generated values
(red lines). In particular, a(HRe), is clearly shifted to the
right compared to the generated value (which nevertheless
lies well within the negative blue error bar). The origin of
such shift is the particular smearing of the data that we
introduced and can accidentally bias the φ distributions
in a given direction (overall decrease or increase of the φ
distributions).

Indeed, the smearing of the data that we adopted in
fig. 2 was a particular random one. It has to be checked
for other smearings that our fit procedure is also able to
recover well the HIm CFF (in particular), from the si-
multaneous fit of σ and ΔσLU , in order to confirm the
robustness of the method. Figure 5 shows, still for the
CLAS kinematics (xB , Q2, t) = (0.126, 1.1114,−0.1078),
a sample of fit results for various smearings of the φ dis-
tributions and different generated CFF values. Each col-
umn corresponds to a different smearing, the first column
having no smearing, and each row to a different set of
generated CFF multipliers for a(HIm).
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Fig. 5. The result of several fits for a(HIm), differing by their
randomly generated starting values (“trial”). The results are
shown for a selection of three different random sets of gener-
ated CFFs (rows) and, for each of these, three different random
smearings of the pseudo-data (columns). The original value of
the CFF multiplier is marked by the red line. The point indi-
cated by the “hand” shows the final unique solution according
to the prescription that we advocate and describe in sect. 3.2.3:
taking the largest error bars of all solutions and their middle
as the most probable value.

The abscissa represents different “trials”, i.e. different
randomly generated starting points. We plot in the figure
only a small sample for the sake of visibility.

Among the hundreds of different smearings and CFFs
choices, we chose the nine particular cases of fig. 5 as they
illustrate different typical situations. Figure 5 shows the
ideal no-smearing case on the left column, one recognizes
the small dispersion of the fitted a(HIm)’s, which lie close
to the originally generated ones. This generalizes what we
observed in fig. 3. Every single fit, differing only by its
starting values, leads to a slightly different solution, al-
ways close to the originally generated value (with a χ2

min
value of the order of 10−5, not shown in fig. 5). It is re-
markable that even though the solutions slightly vary be-
tween trials, the range defined by the positive and negative
error bars always remains the same. In other words, even
if the χ2

min value happens to fluctuate, the χ2
min + 1 val-

ues seem to be well delineated. As illustrated by the three
rows of the first column of the figure, this is in general the
case, independently of the originally generated a(HIm),
be it positive or negative, close to 0 or not.

The next two columns of fig. 5 illustrate the solutions
that one typically finds for non-zero smearings. Like we no-
ticed and discussed with fig. 4, when smearing is involved,
there is quite less dispersion of the solutions. All trials,
only differing by their starting points, converge in general
to one or a couple of stable values, which have very similar
χ2

min values (of the order of 25, like in fig. 4). In particular,
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Fig. 6. Results of the fitted a(HIm)’s and a(H̃Im)’s for the
same fits as in fig. 5. Each square corresponds to a fit with
different starting values. The red lines indicate the originally
generated values. The error bars of H̃ are not shown, as they
are all infinite (i.e., they extend beyond the ±5 range) and
would clutter the plot too much.

in the right-column/central-row plot, one clearly distin-
guishes two values of a(HIm) which minimize the problem
and which are attained depending on the starting values
of the fit parameters. There is almost no difference in the
χmin between the two solutions: the a(HIm) ≈ 0.96 solu-
tion has χ2

min ≈ 27.14 while the a(HIm) ≈ 0.77 solution
has χ2

min ≈ 27.46. As a matter of fact, the solution that
has the slightly larger χ2

min value is the one which has the
fitted HIm value the closest to the originally generated one
(a(HIm) = 0.761933 in this particular case). The range of
the error bars of the two solutions is very similar, although
the negative error bar appears slightly larger for one so-
lution than for the other. In general, be it for single or
multiple solutions cases, the error bars are very similar
from one trial to the other. Again, even though the χ2

min
value might not be unique and well defined, the χ2

min + 1
values appear to be rather well specified.

In all plots of fig. 5, the red horizontal line indicates
the originally generated a(HIm) value. It is remarkable
that it is always contained in the largest error bars of the
fitted values. Admittedly, it is at the very edge for the top
right plot; among our hundreds of smearings, we selected
this particular one, which is not at all a general case, as
an illustration of an “extreme” case.

One can better understand some of these behaviors by
examining fig. 6. For the same nine conditions of fig. 5,
the figure shows to which a(H̃Im) value the a(HIm) so-
lution corresponds to. We consider this correlation since
H̃Im is expected to be the next dominant contributor to
ΔσLU after HIm [20]. The upper left plot of fig. 6 shows
that the apparently randomly distributed a(HIm) solu-
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tions around the originally generated value of the upper
left plot of fig. 5 actually correspond each to a different
value of a(H̃Im), all distributed along the whole allowed
±5 range (error bars on H̃ extend beyond the ±5 range
and only the central values are plotted in fig. 6). It reveals
(confirms) the strong correlation between these two CFFs.
Depending on the starting point, the fitter code ends up in
(a(HIm), a(H̃Im)) correlated solutions. One notices that
while H̃Im is not constrained at all within the ±5 range,
HIm is always contained in a very limited range. This
latter range is defined by the χ2

min + 1 error bar, whose
projection is displayed in fig. 5. We actually see that what
determines the error bar on HIm is the range of varia-
tion allowed for H̃Im (this effect was studied in detail in
ref. [26]). Were H̃Im allowed to vary in a domain larger
than ±5 times the VGG CFF hyperspace, the error bar
on HIm would be bigger (and conversely). This is why
the error bars on HIm that we obtained so far are in gen-
eral of the order of 20 to 30% (see fig. 5), i.e. somewhat
larger than the experimental precision of the data. Once
again, this is because they reflect the influence of the other
CFFs (mostly H̃Im in the present case) and their correla-
tion with HIm. Therefore, the value of HIm will be better
determined by having some extra constraint on H̃Im such
as additional observables.

When smearing is introduced (second and third
columns of figs. 5 and 6) the well-defined single or double
a(HIm) values correspond to, also, well-defined single or
double values for a(H̃Im). In several cases, these a(H̃Im)
values are actually on the edge of the allowed phase space,
i.e. ±5. In particular, the double solution for a(HIm) that
is found for the right-column/central-row plot of figs. 4
and 5 corresponds to two extreme values for a(H̃Im), i.e.
±5. They are anyway far from the originally generated
values (indicated by the horizontal red lines in fig. 6), and
have infinite error bars. Still, this does not prevent the
fitting code from finding the right solution for HIm.

3.2.3 Prescription for central value and error bars

Figure 7 shows another test of our fitting procedure. The
study is done this time for a kinematics measured in Hall
A: (xB , Q2, t) = (0.375, 1.964GeV2,−0.278GeV2). As be-
fore, we generate φ distributions from several random sets
of 8 CFFs, smear the distributions according to Gaus-
sians with standard deviations corresponding to the ex-
perimental Hall A data uncertainties, and fit them, tak-
ing randomly chosen starting points in the ±5 times the
VGG-CFFs hypervolume. Figure 7 illustrates with nine
plots, taken out of hundreds, the results for the recon-
structed a(HIm) CFF as a function of the unnormalized
χ2. The vertical red lines indicate the originally generated
a(HIm) values. For a given set of 8 CFFs, each fit yields
a different solution and different χ2

min values. This is due
to the random starting point and to the random smear-
ing of the cross sections, which are both different for each
fit. These two individual effects can be seen separately in
fig. 5. Figure 7 mixes the two effects and shows them for
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Fig. 7. Results of the fitter code, with the 8 CFFs taken as
free parameters, for a(HIm) as a function of χ2

min. The nine
plots correspond to nine randomly generated values of 8 CFFs
in the ±5 times VGG CFFs hyperspace. The red lines indicate
the originally randomly generated a(HIm) values. The black
points with their error bars indicate the results of the fitter
code. The (xB , Q2, t) kinematics at which this study was done
is (0.375, 1.964 GeV2, −0.278 GeV2), one of those measured by
the Hall A. In each case, we show, in order not to overcrowd the
figure, ≈ 20 fit results, out of hundreds. For each fit, both the
initial parameters and the smearing on the data are different.

more cases. What is remarkable in fig. 7 is that for all fits,
whatever the set of 8 CFFs, the smearing of the φ points
and the starting values of the CFFs, the originally gener-
ated a(HIm) value always lies within the error bars of the
fitted a(HIm)’s.

When we fit real data, and extract HIm in particular,
the only feature that we can change in our fit procedure
is the starting point of the fit, the smearing of the data
being imposed by the experiment. We saw in fig. 5 that, in
some cases, the solution a(HIm) corresponding to χ2

min,
was not unique: there could be “double” (or a few more)
solutions or “single” solutions but with fluctuations. In
many cases, the multiple solutions obtained are separated
by insignificant χ2 differences, as we saw, and the χ2

min
solution cannot be clearly determined. The starting point
can also have an influence on the error bar of the solution:
although error bars ranges are almost always the same,
one can distinguish in fig. 5 in some cases small differences
between error bars. It is not satisfactory to have several
solutions for a fit and we have to devise a way to define a
final, unique and reliable result, which should not depend
on the particular starting values and which should always
contain the “true” (generated) solution.

It seems that a good and conservative ad hoc prescrip-
tion is to take, among our series of solutions, the range
between the maximum value of all error bars and the min-
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Fig. 8. Solid line: difference between the “middle value” calcu-
lated from the largest error bars of all solutions and the gener-
ated value. Dashed line: difference between the χ2

min solution
and the generated value.

imum value of all error bars in order to define an effective
error bar and take as the most probable value the middle
of this interval. This recipe is indicated, in fig. 5, by the
hand symbol, where the most probable value according to
our prescription is the empty square. This “middle value”
that we advocate does not in general correspond to any
of the χ2

min values of the fit. However, we saw for exam-
ple in fig. 5 that the χ2

min values are actually not corre-
sponding to the originally generated value. The latter lies
within the error bars of the χ2

min solution. The χ2
min val-

ues are thus not a better guess of the “true” value than
the “middle” value we propose. Since the smearing of the
data (on which we have obviously no control when deal-
ing with true experimental data) can shift the fitted HIm

above or under the “true” HIm, taking the middle point
of the biggest error bars as the most probable value pro-
vides an improved evaluation of the true value. Also, we
saw that in most instances we obtained asymmetric error
bars. These asymmetric error bars are typically defined
by extreme (edge) values of the subdominant CFFs. For
instance, one can see H̃Im in the top right plot of fig. 6.
These subdominant CFFs are in general not constrained,
i.e. they are only restrained by the domain over which
they are allowed to vary in the fit (i.e. ±5 times the VGG
CFFs). Thus, the χ2

min solution corresponding to such an
extreme value for these unconstrained CFF is actually not
significantly more probable than any other. Choosing the
central value of the error bars for HIm corresponds to set-
ting H̃Im, and, more generally, the unconstrained CFFs,
around 0. This seems a reasonable choice, especially when
these latter tend to lie at the edges of our fitting range.

Figure 8 justifies this prescription. The solid-line distri-
bution shows, for thousands of events like in fig. 7, i.e. mix-
ing randomly smearings and starting values, the difference
between the “middle value” calculated from the largest er-
ror bars of all solutions and the generated value. As a com-
parison, the dashed-line distribution shows the difference

between the χ2
min solution and the generated value. Both

distributions are well-centered around 0, which shows that
both solutions are meaningful. However, it is clear that the
“middle value” distribution is significantly narrower than
the χ2

min one.
To summarize this sub-section, we carried out our

simulation studies for hundreds of cases, mixing sets
of 8 CFFs, different starting points and cross section
smearings and different JLab-type kinematics. The cross-
examination of all these cases made us reach the general
conclusion that in a 8-CFFs fit of the σ and ΔσLU ob-
servables, using realistic experimental precisions, albeit
largely underconstrained our fitter code appears to always
manage to recover the originally generated HIm, as the
“true” generated solution always lies in the χ2

min +1 error
bar of the fitted solution. Obviously we could not explore
every combination of starting points, generated sets of 8
CFFs and cross sections smearings, and we cannot exclude
the possibility that there are exceptions to this conclusion
which escaped our scrutiny. We feel nevertheless rather
confident that our procedure is reliable and robust. We
finally advocate that, since there are cases where it is dif-
ficult to define exclusively the χ2

min solution and therefore
the χ2

min + 1 value, it is the most appropriate to take as
final and unique solution the largest error bar solution and
the associated “middle” point, as illustrated in fig. 5.

3.3 Fitting with four CFFs

We conclude this section on Monte Carlo studies by a last
exercise. Since the GPDs H and, to a lesser extent, H̃,
are the dominant contributors to σ and ΔσLU , an idea
is to investigate the outcome of a fit with only these two
GPDs, i.e. only 4 CFFs as free parameters. This effec-
tively means setting the 4 CFFs EIm, ERe, ẼIm and ẼRe

to 0 in the fit, while they are not null in the generation
of the distributions to be fitted. This technique had been
adopted previously to extract information on the kine-
matic dependence of HIm and HRe in ref. [13]. We used
the same series of simulated φ distributions as before, gen-
erated by 8 CFFs taken randomly in the ±5-times-VGG
CFFs hyperspace, and smeared according to the experi-
mental uncertainties. For the present simulation, we use
the same kinematics as in fig. 7, i.e. the Hall A kinemat-
ics (xB , Q2, t) = (0.375, 1.964GeV2,−0.278GeV2), with
its associated experimental uncertainties on the cross sec-
tions. This time, we fit the smeared φ distributions by
only the 4 CFFs HIm, HRe, H̃Im and H̃Re, instead of the
8 CFFs as before.

The results for a(HIm) are displayed in fig. 9, which is
the analog for 4 CFFs of fig. 7. We first observe that the er-
ror bars on the fitted a(HIm)’s are in general smaller than
for the 8-parameters case. This decrease of the error bars
can be simply understood as there are less free parame-
ters (4 instead of 8) entering the problem and therefore
less correlations. However, we now observe several types
of results. For the left top-row plot, the central mid-row
plot and the bottom mid-row plot, the results of the fits
can be considered satisfactory as the squares lie relatively
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Fig. 9. Results of the fitter code for a(HIm) as a function of χ2,
with only the 4 CFFs HIm, HRe, H̃Im and H̃Re as free param-
eters. The nine plots correspond to nine randomly generated
values of 8 CFFs in the ±5 times VGG CFFs hyperspace. The
red lines indicate the originally randomly generated a(HIm)
values. The squares with their error bars indicate the results
of the fitter code for a sample of ≈ 20 fits, each fit differing by
its starting values and smearings.

well along the red lines, which indicate the originally gen-
erated values. However, we also observe cases where the
solutions are clearly systematically shifted, by 30 to 50%
with respect to the red lines. Although the fitted solutions
are always relatively “close” to the true solutions, the lat-
ter are quite often outside the error bar of the former,
defined as usual by χ2

min + 1. We shall therefore conclude
that the 4-CFFs free-parameters fit based on the H and
H̃ GPDs is not fully reliable. At best, it can provide a fla-
vor for the solution at the 30 to 50% level, i.e. the relative
shifts between the fitted solutions and the generated one.
This 30 to 50% relative uncertainty will however not be
reflected in the error bars coming out of the fitter, which
are much smaller.

We also studied the case of fitting σ and ΔσLU with
the 4 CFFs HIm, HRe, H̃Im and H̃Re as free parameters
and EIm, ERe, ẼIm and ẼRe set to their original val-
ues (as before, randomly generated), instead of 0 as in
the previous case. For the same randomly generated sets
of CFFs as before, fig. 10 shows the results for a(HIm)
in this configuration. We observe that in general we are
able, within error bars, to recover the originally generated
values for HIm (while the three other CFFs do not come
out in general with finite error bars, both the positive and
the negative one). This means that, if the unfitted CFFs
are set to their true values, a fit with only the 4 CFFs
based on the H and H̃ GPDs might be meaningful (at
least for HIm). With the (strong) assumption that VGG
(or, more generally, any other model) gives a reasonable
description of the E and Ẽ GPDs, this gives a motivation

10

20

30

40

50

χ2 m
in

10

20

30

40

10

20

30

40

-5 0 -5 0 -5 0 5

a(HIm)

Fig. 10. Results of the fitter code for a(HIm) as a function of
χ2, with the 4 CFFs HIm, HRe, H̃Im and H̃Re taken as free
parameters and EIm, ERe, ẼIm and ẼRe set to their originally
generated values. The nine plots correspond to nine randomly
generated values of 8 CFFs in the ±5 times VGG CFFs hyper-
space. The red lines indicate the originally randomly generated
a(HIm) values. The black points with their error bars indicate
the results of the fitter code for a sample of ≈ 20 fits, each fit
differing by its starting values.

to fit real data with only HIm, HRe, H̃Im and H̃Re as free
parameters and setting EIm, ERe, ẼIm and ẼRe to their
VGG values. The merit of this 4-CFF fit approach is that
this provides smaller error bars. This is, however, clearly
at the price of introducing some model dependence since,
in the most general case, a 4-CFFs fit is not fully reliable
as seen earlier.

4 Real data fitting

Being convinced of the soundness and reliability of our
fitting approach after our Monte Carlo pseudo-data tests,
we now apply our method to real data. The JLab Hall A
and CLAS Collaborations have recently released new sets
of unpolarized and beam-polarized cross sections (σ and
ΔσLU ) [12,13]. At the light of the simulations of the pre-
vious section, we therefore expect to extract constraints
on the HIm CFF and, partially, on HRe. In addition,
the CLAS Collaboration has measured, using a longitu-
dinally polarized target, the single and double target-spin
asymmetries AUL and ALL [14, 15]. The H̃Im CFF being
a strong contributor to AUL, we expect to extract con-
straints on this CFF as well. The analysis of AUL will also
allow to improve the precision on HIm due to its strong
correlation with H̃Im, as we saw in the previous section.

We start our study with the Hall A data and then
proceed with the CLAS data.
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Fig. 11. Result of the fits for the 8-CFF multipliers
a(HIm), a(EIm), a(H̃Im), a(ẼIm), a(HRe), a(ERe), a(H̃Re)
and a(ẼRe), as a function of χ2

min, for 50 trials differing only
by the starting values of the fit. The value of the CFF mul-
tiplier corresponding to the χ2

min value for a given trial is in
red and its associated error bar corresponding to χ2

min + 1 is
in blue. This example is for the third t-bin of the KIN2 JLab
Hall A kinematics.

4.1 Hall A data

The JLab Hall A Collaboration has measured the two ob-
servables σ and ΔσLU at four average kinematical set-
tings (xB , Q2): (0.36, 1.90GeV2), (0.36, 2.3GeV2), (0.39,
2.06GeV2) and (0.34, 2.17GeV2). In ref. [12] they are
called KIN2, KIN3, KINX2 and KINX3, respectively. The
latter two kinematics are actually a subset, obtained with
tighter cuts, of the first two. For each of these four
(xB , Q2) kinematics, the φ distribution has been measured
for five t bins.

We fit simultaneously the σ and ΔσLU φ-distributions,
for each of these 20 (xB , Q2, t) bins. We use either the eight
CFFs as free parameters or only the four HIm, HRe, H̃Im

and H̃Re, the other CFFs being set to their VGG values, as
invoked in the previous section. We carry out our fits with
hundreds of different starting values randomly generated
in the ±5-times-VGG-CFF hyperspace, in order to make
sure that the results are stable, as discussed previously.

Analogously to fig. 4, fig. 11 shows an example of the
8-CFFs fit results for one of the 20 (xB , Q2, t) bins, namely
the third t-bin of the KIN2 kinematics: (xB , Q2, t) =
(0.375, 1.964GeV2,−0.278GeV2). The figure shows the
result of the fit, for 50 different starting points, for the
8 CFF multipliers with the associated χ2

min values. The
red points indicate the minimum χ2

min solutions and the
blue bars the errors corresponding to χ2

min + 1.
We observe that all trials end up with essentially the

same set of solutions, all with very similar χ2
min values.

The χ2
min values in fig. 11 range from 50.3553 to 50.3587.

These χ2 values are unnormalized. For normalized values,
one has to divide by 48 (corresponding to the number of
data points: 24 for σ and 24 for ΔσLU ) minus 8 (corre-
sponding to the number of free parameters), i.e. 40.

Taking the solution which yields the minimum of all
χ2

min’s, i.e. 50.3553, the results of the 8 fitted CFF mul-
tipliers are

a(HIm) = 0.893220.065256
−0.90729, a(EIm) = −1.3109∞∞,

a(H̃Im) = −0.68653∞−1.8512, a(ẼIm) = −0.352433.9312
−1.5984,

a(HRe) = 5.0000∞−1.4469, a(ERe) = 5.0∞∞,

a(H̃Re) = −3.69190.94013
∞ , a(ẼRe) = −0.813301.9356

−1.8439.

(19)

We recall that the a()’s measure the deviation from the
VGG CFFs. Thus, the interpretation of a(HIm) = 0.89322
is that the value of HIm that best fits the Hall A data
is ≈ 89% of that given by the VGG model. In eq. (19),
the ∞ error values mean that the χ2

min + 1 value could
not be reached and that it therefore lies outside the ±5-
times-VGG-CFF hypervolume. In some cases, a(ERe) for
instance, both positive and negative error bars are infinite.
Then, no constraint at all can be drawn on such CFF. In
some other cases, H̃Im for instance, one of the two errors is
finite and then a lower (or upper) limit on the CFF can be
drawn. The most favorable case is when the two error bars
are finite and lie in the ±5-times-VGG-CFF range. This
is, for the present kinematics, the case of the HIm, ẼIm

and ẼRe CFFs. HIm is the most constrained by far. Its
negative error bar is of the order of 100% while the positive
one is only of a few percent. We could also observe in the
simulations in the previous section at several instances
such asymmetric error bars for HIm, which reflect the non-
linearity of the problem.

The top plot of fig. 12 displays in a more visible way the
results of fig. 11 for only a(HIm). The results are shown
for different trials differing only by their starting values.
In the central plot of fig. 12, we display the results for
another Hall A bin (third t-bin of KINX3), to illustrate
the variety of types of results, depending on the kinemat-
ics which are studied. While for the top plot the error
bars, which are constant, are very asymmetric with re-
spect to the a(HIm) values which minimize the problem,
in the central plot the values of a(HIm) corresponding to
χ2

min lie, with a few fluctuations, around the center of the
error bars, which are also constant. Then, as an illustra-
tion of a 4-CFF fit, we show in the bottom plot of fig. 12
the result of a fit with only HIm, H̃Im, HRe and H̃Re as
free parameters, the four other CFFs being set to their
VGG value. We observe double solutions. Depending on
the starting point, the fitter code ends up in one or in
the other of two solutions. The unnormalized χ2

min values
of the a(HIm) ≈ 0.25 and a(HIm) ≈ 0.69 solutions are,
respectively, ≈ 61.95 and ≈ 62.01. It is clearly not mean-
ingful to favor one solution rather than the other. We also
notice that the error bar ranges of the two solutions are
identical. We already encountered such a situation in the
previous section dedicated to simulations. We saw that
the “true” value was actually likely to lie between these
two solutions.

For unique final results, we learned from our Monte
Carlo studies that a good and safe policy was to take as
most probable point the middle of the maximal error bars
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Fig. 12. Result of the fitted multiplier a(HIm) for several fits
differing on their starting values. Top: 8-CFFs fit for the third
t-bin of KIN2 (same bin as in fig. 11). Center: 8-CFFs fit for
the third t-bin of KINX3. Bottom: 4-CFFs fit (HIm, H̃Im, HRe

and H̃Re) with the four other CFFs set to their VGG value,
for the fourth t-bin of KIN2. The points indicated by the hand
show the solutions that we advocate and that we will finally
retain.
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Fig. 13. Contour plot of the fit results in the (a(H̃Im), a(HIm)
plane). Top: third bin in t of KIN2 (the same as the top plot of
fig. 12). Bottom: third t-bin of KINX3 (the same as the central
plot of fig. 12). The open squares show the values of a(HIm)
and a(H̃Im) corresponding to the minimum χ2 values of the
fit. The “asterisk curves” show the contour corresponding to
χ2

min + 1. The plots have been produced by superposing the
results of 50 fits differing only by their starting values.

of all trials. We illustrate the prescription in the right part
of each plot of fig. 12 where we plot the final central value
and error bars that we will retain.

As we already discussed, the rather large error bars
in fig. 12 do not reflect the statistical error of the data.
They reflect the influence of the sub-dominant CFFs on
the dominant HIm CFF and more generally the under-
constrained nature of the problem. This is illustrated in
fig. 13 where we display the correlation (contour plot) be-
tween the a(HIm) and a(H̃Im) multipliers for two Hall
A bins. The open squares show the values of a(HIm)
corresponding to the minimum χ2 values of the fit. All
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these solutions correspond to different starting values in
the ±5-times-VGG-CFFs hypervolume. We plot in fig. 13
a sample of 50 fits results. The “asterisk curves” are the
associated contours corresponding to χ2

min + 1. The top
plot corresponds to the third bin in t of KIN2, i.e. the
same kinematics as in fig. 11 and as the top plot of fig. 12.
The bottom plot of fig. 13 corresponds to the third t-bin of
KINX3, i.e. the same kinematics as in the central plot of
fig. 12. One sees that the one-dimensional error bars that
are displayed in fig. 12 correspond to the projections on
the a(HIm)-axis of the ellipse-like contours of fig. 13. For
the top plot of fig. 13, one should note that the ellipse is
truncated on the upper side of the a(H̃Im) axis. Thus, no
positive error bar on H̃Im can be defined. This explains
the ∞ positive error bar of a(H̃Im) in eq. (19). In this
case, this truncation on a(H̃Im) defines and influences the
negative error bar of a(HIm). Were the range of ±5-times-
VGG CFFs larger, the negative error bar on HIm would
be larger as well. This is the only model dependency of this
approach in the 8-CFFs case, as we already underlined.

Such a truncation is not always happening. For the
kinematics of the bottom plot of fig. 13, all fits, differing
only by their starting values, converge to a quasi-unique
(a(HIm), a(H̃Im)) solution. The full contour ellipse holds
in the (−5 < a(H̃Im) < 5,−5 < a(HIm) < 5) surface.
This means that constraints on H̃Im can also be drawn
for this particular bin.

We now display in fig. 14 the outcome of the fits for the
dominant HIm CFF for the 20 (xB , Q2, t) Hall A bins. For
each of the 20 bins, hundreds of starting points have been
randomly chosen, leading to the results for the 8 CFFs
of the form of figs. 11 and 12. The HIm CFF is the one
always coming out with finite negative and positive error
bars. Figure 14 shows our fit results in the two approaches:
8-CFFs free parameters with red triangles and 4-CFFs free
parameters (HIm, H̃Im, HRe and H̃Re with the four other
CFFs set to their VGG values) with black triangles. The
two sets of results are very compatible, with of course sig-
nificantly smaller error bars in the case of the 4-CFFs fit.
Except maybe for the bin of the lower left plot of fig. 14,
one can in general discern a decreasing trend for HIm as
−t increases. For comparison, we also plot in fig. 14 the
values of HIm from the VGG model, with black stars. The
model exhibits, indeed, such a decrease with −t. However,
the VGG model, with the valence (sea) quark profile pa-
rameter choice bv = 1 (bs = 1), respectively [27], seems to
overestimate by a factor ≈ 2 the outcome of the fits.

The error bars that we obtain on HIm are rather large.
They are of the order of 100% for the 8-CFFs fits and
of 50% for the 4-CFF fits. This prevents to draw strong
conclusions at this stage. With additional constrains, like
the measurement of new observables, which is expected to
come in the near future, the situation shall improve. We
are paving the way for those days.

4.2 CLAS data

The CLAS Collaboration has measured the φ distribution
of the two observables σ and ΔσLU for 21 (xB , Q2) bins
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Fig. 14. Result of the fitted HIm as a function of t, for Hall A
kinematics, with the 8 CFFs as free parameters in red triangles
and with 4 CFFs as free parameters (HIm, H̃Im, HRe and H̃Re,
the other four CFFs being fixed at their VGG values) in black
triangles. The black triangles have been slightly shifted to the
right of the red triangles for visibility. Upper left plot: KIN2;
upper right plot: KIN3; lower left plot: KINX2; lower right
plot: KINX3. Here we have converted the xB values into ξ
values using eq. (15).

in the range 0.12 � xB � 0.50, 1.11 � Q2 � 3.90, with
6 t-bins (in most cases), ranging up to −t = 0.5GeV2.
The CLAS Collaboration has also measured the φ distri-
bution of the AUL and ALL asymmetries for 5 (xB , Q2)
bins, in a roughly equivalent phase space to the σ and
ΔσLU case, with 4 t-bins (in most cases), ranging up to
−t ≈ 1.3GeV2. Among these ≈ 20 (xB , Q2, t) bins, 15
have common kinematics with the σ and ΔσLU measure-
ments. It should be noted that AUL and ALL have been
measured up to larger −t values than σ and ΔσLU .

4.2.1 Fits of σ and ΔσLU

In a first stage, we extract HIm out of σ and ΔσLU , as we
did for the Hall A data, for all the CLAS (xB , Q2, t) bins.
Most of the results of our fits look like those we obtained
for Hall A (fig. 12). In particular, HIm always comes out
of the fit with finite error bars. However, in some cases,
we encounter new features such as those shown in fig. 15.
The figure shows a few examples of the a(HIm) multipliers
that were extracted for different randomly generated start-
ing points for three particular (xB , Q2, t) CLAS bins. The
first example (top plot of fig. 15) shows a case where the
results for a(HIm) have constant error bars but large fluc-
tuations for the values corresponding to χ2

min. The next
two examples (central and bottom plots of fig. 15) show
cases where double solutions occur. In the bottom plot, re-
sulting from a 4-CFF fit (with HIm, H̃Im, HRe and H̃Re
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Fig. 15. Examples of results for the fitted multiplier a(HIm)
for several fits, differing only by their starting values. Top
plot: 8-CFFs fit for the CLAS kinematics (xB , Q2, t) =
(0.1541, 1.2656 GeV2,−0.1526 GeV2). Center plot: 8-CFFs fit
for the CLAS kinematics (0.126, 1.1114 GeV2, −0.1078 GeV2).
Bottom plot: 4-CFFs fit (HIm, H̃Im, HRe and H̃Re, the other
four CFFs being fixed at their VGG values) for the CLAS
kinematics (0.1541, 1.2652GeV2, −0.1082 GeV2).
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Fig. 16. The HIm CFF as a function of t for the 20 CLAS
(xB , Q2) bins, fitting only σ and ΔσLU . Red open squares:
results of the CLAS data fit with the 8 CFFs as free pa-
rameters. Black solid squares: results of the CLAS data fit
with the 4 CFFs HRe, H̃Re, HIm and H̃Im as free pa-
rameters, the other 4 CFFs being set to their VGG value.
Red triangles ((xB/ξ, Q2) = (0.3345/0.2008, 2.2308 GeV2) and
(0.3646/0.2229, 2.3508 GeV2) bins): results of the Hall A data
fit with the 8 CFFs as free parameters (taken from fig. 14).
Stars: VGG predictions. The black solid square points have
been slightly shifted to the right of the red open square points
for visibility. The solid line shows an exponential fit of the red
open squares and the dashed line an exponential fit of the black
solid squares.

as free parameters and the other four CFFs being fixed
at their VGG values), the error bars do not even overlap.
Such feature was also found in ref. [31] which also explored
and considered in part the present local fitting method
and these new JLab data. As done previously, based on
our simulations studies, for all those cases, we will take as
the most probable point the middle of the maximal error
bars of all trials. This is illustrated by the point indicated
by the hand in fig. 15.

With such prescription, fig. 16 shows our results for
HIm with the two approaches that we considered: 8 CFFs
as free parameters (red open squares) and the 4 CFFs
HRe, H̃Re, HIm and H̃Im as free parameters, with the
others set to their VGG value (black solid squares). We
notice the good agreement between the 8-CFFs and 4-
CFFs fit results. The latter have in general smaller error
bars, as expected. We also insert in the figure the Hall
A results for HIm with the 8 CFFs as free parameters
that we obtained for the KIN3 and KINX3 bins (red solid
triangles). These two bins correspond almost exactly to
the CLAS (xB/ξ,Q2) = (0.3345/0.2008, 2.2308GeV2) and
(0.3646/0.2229, 2.3508GeV2) bins. There is a good gen-
eral agreement between the HIm values between the two
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experiments. For reference, we also show the VGG predic-
tions in fig. 16 with stars. We published a similar figure
in ref. [16], where the 4-CFFs fit results were not present
and to which we had added the fit results obtained when
the AUL and ALL observables entered in the fit. We will
discuss these latter results in the next subsection.

We observe the general trend that HIm decreases with
increasing −t. To quantify this, we fit these t-dependences
with an exponential function AeBt, with A and B as free
parameters. The solid lines in fig. 16 show the fit of the
red empty squares and the dashed lines the fit of the black
solid squares. We will discuss the results for the amplitude
A and for the slope B in the next section.

As we saw with our simulation studies in the previ-
ous section, fitting σ and ΔσLU can also lead to some
constraints on the HRe CFF (in figs. 3 and 4, lower lim-
its could be obtained). We obtained for this CFF results
with both error bars finite, for 12 CLAS (xB , Q2) bins,
out of 20. Figure 17 shows these results. While for the
vast majority of points there is good agreement between
the results of the 8-CFFs (red open squares) and of the 4-
CFFs (black solid squares) fits, for a few points there are
disagreements between the results of the two approaches.
This is the case for instance for the first t point of the
upper left plot in fig. 17. Such differences had not been
observed previously for HIm. We notice that this disagree-
ment actually occurs when the 8-CFFs fit yields a result
far from the VGG prediction. For the first t point of the
upper left plot in fig. 17, the 8-CFFs fit result has actu-
ally an opposite sign to the VGG prediction. We saw in
sect. 3.3 that the 4-CFFs fit was reliable when the 4 non-
fitted CFFs were set to their true value. For real data,
we assumed that VGG could make up a good guess for
such “true” value. However, the important disagreement
between the 8-CFFs fit and the VGG prediction for a few
particular (xB , Q2, t) bins hints that VGG actually does
not estimate correctly the “true” values for these unfit-
ted CFFs, for these specific kinematics. We shall therefore
conclude that the 4-CFFs fits, which, we recall, are model
dependent, are not reliable for these few bins where there
is an important disagreement between the results of the
8-CFFs and the 4-CFFs fits.

We also show in fig. 17 the only HRe value, i.e. with
finite negative and positive error bars, that we could get
out of the Hall A σ and ΔσLU data. It lies in the third
column plot of the lowest row in fig. 17, which is the
CLAS (xB , Q2) bin which approximately matches the Hall
A KINX3 bin. It is represented by the red (black) solid tri-
angle for the 8 (4) CFFs free parameters fit. Both the 8-
CFFs and the 4-CFFs fits give similar values. There seems
to be an incompatibility between these Hall A HRe values
and the neighboring CLAS HRe values. It was pointed out
in ref. [13] that there was probably some tension between
the Hall A and the CLAS unpolarized cross sections. This
discord in the data might explain the difference in the
HRe fitted values between the two experiments, as HRe

is one important contributor to the unpolarized cross sec-
tion [20]. We notice that there is not such conflict in the
beam-polarized cross sections. This may explain why the
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Fig. 17. HRe as a function of t for 12 CLAS (xB , Q2) bins,
fitting only σ and ΔσLU . Red open squares: results of the
CLAS data fit with the 8 CFFs as free parameters. Black solid
squares: results of the CLAS data fit with the 4 CFFs HRe,
H̃Re, HIm and H̃Im as free parameters, the other 4 CFFs be-
ing set to their VGG value. Red solid circles: results of the fit
with the 8 CFFs as free parameters, fitting in addition AUL and
ALL. The black solid squares, as well as the red solid circles,
have been slightly shifted to the right of the red open squares
for visibility. Red solid triangle (lowest row, third column): re-
sult of the Hall A data fit with the 8 CFFs as free parameters.
Black solid triangle (lowest row, third column): result of the
Hall A data fit with the 4 CFFs HRe, H̃Re, HIm and H̃Im

as free parameters, the other 4 CFFs being set to their VGG
value. Stars: VGG predictions. In the figure, we have converted
the xB values to ξ values.

HIm values were found compatible between the Hall A
and CLAS experiments (see fig. 16).

We finally display in fig. 17, with red circles, the results
that we obtain for HRe when we fit, with 8 CFFs, AUL

and ALL from CLAS in addition to σ and ΔσLU . We
discuss these AUL and ALL fits in more details in the next
subsection. For the moment being, we observe that these
points are in very good agreement with the HRe values
obtained from the fit of the CLAS σ and ΔσLU data only.

The t-dependence of HRe does not appear simple.
There seems to be several structures, in particular changes
of signs. We notice that such zero-crossings for HRe are
predicted by models (at least for HERMES kinematics,
see refs. [23, 25,32]). The HRe CFF is in general not easy
to interpret and model, as it results from a weighted in-
tegral of x over its whole range (−1 to +1). We expect
that our fit results will permit to constrain significantly
the models.
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Fig. 18. Top: contour plot of H̃Im vs. HIm when only σ and
ΔσLU are fitted (the error bars on H̃Im are not shown here as
they are infinite). Bottom: contour plot of H̃Im vs. HIm when
σ, ΔσLU , AUL and ALL are fitted. The open squares show
the minimum χ2 values and the “asterisk curves” the contour
corresponding to χ2

min + 1. The plots have been produced by
superimposing the results (χ2

min points and contours) of 50 fits
differing by their starting points. The (xB , Q2, t) kinematics of
the left plot are (0.2448, 2.1168 GeV2, 0.2032 GeV2) and the
ones of the right plot are (0.2556, 1.9700 GeV2, 0.2343 GeV2).

4.2.2 Fits of σ, ΔσLU , AUL and ALL

We now take into account the longitudinally polarized tar-
get asymmetries measured by CLAS, fitting simultane-
ously the four observables σ, ΔσLU , AUL and ALL. There
are 15 (xB , Q2, t) bins for which the kinematics is approx-
imately common between the σ, ΔσLU and the AUL and
ALL measurements.

We present in fig. 18 the comparison, for one given (xB ,
Q2, t) bin, of the a(H̃Im) vs. a(HIm) contour plots when
one fits only σ and ΔσLU (top plot) and one fits σ, ΔσLU ,
AUL and ALL (bottom plot). This comparison is done
for (xB , Q2, t) bins at approximately the same kinematics:
(0.2448, 2.1168GeV2, −0.2032GeV2) for σ and ΔσLU and
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Fig. 19. The HIm CFF as a function of t for 4 CLAS (xB ,
Q2) bins where the four observables σ, ΔσLU , AUL and ALL

can be fitted simultaneously. Red open squares: results of the
fit of σ and ΔσLU with the 8 CFFs as free parameters. Black
solid squares: results of the fit of σ and ΔσLU with the 4 CFFs
HRe, H̃Re, HIm and H̃Im as free parameters, the other 4 CFFs
being set to their VGG values. Red circles: results of the fit of
σ, ΔσLU , AUL and ALL with the 8 CFFs as free parameters.
The black solid squares and, in some cases the red circles, are
shifted to the right of the red open square points for visibility.
The dashed line shows the fit of the 6 red open squares (i.e.,
the 8-CFFs fit of σ and ΔσLU ). The dash-dotted line shows the
fit of the 6 black solid squares (i.e., the 4-CFFs fit of σ and
ΔσLU ). The dotted line shows the fit of the 3 red circles (i.e.
the 8-CFFs fit of σ, ΔσLU , AUL and ALL). The solid line shows
the fit of the 3 red circles and the 3 red open squares whose
t-values are different from the red circles (i.e., the 8-CFFs fit
of σ, ΔσLU , AUL and ALL and of σ, ΔσLU when only these
two observables are available).

(0.2556, 1.9700GeV2, −0.2343GeV2) for AUL and ALL.
Both plots are obtained with 8-CFFs fits. When only σ
and ΔσLU enter the fit (top plot), one sees that a(H̃Im)
is not constrained and can take any value between −5
and +5. These limits on a(H̃Im) determine the error on
a(HIm), as was mentioned in sect. 3.2.2. If a(H̃Im) were
allowed to vary beyond ±5, the error on a(HIm) would be
larger. The correlation between the two CFFs HIm and
H̃Im is clear from this plot. The bottom plot of fig. 18
shows that the introduction of AUL in the fit constrains
a(H̃Im) and, as a consequence, strongly reduces the error
bars on a(HIm). H̃Im is indeed known to be an important
contributor to AUL [20].

Figure 19 shows with the red circles the results for HIm

at the 4 (xB , Q2) bins (corresponding to 12 (xB , Q2, t)
bins) for which the 4 observables σ, ΔσLU , AUL and ALL

can be simultaneously fitted. There is in principle a fifth
(xB , Q2) bin where such a simultaneous fit can be done
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but the fitted HIm has infinite error bars due to the large
uncertaintities in the experimental data.

We also display in fig. 19 with red open and black solid
squares the results from the fit of only σ and ΔσLU , which
are taken from fig. 16. We observe in general an excellent
compatibility between all the points: the 8-CFFs fit of
σ and ΔσLU (red open squares), the 4-CFFs fit of σ and
ΔσLU (black solid squares) and the 8-CFFs fit of σ, ΔσLU ,
AUL and ALL (red solid circles).

In fig. 16, the red triangles have in general smaller
error bars than the squares. This can easily be under-
stood from fig. 18: adding the extra constraints from AUL

and ALL reduces the correlation between HIm and H̃Im

and therefore the error on both CFFs. A particularly il-
lustrative example is the red solid circle at the smallest
|t|-value in the lower left plot of fig. 19 ((xB/ξ,Q2) =
(0.2744/0.1590, 2.3485GeV2)), where one goes from a pre-
cision of ≈ 85% (red open square) to ≈ 70% (black solid
square) to ≈ 20% (red solid circle) in the extraction of the
HIm CFF.

We fit in fig. 19, for each (xB , Q2) bin, the t-
dependence of the HIm values that we extracted. We use
an exponential function of the form AeBt with A and B
as free parameters. The dashed line shows the fit of the
6 red open squares (i.e., the 8-CFFs fit of σ and ΔσLU ).
The dash-dotted line shows the fit of the 6 black solid
squares (i.e., the 4-CFFs fit of σ and ΔσLU ). The dotted
line shows the fit of the 3 red circles (i.e., the 8-CFFs fit
of σ, ΔσLU , AUL and ALL). The solid line shows the fit
of the 3 red circles and of the 3 red open squares whose
t-values are different from the red circles (i.e., the 8-CFFs
fit of σ, ΔσLU , AUL and ALL and of σ, ΔσLU when only
these two observables are available). We will discuss the
results of the A and B values and their interpretation in
the next section.

From the simultaneous fit of σ, ΔσLU , AUL and ALL,
we can also extract the H̃Im CFF. The red circles in fig. 20
show the results that we obtained. We did not obtain re-
sults for H̃Im with both error bars finite for each of the
12 (xB , Q2, t) bins of fig. 19. As seen in the simulation
section, in some cases and particular kinematics it is also
possible to get a constraint on H̃Im only from the fit of
σ and ΔσLU . We show the H̃Im values resulting from the
fit of the CLAS σ and ΔσLU with red empty squares in
fig. 20. Similarly, three H̃Im values (in the lower right plot
of fig. 20) can be obtained from the fit of the Hall A σ and
ΔσLU ’s. These results obtained from the fit of only two
observables are well compatible with those obtained from
the fit of four observables. Still, the gain of using AUL

and ALL in the fit is obvious: more precise results on H̃Im

and more kinematics for which H̃Im can be extracted. For
reference, we also show in fig. 20 the VGG prediction for
H̃Im with stars. When there are VGG predictions and no
fit result for H̃Im, it means that there were AUL and ALL

data but that the fit did not converge and/or ended up
with non-finite error bars. Given the scarce data and their
unertainties, we do not carry out a fit of the t-dependence.
However, it is clear by eye that the t-dependence is quite
flat, much more than for HIm.
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Fig. 20. The H̃Im CFF as a function of t for 4 CLAS (xB ,
Q2) bins. Red circles: results of the fit of σ, ΔσLU , AUL and
ALL with the 8 CFFs as free parameters. Red empty squares:
results of the fit of σ and ΔσLU only, from CLAS. Red triangles:
results of the fit of σ and ΔσLU only, from Hall A. For visibility,
the red empty square of the upper left plot has been slightly
shifted to the right of the red circle. Stars: VGG predictions.

In addition to the HIm and H̃Im CFFs, the HRe CFF
was also obtained in the simultaneous fit of σ, ΔσLU , AUL

and ALL. In principle, the ALL observable has sensitivity
to the real part of the DVCS amplitude and to HRe in
particular [20]. In fig. 17 the results that we obtained with
these additional observables in the fit are shown by red
solid circles, for the few (xB , Q2, t) bins for which both
error bars of HRe are finite. In general, the results confirm
those obtained with the fit of only σ and ΔσLU (red open
squares). The experimental precision on ALL doesn’t seem
to be sufficient to dramatically change the HRe results
obtained by the fit of only σ and ΔσLU . Only for the
largest xB bin (lower right plot of fig. 17), one can see
an effect as the red solid circles show a somewhat smaller
HRe magnitude and smaller error bars than the red open
squares, although all values are compatible within error
bars.

In conclusion of this section, we have obtained con-
straints on the HIm CFF from the simultaneous fit of σ
and ΔσLU . The relative error bars range from ≈ 40% to
≈ 100%, depending on the kinematics and on the exper-
iment (CLAS or Hall A), in the case of the quasi–model-
independent 8-CFFs fit. The 4-CFFs approach can de-
crease these uncertainties to ≈ 10% in some cases, but
this is at the price of a model-dependent input (i.e. fix-
ing the four non-varying CFFs to a model value). An im-
portant improvement is achieved by introducing the ad-
ditional AUL and ALL observables in the 8-CFFs fit. The
drawback is the limited amount of data available as it is
more challenging to measure polarized-target observables.
In addition to the HIm CFF, some constraints on the HRe
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CFF can be extracted from the simultaneous fit of σ and
ΔσLU (with very little improvement from the AUL and
ALL observables input) as well as on the H̃Im CFF with
the input of AUL.

5 Physics interpretation

In this section, we will discuss how to obtain a tomo-
graphic image of the proton, i.e. the x-dependence of the
charge radius of the proton, from the ξ and t dependences
of the HIm CFF that we just extracted with our fitting
procedure.

In the following, we will parametrize the data for HIm

of eq. (6) in the following way:

HIm(ξ, t) = A(ξ)eB(ξ)t. (20)

Figure 21 shows the ξ-dependences of the slope B and
amplitude A determined from the exponential fits of the
t-dependence of HIm displayed in figs. 16 and 19. In this
figure, we have decided to limit the upper range in ξ to
0.22 as, at large ξ values, the uncertainties in B and A
become too large to be useful and to make an impact.
The red open squares correspond to the 8-CFFs fit of the
CLAS σ and ΔσLU ’s as obtained from the solid curves of
fig. 16. For most of the CLAS bins, there are two Q2 values
for one ξ value, which explains why the red open squares
generally come in pairs in fig. 21. We notice, in passing, the
good compatibility, within admittedly rather large error
bars, of the paired points. This is a hint that HIm is quite
independent of Q2, and supports our starting hypothesis
of working in the QCD leading-order and leading-twist
framework. In fig. 21, the black solid squares correspond
to the 4-CFFs fit of the CLAS σ and ΔσLU ’s as obtained
from the dashed curves of fig. 16. The red solid circles
correspond to the 8-CFFs fit of the CLAS σ, ΔσLU , ALL

and AUL’s, obtained from the solid curves of fig. 19.
In spite of the large size of the errors, one can dis-

cern that, for all fit configurations, both the t-slope B
and the amplitude A of the exponentials tend to increase
as ξ decreases. To quantitatively support this qualitative
impression, we fit the different sets of points by straight
lines. The dashed curves in fig. 21 show the fit of only the
red open squares, whereas the dash-dotted curves show
the fit of only the black solid squares. The solid curves
show the fit of the 4 red solid circles and of the 4 red open
squares whose t-values are different from the red solid cir-
cles. It is clear in fig. 21 that all the slopes of the curves
are negative, i.e. that the both A and B increase as ξ de-
creases. The numerical results of the linear fits in ξ are
displayed in tables 1 and 2.

It is important to underline the systematic nature of
the error bars to properly assess the significance of these
results. The errors encode the level of unknown in the sub-
leading CFFs, therefore a solution with flat distributions
would have to be compensated with significantly stronger
opposite slopes for other CFFs. At the price of more model
dependence, global fits should be able to clarify how much
flexibility the GPDs can have in this regard.
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Fig. 21. Top: amplitude A of the exponential fit of HIm as
a function of ξ, corresponding to the extrapolated value of
HIm at t = 0, as a function of ξ. Bottom: t-slope B of the
exponential fit of HIm, as a function of ξ. Red open squares:
8-CFFs fit of CLAS σ and ΔσLU ’s. Black solid squares: 4-
CFFs fit of CLAS σ and ΔσLU ’s with the other CFFs set to
their VGG values. Red circles: 8-CFFs fit of CLAS σ, ΔσLU ,
ALL and AUL’s. Black open crosses: results quoted in ref. [13],
i.e. obtained with a 4-CFFs fit with the other CFFs set to 0.
When there are two points for the same ξ value, one of the
red solid squares, black solid squares and red circles have been
slightly shifted to the right for the sake of a better visibility.
The black open crosses have been slightly shifted to the left of
the red open squares also for better visibility. The dashed lines
show a linear fit of only the red open squares. The dash-dotted
lines show a linear fit of only the black solid squares. The solid
lines show a linear fit of the 4 red solid circles and of the 4
red open squares when their t-values are different from the red
solid circles. The latter corresponds with the 8-CFFs fit of the
CLAS σ, ΔσLU , AUL and ALL’s and of the CLAS σ, ΔσLU ’s
when the t values are different. When there are two points for
the same ξ value, both are included in the linear fits.
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Table 1. Fit results of A as a function of ξ (fig. 21 top) by
the function A = iA + sAξ with the associated errors ΔiA and
ΔsA.

iA ΔiA sA ΔsA

8-CFFs fit of σ, ΔσLU 6.09 2.21 −26.6 17.8

4-CFFs fit of σ, ΔσLU

(others set to VGG) 6.95 1.38 −32.3 11.1

8-CFFs fit of

σ, ΔσLU , AUL, ALL 4.89 2.21 −15.8 16.8

Table 2. Fit results of B as a function of ξ (fig. 21 bottom)
by the function B = iB + sBξ with the associated errors ΔiB
and ΔsB .

iB ΔiB sB ΔsB

8-CFFs fit of σ, ΔσLU 4.00 2.77 −15.6 25.2

4-CFFs fit of σ, ΔσLU

(others set to VGG) 4.67 1.74 −20.6 16.1

8-CFFs fit of

σ, ΔσLU , AUL, ALL 3.64 2.44 −11.0 20.0

For comparison purposes, we display in fig. 21, with
black open crosses, the slopes and amplitudes quoted in
ref. [13], i.e. obtained with a 4-CFFs fit and the others
set to 0 at the three ξ values where they were extracted.
Although this method should certainly not be pursued
in light of what our simulations taught us, notably the
underestimation of error bars, we see that it allows to
give some first general trends. In particular, it allowed to
first suggest the conclusions that we now corroborate in
a more meticulous way, namely the rise of the amplitude
HIm at t = 0 with decreasing ξ, as well as the rise of the
t-slope of HIm with decreasing ξ.

We would like to note that the CFF HIm of eq. (6) cor-
responds with the singlet GPD along the cross-over line
x = ξ. Although the GPD is continuous along this line,
its partonic interpretation is non-trivial as it involves a
vanishing partonic light-front momentum fraction in ei-
ther initial or final hadrons. A proper partonic interpre-
tation of our results will require a model calculation to
relate the singlet GPD H+(x, x, t) to the non-singlet GPD
H−(x, 0, t). The latter has a well-established partonic in-
terpretation. This connection will be discussed further-
down. For the sake of providing a physically motivated
ansatz for the ξ-dependences of A and B, we will assume
here that such a relation with a partonic interpretation
can be made and will interpret the parameters A and B
qualitatively as follows.

The parameter A can be associated to the density of
quarks in the nucleon. So the rise of A as ξ decreases
reflects an increase of the quark (and anti-quark) density
as smaller longitudinal momentum fractions are probed.
At small ξ, one expects A to rise steeply as 1/ξ due to
the sea-quark contribution. Furthermore, A is expected to
vanish in the limit ξ → 1, when one valence quark takes all

longitudinal momentum. Therefore, one can parametrize
the ξ-dependence of A by the simple one-parameter form
which embodies both features:

A(ξ) = aA(1 − ξ)/ξ. (21)

Furthermore, we already mentioned in the introduc-
tion that t is the conjugate variable of the transverse lo-
calization of the quarks in the nucleon (in the light-front
frame). Thus, the rise of B as ξ decreases reflects an in-
crease of the transverse size of the proton as smaller lon-
gitudinal momentum fractions are probed. We therefore
expect the slope B to sharply decrease from a Regge-type
behavior when ξ → 0 to a flat t-dependence in the limit
ξ → 1, reflecting the pointlike coupling to a valence quark
carrying all longitudinal momentum. To encompass both
limits, one can parametrize the ξ-dependence of B by the
following one-parameter ansatz in ξ:

B(ξ) = aB ln(1/ξ). (22)

The parameters aA and aB can be determined from a
fit to the A and B data of fig. 21. In the following, we will
keep only the set of data corresponding to the 8-CFFs fit
of σ, ΔσLU , AUL, ALL, i.e. the 4 red solid circles and the 4
red open squares whose t-values are different from the red
solid circles in fig. 21. This corresponds to the most pre-
cise model-independent set of data in our approach. To
further constrain our parametrization, one can also add
the HIm value that was extracted for HERMES kinemat-
ics in refs. [9,23] with the same technique as in the present
work. This corresponds to fitting the points that we show
in fig. 22. In this figure, the black solid circles correspond
to the 6 lowest ξ bins of the CLAS data set of fig. 21 and
the black solid square corresponds to the HERMES point.
Given their uncertainties larger than 100%, the largest ξ
bins of the CLAS data set do not bring significant informa-
tion, and were omitted in the following discussion. Notice
also that we decided to adopt a logarithmic scale for the
horizontal axis (i.e., ξ) and to plot ξA for the amplitude
in the top plot. A fit to these data with the functional
forms of eqs. (21), (22) yields the values:

aA = 0.36 ± 0.06, aB = 1.06 ± 0.26GeV−2. (23)

The resulting fits are shown by the bands in fig. 22.
We also compare in fig. 22 the experimentally ex-

tracted values of the amplitude A and the t-slope B
with the expectations from GPD models. We use two
GPD models: the dual model [33] and the VGG double-
distribution model [5,27–29]. In the following, we will tag
the latter DD to underline that it belongs to the generic
double-distribution family. We will use three choices of the
valence (sea) profile parameters bv (bs) respectively. For
large values of these profile parameters (b → ∞), the cor-
responding GPD H(x, ξ, t) tends to the GPD H(x, 0, t),
where the effect of the skewness (i.e. its ξ-dependence)
disappears. The three parameter combinations are chosen
to correspond with the cases where both valence and sea
distributions show strong skewness (bv = bs = 1), where
only the valence distributions shows a strong skewness
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Fig. 22. Top: amplitude A of HIm, multiplied by ξ, as a
function of ξ. Bottom: t-slope B of HIm as a function of ξ.
Data points: 8-CFFs fit from CLAS (circles) as extracted in
the present work and from HERMES (square) as extracted in
refs. [9,23]. The one-parameter fits to these data points accord-
ing to eqs. (21), (22) are shown by the bands, corresponding
to a 1σ variation of aA and aB , whose fit values are given
by eq. (23). When there are two points for the same ξ-value,
both are included in the fits. The theory curves correspond to
the dual model and to the double-distribution (DD) model for
three choices of the valence (sea) profile parameters bv (bs).

(bv = 1, bs = 5), and where neither the valence nor the
sea distributions show any strong skewness (bv = bs = 5).
For the dual model, we have used the lowest forward-like
function [33]. For both models, we use the same empiri-
cal forward parton distributions as input and use in both
cases a Regge parameterization for the t-dependence with
the Regge slope parameter 1.05GeV−2. The latter value

is obtained from the requirement that the first moment of
the valence GPD is fixed by the slope at t = 0 of the pro-
ton Dirac form factor. We refer the reader to the review
of ref. [9] for details of these parameterizations.

Comparing the extracted data for the amplitude A
with theory, we notice from fig. 22 that in the region
0.05 � ξ � 0.2 the data tend to lie systematically be-
low the result of the dual model (with lowest forward-like
function) and the DD models where sea quarks display
a strong skewness (bs = 1). The DD models with small
skewness effects of sea-quarks (bs = 5) are in good agree-
ment with the data. To distinguish for the valence quarks
between the cases of strong skewness (bv = 1) and weak
skewness (bv = 5) will require data in the region ξ � 0.3.
Such data are expected from the forthcoming dedicated
DVCS program of JLab at 12GeV. We also notice from
fig. 22 that the GPD models predict a maximum for ξA(ξ)
around ξ ≈ 0.3, which is due to the x-dependence of the
underlying valence quark distributions. At present, the
available data only allow to fit one parameter. Therefore,
the one-parameter fit of eq. (21), shown by the band in
fig. 22 shows a monotonic decrease from its constrained
value at small ξ to its (imposed) vanishing behavior at
ξ → 1. Once data will become available around ξ ≈ 0.3,
one can try more elaborate fit functions encompassing the
intermediate structures in the valence region as predicted
by the GPD models.

For the exponential t-slope B(ξ), both the data as well
as the models follow a ln(1/ξ) behavior, thus leading to an
increase of the slope as ξ decreases. Only for ξ � 0.5, which
is beyond the reach of the current data, some differences
between the models appear.

We now seek to relate the increasing t-slope B(x) when
x decreases with the variation of the spatial size of the
proton when probing partons with different longitudinal
momentum fraction x. For this purpose, we relate it to
the helicity-averaged transverse charge distribution in the
proton, denoted by ρ, which is obtained through a 2-
dimensional Fourier transform of the FF F1 as [17]:

ρ(b⊥) =
∫

d2Δ⊥
(2π)2

e−ib⊥·Δ⊥F1(−Δ2
⊥). (24)

Here b⊥ denotes the quark position in the plane trans-
verse to the longitudinal momentum of a fast moving pro-
ton, and the conjugate momentum variable Δ⊥ denotes
the momentum transfer towards the proton. The squared
radius of this unpolarized 2-dimensional transverse charge
distribution in the proton is then defined as

〈b2
⊥〉 =

∫
d2b⊥b2

⊥ρ(b⊥). (25)

The squared radius of the proton FF F1, denoted by 〈r2
1〉,

is usually defined through its Taylor expansion:

F1(−Δ2
⊥) = 1 − 〈r2

1〉Δ2
⊥/6 + O(Δ4

⊥), (26)

which allows to readily identify 〈b2
⊥〉 = 2/3〈r2

1〉. The ex-
perimental extraction of 〈r2

1〉 based on elastic electron-
proton scattering data yields [34]: 〈r2

1〉 = 0.65 ± 0.01 fm2,
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resulting in the empirical value for the squared radius of
the proton’s transverse charge distribution:

〈b2
⊥〉 = 0.43 ± 0.01 fm2 = 11.05 ± 0.26GeV−2. (27)

Similarly to the FFs, the t variable in the GPDs is the
conjugate variable of the impact parameter. For ξ = 0
(where one identifies t = −Δ2

⊥), one therefore has an im-
pact parameter version of GPDs through a Fourier integral
in tranverse momentum Δ⊥, which for a parton of flavor
q reads as

ρq(x,b⊥) =
∫

d2Δ⊥
(2π)2

e−ib⊥·Δ⊥Hq
−(x, 0,−Δ2

⊥). (28)

Here Hq
−(x, 0, t) is the so-called non-singlet or valence

GPD combination, defined as

Hq
−(x, 0, t) ≡ Hq(x, 0, t) + Hq(−x, 0, t), (29)

with 0 ≤ x ≤ 1. At ξ=0, the function ρq(x,b⊥) can then
be interpreted as the number density of quarks of fla-
vor q with longitudinal momentum fraction x at a given
transverse distance b⊥ (relative to the transverse center
of mass) in the proton [17]. Note that the transverse po-
sition of the quarks and their longitudinal momenta are
independent variables which can be determined simulta-
neously.

Generalizing eq. (25), one can define the x-dependent
squared radius of the quark density in the transverse plane
as

〈b2
⊥〉q(x) =

∫
d2b⊥b2

⊥ρq(x,b⊥)∫
d2b⊥ρq(x,b⊥)

. (30)

Inserting eq. (28) in eq. (30) allows one to express the
x-dependent squared radius as

〈b2
⊥〉q(x) = −4

∂

∂Δ2
⊥

ln Hq
−(x, 0,−Δ2

⊥)
∣∣
Δ⊥=0

. (31)

Assuming the t-dependence of the valence GPD
Hq

−(x, 0, t) to be an exponential of the form:

Hq
−(x, 0, t) = qv(x)eB0

−(x)t, (32)

with qv(x) the corresponding valence quark distribution,
eq. (31) then yields for each flavor q:

〈b2
⊥〉q(x) = 4B0

−(x). (33)

The x-independent squared radius is obtained from
〈b2

⊥〉q(x) through the following average over x:

〈b2
⊥〉q =

1
Nq

∫ 1

0

dx qv(x) 〈b2
⊥〉q(x), (34)

with the integrated number of valence quarks Nu = 2 and
Nd = 1, for the proton. The Dirac squared radius 〈b2

⊥〉 is
then obtained as the charge weighted sum over the valence
quarks

〈b2
⊥〉 = 2eu〈b2

⊥〉u + ed〈b2
⊥〉, (35)

with quark electric charges eu = +2/3 and ed = −1/3. A
Regge ansatz for the t-dependence of Hq

−(x, 0, t) yields

B0
−(x) = aB0

−
ln(1/x), (36)

with aB0
−

the Regge slope. When evaluating the corre-
sponding integral of eq. (34), using the empirical con-
straint of eq. (27) for 〈b2

⊥〉, we obtain the estimate

aB0
−

= (1.05 ± 0.02) GeV−2. (37)

To quantitatively compare this with the t-slope of HIm

defined through eq. (20), we need to be aware of a differ-
ence. The experimentally measured t-slope B(x) is for the
singlet GPD combination H+(x, x, t). On the other hand,
the t-slope B0

−(x) of eqs. (36), (37) is for the valence GPD
in the limit ξ = 0, i.e. for the function Hq

−(x, 0, t) for a
quark of flavor q. In our analysis we will assume that the
function B0

−(x) is the same for u and d quarks, in agree-
ment with the observed universality of the Regge slopes
for meson trajectories. To get some quantitative idea how
large the difference between the flavor-independent slopes
B0

− and B is, we perform a study within GPD models. In
fig. 23, we show the x-dependence of the ratio B0

−(x)/B(x)
within the same dual and DD GPD models which we pre-
viously had compared to data (fig. 22). One sees from
fig. 23 that B0

− is smaller than B, approaching the lat-
ter for small x. We also notice that B0

−(x) decreases much
faster than B(x) in the limit x → 1. For the x range of the
available data, 0.05 � x � 0.2, we notice that the GPD
models with bs = 5, which were found to be compatible
with both the data for A and B, yield B0

−/B 	 0.90−0.95.
Opportunely, in the x-range of the data studied in this
work, this correction factor is close to 1, and therefore
the model error in passing from B(x) to B0

−(x) is much
smaller than the experimental error. In our extractions we
will use the DD model for bv = 1 and bs = 5 (black curves
in figs. 22, 23) which was found to yield a good descrip-
tion of the available data. As a result, we can use the data
on B(x) to obtain a value for 〈b2

⊥〉(x) using eq. (33), as
shown in fig. 24 (black data points and red bands). These
data are also compared with the result assuming the loga-
rithmic ansatz for B0

−(x) of eq. (36), with parameter aB0
−

determined from the proton Dirac radius, according to
eq. (37). One sees that within errors both determinations
are perfectly compatible.

We can use our parameterization to produce a 3-
dimensional representation of the fit of fig. 24, which is
shown in the upper plot of fig. 25. We emphasize that the
x-range of the available data is limited to 0.05 � x � 0.2
and that the extrapolation of the data beyond should be
taken with caution.

We have here extracted the x-dependence of the
squared radius of the quark distributions in the transverse
plane, demonstrating an increase of this radius with de-
creasing value of the longitudinal quark momentum frac-
tion x. The hypotheses which have entered our work are
the general framework of QCD leading-twist and leading-
order, a maximum deviation of the values of the “true”
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Fig. 23. x-dependence of the ratio B0
−(x)/B(x), with B0

− the
exponential t-slope of Hp

−(x, 0, t) according to eq. (32), and B
the exponential t-slope of Hp

+(x, x, t) according to eq. (20). The
theory curves correspond to the dual model (red dashed curve)
and the double-distribution (DD) model for three choices of the
valence (sea) profile parameters bv (bs), as indicated.

Fig. 24. x-dependence of 〈b2
⊥〉 for quarks in the proton. The

data points correspond to the results obtained in this work for
B(x), as displayed in fig. 21. They have been multiplied by the
correction factor B0

−/B in the x-range of the data, as obtained
from the black curve in fig. 23. The total model uncertainty
originating from the red band for B(x) in fig. 22, and from the
conversion of B0

− to B (using the black solid curves in fig. 23)
is shown by the red band. The narrow light blue band shows
the empirical result using the logarithmic ansatz for B0

−(x) of
eqs. (36), (37) with the parameter aB0

−
determined from the

proton Dirac radius.

Fig. 25. Top panel: three-dimensional representation of the
function of eq. (33) fitted to the data of fig. 24, showing the x-
dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

GPDs by a factor 5 with respect to the VGG GPDs, and
a model-dependent ξ-dependent correction factor to con-
vert the t-slope of the singlet to the non-singlet distribu-
tions. We deem that the uncertainties associated to these
assumptions are included in our systematic error bars.

At this stage, we do not carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as

HRe(ξ, t) = −Δ(t) + P
∫ 1

0

dxH+(x, x, t)C+(x, ξ), (38)

where Δ(t) is the subtraction constant, which is directly
related to the D-term form factor, see ref. [9] for details.
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Fig. 26. Comparison of the ξ-dependence of the imaginary parts (upper plots) and real parts (lower plots) of the CFF related
to the GPD H for the proton for three values of t. The curves in the upper plots are based on two DD parameterizations. Solid
curves: DD parameterization with bv = 1 and bs = 5; dashed curves: DD parameterization with bv = 5 and bs = 5. The curves
in the lower plots are the dispersive calculations of the real parts according to eq. (38), based on the input of the imaginary
parts from the upper plots, and with the subtraction function Δ(t) set equal to zero. Open squares: results of the CLAS σ and
ΔσLU fit. Solid circles: results of the fit to CLAS σ, ΔσLU , AUL, and ALL data.

One notices that the dispersive term, corresponding to
the second term on the r.h.s. of eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

To illustrate the power of the dispersion relation, we
show an analysis in fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a priori unknown subtraction constant
Δ(t) equal to zero. The corresponding dispersive results
(second term of eq. (38)) are shown on the bottom panel of
fig. 26. We notice the importance of a large coverage in x
when performing the dispersion integral, because although
the two GPD parameterizations are practically coinciding
for HIm in the ξ-range of the data, they show a differ-
ence for HRe in the same ξ-range, which is due to their
differences in the large ξ region for HIm. We compare our
dispersive results for HRe with the direct extraction of the
CFF HRe as performed in this work. Although the current
error bars on the direct extraction of HRe are large due
to systematics, we can observe that apart from the lowest
bin in −t, the trend of the ξ-dependence which leads to
a rise of HRe at smaller ξ is well reproduced. Although
our extraction method of HRe does not allow to extract
a subtraction constant at this stage, we can see that this
framework holds promise to extract Δ(t) once the sys-
tematic errors are reduced, through the inclusion of data
which have a large sensitivity on HRe. We also see that
for the application of the dispersive framework it is impor-

tant to measure the integrand HIm over a wide range in ξ,
especially the ξ > 0.3 region, which will become possible
with the forthcoming JLab 12 GeV data.

6 Conclusion

In summary, we have analyzed in a GPD leading-twist and
leading-order theoretical framework the latest ep → epγ
unpolarized cross sections, difference of beam-polarized
cross sections, longitudinally polarized target single spin
asymmetries and beam-longitudinally polarized target
double spin asymmetries measured by the JLab Hall A
and CLAS Collaborations. We have extensively tested and
validated on Monte Carlo pseudo-data a quasi–model-
independent algorithm aimed at extracting CFFs from
ep → epγ observables. Applied to real data, this code has
allowed us to extract constraints on the HIm, H̃Im and
HRe CFFs. From the t-dependence of the HIm at various
xB values, we have been able to derive the variation of
the proton charge radius as a function of the quark’s lon-
gitudinal momentum, on the domain covered by the JLab
experiments. We have also performed a dispersive calcu-
lation which was found to yield a good agreeement of the
integrand, given by HIm, over the measured range, and
compared the dispersive integral with our extracted val-
ues for HRe. Although our extraction method of HRe does
not allow to extract a subtraction constant at this stage,
we can see that this dispersive framework holds promise
to extract Δ(t) once the systematic errors are reduced.

We are very thankful to D. Mueller and K. Kumericki for in-
sightful discussions on this work.
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